

 \(\renewcommand\AA{\text{Å}}\)

GSAS-II Developer’s Documentation

The documentation here is intended for those wishing to extend the
capabilities within the GSAS-II framework, for scientists/students
working to understand how
GSAS-II works, or for people wishing to develop scripting applications
using the GSAS-II Python API (module GSASIIscriptable). Note that most
data structures used in GSAS-II are defined in module GSASIIobj.

For information on downloading/installing GSAS-II, please see
the GSAS-II home page:
https://subversion.xray.aps.anl.gov/trac/pyGSAS. To learn how to
use GSAS-II, please see the tutorials, which can be accessed from the
GSAS-II Help menu or from this web page:
https://subversion.xray.aps.anl.gov/pyGSAS/trunk/help/Tutorials.html.

Argonne Information:: Argonne has assigned Software Invention #SF-22-147 to GSAS-II.

Documentation Version:

This documentation was prepared from GSAS-II version 918ae0 dated 27-Mar-2024 20:38 with the most recent tag as version #5773

Contents:

	1. GSAS-II Requirements, Python Packages and External Software
	1.1. Supported Platforms

	1.2. Version Control

	1.3. Python Requirements

	1.4. GUI Requirements

	1.5. Scripting Requirements

	1.6. Optional Python Packages

	1.7. Required Binary Files

	1.8. Supported Externally-Developed Software

	2. Main routine: GSASII.py
	2.1. GSASII: GSAS-II GUI

	2.2. Keyboard Menu Shortcuts

	2.3. GSAS-II contents

	3. GSASIIobj: Data objects & Docs
	3.1. Summary/Contents

	3.2. Variable names in GSAS-II

	3.3. Constraints Tree Item

	3.4. Covariance Tree Item

	3.5. Phase Tree Items

	3.6. Rigid Body Objects

	3.7. Space Group Objects

	3.8. Phase Information

	3.9. Powder Diffraction Tree Items

	3.10. Powder Reflection Data Structure

	3.11. Single Crystal Tree Items

	3.12. Single Crystal Reflection Data Structure

	3.13. Image Data Structure

	3.14. Parameter Dictionary

	3.15. Texture implementation

	3.16. ISODISTORT implementation

	3.17. Parameter Limits

	3.18. GSASIIobj Classes and routines

	4. GSAS-II Utility Modules
	4.1. GSASIIpath: locations & updates

	4.2. GSASIIlog: Logging of “Actions”

	4.3. config_example.py: Configuration options

	4.4. GSASIIElem: functions for element types

	4.5. GSASIIlattice: Unit Cell Computations

	4.6. GSASIIspc: Space Group Computations

	4.7. GSASIIfiles: data (non-GUI) I/O routines

	4.8. GSASIImpsubs: routines used in multiprocessing

	4.9. Module nistlat: NIST*LATTICE cell computations

	4.10. ReadMarCCDFrame: Read Mar Files

	4.11. G2shapes: Compute SAS particle shapes

	5. GSAS-II GUI Support Modules
	5.1. GSASIIctrlGUI: Custom GUI controls

	5.2. GSASIIIO: Misc I/O routines

	5.3. gltext: draw OpenGL text

	6. GSAS-II GUI Components
	6.1. GSASIIdataGUI: Main GUI for GSAS-II

	6.2. GSASIIseqGUI: Sequential Results GUI

	6.3. GSASIIphsGUI: Phase GUI

	6.4. GSASIIddataGUI: Phase Diffraction Data GUI

	6.5. GSASIIElemGUI: GUI to select and delete element lists

	6.6. GSASIIconstrGUI: Constraint GUI routines

	6.7. GSASIIrestrGUI: Restraint GUI routines

	6.8. GSASIIimgGUI: Image GUI

	6.9. GSASIIpwdGUI: Powder Pattern GUI routines

	6.10. GSASIIexprGUI: Expression Handling

	6.11. GSASIIfpaGUI: Fundamental Parameters Routines

	6.12. fprime: compute f’ & f”

	6.13. Absorb: Compute X-ray Absorption

	7. GSAS-II Data Storage Modules
	7.1. GSASIIdata: Ramachandran Parameters

	7.2. ElementTable: Periodic Table Data

	7.3. FormFactors: Scattering Data

	7.4. ImageCalibrants: Calibration Standards

	7.5. atmdata: Table of atomic data

	7.6. defaultIparms: Table of instrument parameters

	8. GSAS-II Structure Submodules
	8.1. GSASIIstrMain: main structure routine

	8.2. GSASIIstrMath - structure math routines

	8.3. GSASIIstrIO: structure I/O routines

	9. GSASIImapvars: Param Constraints
	9.1. Summary/Contents

	9.2. Externally-Accessible Routines

	9.3. Types of constraints

	9.4. Constraint Processing

	9.5. Global Variables

	9.6. GSASIImapvars Routines/variables

	10. GSASIIimage: Image calc module
	10.1. Summary/Contents

	10.2. GSASIIimage Routines

	11. GSASIImath: computation module
	11.1. Summary/Contents

	11.2. GSASIImath Classes and routines

	12. GSASIIindex: Cell Indexing Module
	12.1. Summary/Contents

	12.2. GSASIIindex routines

	13. GSASIIplot: plotting routines
	13.1. Summary/Contents

	13.2. List of Graphics routines

	13.3. Window management routines

	13.4. GSASIIplot Classes and routines

	14. GSASIIpwd: Powder calculations
	14.1. Summary/Contents

	14.2. GSASIIpwd Classes and routines

	15. GSAS-II Small Angle Scattering
	15.1. GSASII small angle calculation module

	15.2. Substances: Define Materials

	16. GSASIIscriptable: Scripting Interface
	16.1. Summary/Contents

	16.2. Installation of GSASIIscriptable

	16.3. Application Interface (API) Summary

	16.4. Refinement parameters

	16.5. Specifying Refinement Parameters

	16.6. Access to other parameter settings

	16.7. Code Examples

	16.8. GSASIIscriptable Command-line Interface

	16.9. API: Complete Documentation

	17. GSAS-II Misc Scripts
	17.1. testDeriv: Check derivative computation

	17.2. GSASIItestplot: Plotting for testDeriv

	17.3. scanCCD: reduce data from scanning CCD

	17.4. makeMacApp: Create Mac Applet

	17.5. makeBat: Create GSAS-II Batch File

	17.6. makeLinux: Create Linux Shortcuts

	17.7. makeVarTbl: Make Table of Variable Names

	17.8. unit_tests: Self-test Module

	17.9. testSytSym: Test Site Symmetry

	17.10. testSSymbols: Test Superspace Group Symbols

	17.11. Other scripts

	18. GSAS-II Web Modules
	18.1. SUBGROUPS: Interface Bilbao SUBGROUPS & k-SUBGROUPSMAG web pages

	18.2. ISODISTORT: Interface to BYU ISODISTORT web pages

	19. GSAS-II Import Modules
	19.1. Phase Import Routines

	19.2. Powder Data Import Routines

	19.3. Single Crystal Data Import Routines

	19.4. Small Angle Scattering Data Import Routines

	19.5. Image Import Routines

	19.6. PDF Import Routines

	19.7. Reflectometry Import Routines

	19.8. Writing an Import Routine

	20. GSAS-II Export Modules
	20.1. Module G2export_examples: Examples

	20.2. Module G2export_csv: Spreadsheet export

	20.3. Module G2export_PDB: Macromolecular export

	20.4. Module G2export_image: 2D Image data export

	20.5. Module G2export_map: Map export

	20.6. Module G2export_shelx: Examples

	20.7. Module G2export_CIF: CIF Exports

	20.8. Module G2export_pwdr: Export powder input files

	20.9. Module G2export_FIT2D: Fit2D “Chi” export

	20.10. Module G2export_JSON: ASCII .gpx Export

	20.11. Module G2export_Bracket: ASCII .gpx Export

	21. GSAS-II Independent Tools
	21.1. GSASIIIntPDFtool: autointegration routines

	21.2. G2compare: Tool for project comparison

	22. Indices
	22.1. General Index

	22.2. Module Index

 \(\renewcommand\AA{\text{Å}}\)

1. GSAS-II Requirements, Python Packages and External Software

1.1. Supported Platforms

It should be possible to run GSAS-II on any computer where Python 3.7+ and
the appropriate required packages are available, as discussed below,
but GSAS-II also requires that some code must be compiled.
For the following platforms, binary images for this compiled code are provided:

	Windows-10: 64-bit Intel-compatible processors

	MacOS: Intel processors

	MacOS: ARM processors, aka Apple Silicon (M1, etc)

	Linux: 64-bit Intel-compatible processors

	Linux: ARM processors (64-bit and 32-bit Raspberry Pi OS only)

Details for GSAS-II use on these specific platforms follows below:

	Windows: Installation kits are provided for
64-bit Windows-10. An installation kit with older Python versions
is provided for 32-bit Windows-10; this installer cannot be updated
to provide newer Python versions than the supplied versions but GSAS-II
will be updated if installed on a computer with internet
access. Running GSAS-II on older versions of Windows is
likely possible, but to do so one must locate compatible versions of Python
and packages. This is getting increasingly tough. We have not tried
Windows-11, but expect the Windows-10 distribution to run fine there.

	MacOS: GSAS-II can run natively on Intel or ARM (“M1”, “M2” or “Apple
Silicon”) processors. With the native code, Mac ARM machines offer
the highest performance seen on any platform.

For Intel processor Macs, we provide an installer. This can also be
used on ARM-equipped Macs but native M1 code runs way
faster. Installation of the native ARM code is a bit more complex; but
detailed instructions are provided
(https://subversion.xray.aps.anl.gov/trac/pyGSAS/wiki/MacM1Notes).
This requires use of either the miniforge package or the homebrew
package installer.
Macs older than Catalina (10.15) will likely require older
distributions of Python.

	Linux: Note that GSAS-II does not get a lot of testing
in Linux by us, but is used fairly widely on this platform
nonetheless. We provide an installer that includes Python and
needed packages for Intel-compatible Linuxes, but compatibility with
older and very new versions of Linux can sometimes be tricky as
compatibility libraries may be needed – not always easy to do. It may be
better to use your Linux distribution’s versions of Python and
packages (typically done with a software tool such as apt or yum.)
You may possibly need to use pip as well. For an example on how that
is done see the 32-bit Raspberry Pi OS instructions:
https://subversion.xray.aps.anl.gov/trac/pyGSAS/wiki/InstallPiLinux.

Will GSAS-II run on Linux with other types of CPUs? That will mostly
depend on support for Python and wxPython on that CPU. If those run,
you can likely build the GSAS-II binaries with gcc &
gfortran. Expect to modify the SConstruct file.

	Raspberry Pi (ARM) Linux: GSAS-II has been installed on both 32-bit
and the 64-bit version of the Raspberry Pi OS (formerly
called Raspbian) and compiled binaries are provided.
It may be possible to use these binaries with Ubuntu Linux for
this platform, but this has not been tried.
The performance of GSAS-II on a Raspberry Pi is not blindingly fast,
but one can indeed run GSAS-II on a motherboard that costs only $15
(perhaps even one that costs $5) and uses <5 Watts!

Note that the 64-bit OS is preferred on the models where it can be run
(currently including models 3A+, 3B, 3B+, 4, 400, CM3, CM3+, CM4,
and Zero 2 W) . With the 32-bit Raspberry Pi OS, which does run on
all Raspberry Pi models, it is necessary to use the OS distribution’s
versions of Python and its packages. Instructions are provided here:
https://subversion.xray.aps.anl.gov/trac/pyGSAS/wiki/InstallPiLinux.

1.2. Version Control

The master version of the source code for GSAS-II currently resides on
an APS-run subversion server,
https://subversion.xray.aps.anl.gov/pyGSAS and the subversion (svn)
version control system (VCS) is usually used to install the files needed by GSAS-II. When
GSAS-II is installed in this manner, the software can be easily
updated, as svn commands can load only the changed sections of files
that need to be updated. It is likewise possible to use svn to regress
to an older version of GSAS-II, though there are some limitations on
how far back older versions of GSAS-II will be with current versions
of Python. While svn is not required for use of GSAS-II, special
procedures must be used to install GSAS-II without it and once
installed without svn, updates of GSAS-II must be done manually.

In progress is a migration from use of subversion VCS and the APS server,
to use of the git VCS with software hosting on GitHub.com.
GitHub provides better tools for
community software development and git is a much more modern VCS
system, though there are aspects of svn that I will miss, but svn is
not being used as much and this makes it becoming steadly difficult to
distribute with svn. Once GSAS-II has been made to work with git, the
plan is that for a limited period, GSAS-II will be updated on both the
APS subversion server and GitHub, but at some point it will become
necessary to reinstall GSAS-II with a git-based distribution in order
to use current versions of Python and updates to GSAS-II. While git
will also is not be required for use of GSAS-II, special
procedures will need to be used to install and update GSAS-II without it.

1.3. Python Requirements

GSAS-II requires a standard Python interpreter to be installed, as
well as several separately-developed packages that are not supplied
with Python, as are described below.
While for some packages, we have not seen much dependence on
versions, for others we do find significant differences; this is also
discussed further below. The GSAS-II GUI will warn about Python and
packages versions that are believed to be problematic,
as defined in variable GSASIIdataGUI.versionDict,
but for new installations we are currently recommending the following
interpreter/package versions:

	Python 3.10 is recommended, but 3.7 or later is fine.

	wxPython 4.2 or later is recommended, but with Python <=3.9 any
wx4.x version should be OK. However,
do expect problems with Py>=3.10 and anything older than wx4.2.0.

	NumPy 1.26 recommended, but anything from 1.17 on is likely fine

	matplotlib 3.6 is recommended, but 3.4 or later is preferred.

	pyOpenGL: no version-related problems have been seen.

	SciPy: no version-related problems have been seen, but in at least one
case multiple imports are tried to account for where function
names have changed.

For more details on problems noted with specific versions of Python
and Python packages, see comments below and details here:
GSASIIdataGUI.versionDict,

Note that GSAS-II is being developed using Python 3.9, 3.10 and
3.11. No testing has yet been done with Python 3.12. We are no longer
supporting Python 2.7 and <=3.6, and strongly encourage that
systems running GSAS-II under these older Python versions reinstall
Python. Typically this is done by reinstalling GSAS-II from a current self-installer.

There are a number of ways to install Python plus the packages
needed by GSAS-II. We prefer the conda package manager and the conda
self-installers. We
now use the community-supported conda-forge library of Python packages
(https://conda-forge.org/) for almost all supported platforms (see below.)
Note that we no longer use the Anaconda Python (https://www.anaconda.com/)
distribution because wxPython is not available with modern Python versions.

An alternative approach to installing Python is to use the standard
Python installation process, where Python is downloaded
without any of the extension packages from the main Python site,
https://www.python.org/downloads/ and then use the included pip
program to install the needed packages from the https://pypi.org/.

There are additional installation mechanisms specific to certain
platforms.
On MacOS, homebrew can be used for Python and most
needed packages, while on Linux, the native package installers
(apt-get or yum, etc.) offer the same. Any packages not provided in
that fashion can be installed with Python’s pip mechanism.

Package requirements depend on how GSAS-II will be run, as will be
discussed in the next section. In order to run
the GUI for GSAS-II, a much larger number of packages are
required. Several more packages are optional, but some functionally will
not be available without those optional packages. To run GSAS-II on a
compute server via the scripting interface
and without a GUI, will require far fewer packages, which will be
discussed in the subsequent section.

1.4. GUI Requirements

When using the GSAS-II graphical user interface (GUI), the following
Python extension packages are required:

	wxPython (http://wxpython.org/docs/api/). Note that GSAS-II has been
tested with various wxPython versions over the years. We encourage
use of 4.x with Python 3.x, but with Py>=3.10 you must use
wxPython 4.2.0 or later.

	NumPy (http://docs.scipy.org/doc/numpy/reference/),

	SciPy (http://docs.scipy.org/doc/scipy/reference/),

	matplotlib (http://matplotlib.org/contents.html) and

	PyOpenGL (http://pyopengl.sourceforge.net/documentation).

GSAS-II will not start if the above packages are not available. In
addition, several Python packages are referenced in sections of the
GUI code, but are not required. If these packages are not present, warning
messages may be generated if they would be needed, or menu items may
be omitted, but the vast bulk of GSAS-II will function normally. These
optional packages are:

	gitpython: (https://gitpython.readthedocs.io and
https://github.com/gitpython-developers/GitPython). This
this package provides a bridge between the git version control
system and Python. It is not currently required, but GSAS-II will
transition to using git in place of subversion, and at that time git
and the requests package will be required for the standard
installation process and for GSAS-II to update itself from GitHub.
If your computer does not already have git in the path, also include
the git package to obtain that binary (if you are not sure, it does
not hurt to do this anyway).

	requests: this package simplifies http access
(https://requests.readthedocs.io/). It is used for access to
webpages such as ISODISTORT and for some internal software
downloads. It is required for support of git updating and installation.

	Pillow (https://pillow.readthedocs.org) or PIL (http://www.pythonware.com/products/pil/). This is used to read and save certain types of images.

	h5py is the HDF5 interface and hdf5 is the support package. These
packages are (not surprisingly) required
to import images from HDF5 files. If these libraries are not present,
the HDF5 importer(s) will not appear in the import menu and a
warning message appears on GSAS-II startup.

	imageio is used to make movies. This is optional and is offered for plotting
superspace (modulated) structures.

	win32com (windows only): this module is
used to install GSAS-II on windows machines. GSAS-II can be used on
Windows without this, but the installation will offer less
integration into Windows. Conda provides this under the name pywin32.

	conda: the conda package allows access to package installation,
etc. features from inside Python. It is not required but is helpful
to have, as it allows GSAS-II to install some packages that are not
supplied initially. The conda package is included by default in
the base miniconda and anaconda installations, but if you create an
environment for GSAS-II
(conda create -n <env> package-list…), it will not be added
to that environment unless you request it specifically.

The following conda package is used where possible in GSAS-II but it provides a
command-line tool rather than a Python package.

	svn: the GSAS-II code utilizes the subversion
program for software installation and updates. GSAS-II can be manually
installed without it, but updates will also need to be done
manually. Thus, GSAS-II works much better when
subversion is available. The Anaconda distribution had provided
subversion in a package named svn, but this is so no longer being updated. With
the conda-forge repository we now use, it is only available for
Linux (where it really is not needed since it is easy to install
there) and the package is named subversion. (For the Mac the
supplied subversion package lacks the ability to reach the GSAS-II
repository via the internet and is thus not used.)
For MacOS and Windows, the GSAS-II gsas2full self-installer now
provides binaries for the svn program.

	Conda command:
	
Should you wish to install Python and the desired packages yourself,
this is certainly possible. For Linux, apt or yum is an option, as is
homebrew. Homebrew is a good option on MacOS. However, we recommend use
of the miniconda or mambaconda self installers from
conda-forge. Here is a typical conda command used to install a GSAS-II compatible
Python interpreter on Linux after
miniconda/miniforge/mambaforge/anaconda has been installed:

conda install python=3.10 wxpython numpy scipy matplotlib pyopengl pillow h5py imageio subversion requests -c conda-forge

or to put a Python configured for GSAS-II into a separate conda
environment (below named g2python, but any name can be used), use
command:

conda create -n g2python python=3.10 wxpython numpy scipy matplotlib pyopengl pillow h5py imageio conda subversion requests -c conda-forge

For Windows/Mac/Raspberry Pi, omit subversion from the previous
commands are:

conda install python=3.10 wxpython numpy scipy matplotlib pyopengl pillow h5py imageio requests -c conda-forge

and:

conda create -n g2python python=3.10 wxpython numpy scipy matplotlib pyopengl pillow h5py imageio conda requests -c conda-forge

Before starting GSAS-II under conda remember to activate using:
<path>\Scripts\activate (windows);
source <path>/bin/activate (Mac/Linux),
or when an environment is used, add that name, (such as g2python),
such as
<path>\Scripts\activate g2python (windows);
source <path>/bin/activate g2python (Mac/Linux),

Note that at present we are not suppling binaries for Python 3.11, but
we are not aware of any reason why GSAS-II will not run fine with
this.

To find out what packages have been directly installed in a conda
environment this command can be used:

conda env export --from-history -n <env>

I’m using this to create my latest development environment:

source /Users/toby/mamba310/bin/activate

conda create -n py311 python=3.11 ipython conda scipy spyder-kernels
pyopengl scons imageio h5py numpy pillow requests sphinx
sphinx-rtd-theme matplotlib jupyter wxpython gitpython git

1.5. Scripting Requirements

The GSAS-II scripting interface (GSASIIscriptable) will not
run without two Python extension packages:

	NumPy (http://docs.scipy.org/doc/numpy/reference/),

	SciPy (http://docs.scipy.org/doc/scipy/reference/).

These fortunately are common and are easy to install. There are
further scripting capabilities that will only run when a few
additional packages are installed:

	matplotlib (http://matplotlib.org/contents.html),

	Pillow (https://pillow.readthedocs.org) and/or

	h5py and hdf5

but none of these are required to run scripts and the vast
majority of scripts will not need these packages.

Installing a minimal Python configuration:

There are many ways to install a minimal Python configuration.
Below, I show some example commands used to install using the
the free miniconda installer from Anaconda, Inc., but I now tend to
use the Conda-Forge miniforge and mambaforge distributions instead.
However, there are also plenty of other ways to install Python, Numpy
and Scipy, depending on if they will be used on Linux, Windows and MacOS.
For Linux, the standard Linux distributions provide these using
yum or apt-get etc., but these often supply package versions
that are so new that they probably have not been tested with GSAS-II.

bash ~/Downloads/Miniconda3-latest-<platform>-x86_64.sh -b -p /loc/pyg2script
source /loc/pyg2script/bin/activate
conda install numpy scipy matplotlib pillow h5py hdf5 svn

Some discussion on these commands follows:

	the 1st command (bash) assumes that the appropriate version of Miniconda has been downloaded from https://docs.conda.io/en/latest/miniconda.html and /loc/pyg2script is where I have selected for python to be installed. You might want to use something like ~/pyg2script.

	the 2nd command (source) is needed to access Python with miniconda.

	the 3rd command (conda) installs all possible packages that might be used by scripting, but matplotlib, pillow, and hdf5 are not commonly needed and could be omitted. The svn package is not needed (for example on Linux) where this has been installed in another way.

Once svn and Python has been installed and is in the path, use these commands to install GSAS-II:

svn co https://subversion.xray.aps.anl.gov/pyGSAS/trunk /loc/GSASII
python /loc/GSASII/GSASIIscriptable.py

Notes on these commands:

	the 1st command (svn) is used to download the GSAS-II software. /loc/GSASII is the location where I decided to install the software. You can select something different.

	the 2nd command (python) is used to invoke GSAS-II scriptable for the first time, which is needed to load the binary files from the server.

1.6. Optional Python Packages

	Sphinx (https://www.sphinx-doc.org) is used to generate the
documentation you are currently reading. Generation of this documentation
is not generally something needed by users or even most code
developers, since the prepared documentation on
https://gsas-ii.readthedocs.io is usually reasonably up to date.

	SCons (https://scons.org/) is used to compile the relatively small amount of
Fortran code that is included with GSAS-II. Use of this is
discussed in the next section of this chapter.

1.7. Required Binary Files

As noted before, GSAS-II also requires that some code be compiled.
For the following platforms, binary images are provided:

	Windows-10: 64-bit Intel-compatible processors. [Prefix win_64_]

	MacOS: Intel processors. [Prefix mac_64_]

	MacOS: ARM processors, aka Apple Silicon (M1, etc). [Prefix mac_arm_]

	Linux: 64-bit Intel-compatible processors. [Prefix linux_64_]

	Linux: ARM processors (64-bit and 32-bit Raspberry Pi OS only).
[Prefixes linux_arm32_ and linux_arm64_]

Note that these binaries must match the major versions of both Python and
numpy; binaries for only a small number of combinations are provided.
A full list of what is available can be seen by looking at the
contents of the directory at web address
https://subversion.xray.aps.anl.gov/trac/pyGSAS/browser/Binaries,
noting that a subdirectory name will be prefix_pX.X_nY.Y where
prefix is noted above and X.X is the Python version and Y.Y is the numpy
version.
Should one wish to run GSAS-II where binary files are not
supplied (such as 32-bit Windows or Linux) or with other combinations of
Python/NumPy, compilation will be need to be done by the user.
This will require the GNU Fortran (gfortran)
compiler (https://gcc.gnu.org/fortran/) as well as the Python SCons
package. General instructions are provided for Linux:
https://subversion.xray.aps.anl.gov/trac/pyGSAS/wiki/InstallLinux#CompilingFortranCode;
Windows: https://subversion.xray.aps.anl.gov/trac/pyGSAS/wiki/CompilingWindows
and MacOS:
https://subversion.xray.aps.anl.gov/trac/pyGSAS/wiki/InstallMacHardWay,
but these may be out of date or require adaptation.

1.8. Supported Externally-Developed Software

GSAS-II provides interfaces to use a number of programs developed by
others. Some are included with GSAS-II and others must be installed
separately. When these programs are accessed, citation
information is provided as we hope that users will recognize the
contribution made by the authors of these programs and will honor those
efforts by citing that work in addition to GSAS-II.

GSAS-II includes copies of the following programs. No additional steps
beyond a standard installation are needed to access their functionality.

	DIFFaX
	Simulate layered structures with faulting. https://www.public.asu.edu/~mtreacy/DIFFaX.html

	PyCifRW
	A software library that reads and writes files using the IUCr’s
Crystallographic Information Framework (CIF).
https://bitbucket.org/jamesrhester/pycifrw. GSAS-II uses this to
read data and structures from CIF files,

	Shapes
	Derives the shapes of particles from small angle scattering data.

	NIST FPA
	Use Fundamental Parameters to determine GSAS-II profile function

	NIST*LATTICE
	Searches for higher symmetry unit cells and possible relationships
between unit cells. An API has been written and this will be
integrated into the GSAS-II GUI.

	pybaselines
	Determines a background for a powder pattern in the “autobackground”
option. See https://pybaselines.readthedocs.io for more
information.

The following web services can also be accessed from computers that
have internet access. All software needed for this access is included
with GSAS-II.

	Bilboa Crystallographic Server (https://www.cryst.ehu.es):
	GSAS-II can directly access the Bilboa Crystallographic Server to
utilize the k-SUBGROUPSMAG, k-SUBGROUPS and PseudoLattice web utilities for
computation of space group subgroups, color (magnetic) subgroups &
lattice search.

	BYU ISOTROPY Software Suite (https://stokes.byu.edu/iso/isotropy.php):
	GSAS-II directly accesses capabilities in the ISOTROPY Software
Suite from Brigham Young University for representational analysis
and magnetism analysis.

At the request of the program authors, other programs that can be
accessed within GSAS-II are not included
as part of the GSAS-II distribution and must be installed separately:

	Dysnomia
	Computes enhanced Fourier maps with Maximum Entropy estimated
extension of the reflection sphere. See https://jp-minerals.org/dysnomia/en/.

	RMCProfile
	Provides large-box PDF & S(Q) fitting. The GSAS-II interface was originally
written for use with release 6.7.7 of RMCProfile, but updates have
been made for compatible with 6.7.9 as well.
RMCProfile must be downloaded by the user from
http://rmcprofile.org/Downloads or
https://rmcprofile.pages.ornl.gov/nav_pages/download/

	fullrmc
	A modern software framework for large-box PDF & S(Q) fitting. Note
that the GSAS-II implementation is not compatible with the last
open-source version of fullrmc, but rather the version 5.0 must be
used, which is distributed only as compiled versions and only for 64-bit
Intel-compatible processors running Windows, Linux and
MacOS. Download this as a single executable from website
https://github.com/bachiraoun/fullrmc/tree/master/standalones. GSAS-II
will offer to install this software into the binary directory when the fullrmc
option is selected on the Phase/RMC tab.

	PDFfit2
	For small-box fitting of PDFs; see
https://github.com/diffpy/diffpy.pdffit2#pdffit2. This code is no
longer being updated by the authors, but is still quite useful.
It is supplied within GSAS-II for Python 3.7.
It is likely best to install a separate Python
interpreter specifically for PDFfit2. When GSAS-II is run from a
Python installation that includes the conda package manager (the
usual installation practice), the GUI will offer an option to
install PDFfit2 via a separate environment when the
PDFfit2 option is selected on the Phase/RMC tab.

 \(\renewcommand\AA{\text{Å}}\)

2. Main routine: GSASII.py

2.1. GSASII: GSAS-II GUI

File GSASII.py is the script to start the GSAS-II graphical user
interface (GUI).
This script imports GSASIIpath, which does some minor initialization
and then (before any wxPython calls can be made) creates a wx.App application.
A this point GSASIIpath.SetBinaryPath() is called to establish
the directory where GSAS-II binaries are found. If the binaries
are not installed or are incompatible with the OS/Python packages,
the user is asked if they should be updated from the subversion site.
The wxPython app is then passed to GSASIIdataGUI.GSASIImain(),
which creates the GSAS-II GUI and finally the event loop is started.

2.2. Keyboard Menu Shortcuts

Shortcuts for commonly-used menu commands are created by adding a
menu command with a “\tCtrl+” addition such as:

item = parent.Append(wx.ID_ANY,'&Refine\tCtrl+R','Perform a refinement')

This will allow the above menu command to be executed with a “Control-R”
keyboard command (on MacOS this will be “Command+R” rather than “Control-R”) as well as using the menu to access that action. The following table lists the
keyboard letters/numbers that have GSAS-II assigned actions.
are system assigned. Note that there are also plotting keyboard commands that are
implemented in GSASIIplot.
These can be discovered from the “K” button on the plot menu bar, as they
vary depending on the type of plot.

	key

	explanation

	O

	Open project (File menu)

	E

	Reopen recent (File menu)

	S

	Save project (File menu)

	B

	Project browser (File menu)

	Q

	Quit (File menu). This is system assigned on MacOS

	F4

	Quit (File menu). This is system-assigned
on Windows

	L

	View LS parms (Calculate menu)

	R

	Refine/Sequential Refine (Calculate menu)

	I

	Parameter Impact (Calculate menu)

	U

	Check for updates (Help menu)

	T

	Tutorials (Help menu)

	F1

	Help on current tree item (Help menu).
This is system-assigned

	P

	Peakfit (Peak Fitting menu, requires selection of
Histogram Peak)

	M

	Minimize GSAS-II windows (MacOS Windows menu).
This is system-assigned

2.3. GSAS-II contents

A single class, G2App, is defined here to create
an wxPython application. This is only used on
MacOS. For other platforms wx.App() is called directly.

	
class GSASII.G2App(redirect=False, filename=None, useBestVisual=False, clearSigInt=True)

	Used to create a wx python application for the GUI for Mac.
Customized to implement drop of GPX files onto app.

	
ClearStartup()

	Call this after app startup complete because a Drop event is posted
when GSAS-II is initially started.

	
MacOpenFiles(fileNames)

	Called in response of an openFiles message.

 \(\renewcommand\AA{\text{Å}}\)

3. GSASIIobj: Data objects & Docs

3.1. Summary/Contents

This module defines and/or documents the data structures used in GSAS-II, as well
as provides misc. support routines.

Section Contents

	GSASIIobj: Data objects & Docs

	Summary/Contents

	Variable names in GSAS-II

	Constraints Tree Item

	Covariance Tree Item

	Phase Tree Items

	Rigid Body Objects

	Space Group Objects

	Phase Information

	Atom Records

	Drawing Atom Records

	Rigid Body Insertions

	Powder Diffraction Tree Items

	CW Instrument Parameters

	TOF Instrument Parameters

	Powder Reflection Data Structure

	Single Crystal Tree Items

	Single Crystal Reflection Data Structure

	Image Data Structure

	Parameter Dictionary

	Texture implementation

	ISODISTORT implementation

	Displacive modes

	Occupancy modes

	Mode Computations

	Parameter Limits

	GSASIIobj Classes and routines

3.2. Variable names in GSAS-II

Parameter are named using the following pattern,
p:h:<var>:n, where <var> is a variable name, as shown in the following table. Also,
p is the phase number, h is the histogram number,
and n is the atom parameter number
If a parameter does not depend on a histogram, phase or atom, h, p and/or n will be omitted,
so p::<var>:n, :h:<var> and p:h:<var> are all valid names.

Naming for GSAS-II parameter names, p:h:<var>:n

	<var>

	usage

	\(\scriptstyle K\) (example: a)

	Lattice parameter, \(\scriptstyle K\), from Ai and Djk; where \(\scriptstyle K\) is one of the characters a, b or c.

	α

	Lattice parameter, α, computed from both Ai and Djk.

	β

	Lattice parameter, β, computed from both Ai and Djk.

	γ

	Lattice parameter, γ, computed from both Ai and Djk.

	Scale

	Phase fraction (as p:h:Scale) or Histogram scale factor (as :h:Scale).

	A\(\scriptstyle I\) (example: A0)

	Reciprocal metric tensor component \(\scriptstyle I\); where \(\scriptstyle I\) is a digit between 0 and 5.

	\(\scriptstyle L\)ol (example: vol)

	Unit cell volume; where \(\scriptstyle L\) is one of the characters v or V.

	dA\(\scriptstyle M\) (example: dAx)

	Refined change to atomic coordinate, \(\scriptstyle M\); where \(\scriptstyle M\) is one of the characters x, y or z.

	A\(\scriptstyle M\) (example: Ax)

	Fractional atomic coordinate, \(\scriptstyle M\); where \(\scriptstyle M\) is one of the characters x, y or z.

	AUiso

	Atomic isotropic displacement parameter.

	AU\(\scriptstyle N_0\)\(\scriptstyle N_1\) (example: AU11)

	Atomic anisotropic displacement parameter U\(\scriptstyle N_0\)\(\scriptstyle N_1\); where \(\scriptstyle N_0\) is one of the characters 1, 2 or 3 and \(\scriptstyle N_1\) is one of the characters 1, 2 or 3.

	Afrac

	Atomic site fraction parameter.

	Amul

	Atomic site multiplicity value.

	AM\(\scriptstyle M\) (example: AMx)

	Atomic magnetic moment parameter, \(\scriptstyle M\); where \(\scriptstyle M\) is one of the characters x, y or z.

	Akappa\(\scriptstyle O\) (example: Akappa0)

	Atomic orbital softness for orbital, \(\scriptstyle O\); where \(\scriptstyle O\) is one of the characters 0, - or 6.

	ANe\(\scriptstyle P\) (example: ANe0)

	Atomic <j0> orbital population for orbital, \(\scriptstyle P\); where \(\scriptstyle P\) is one of the characters 0 or 1.

	AD\(\scriptstyle O_0\),\(\scriptstyle O_1\)\(\scriptstyle O_0\) (example: AD0,00)

	Atomic sp. harm. coeff for orbital, 1; where \(\scriptstyle O_0\) is one of the characters 0, - or 6 and \(\scriptstyle O_1\) is one of the characters 0, - or 6 and \(\scriptstyle O_0\) is one of the characters 0, - or 6.

	AD\(\scriptstyle O_0\),-\(\scriptstyle O_1\)\(\scriptstyle O_0\) (example: AD0,-00)

	Atomic sp. harm. coeff for orbital, 1; where \(\scriptstyle O_0\) is one of the characters 0, - or 6 and \(\scriptstyle O_1\) is one of the characters 0, - or 6 and \(\scriptstyle O_0\) is one of the characters 0, - or 6.

	Back\(\scriptstyle J\) (example: Back11)

	Background term #\(\scriptstyle J\); where \(\scriptstyle J\) is the background term number.

	BkPkint;\(\scriptstyle J\) (example: BkPkint;11)

	Background peak #\(\scriptstyle J\) intensity; where \(\scriptstyle J\) is the background peak number.

	BkPkpos;\(\scriptstyle J\) (example: BkPkpos;11)

	Background peak #\(\scriptstyle J\) position; where \(\scriptstyle J\) is the background peak number.

	BkPksig;\(\scriptstyle J\) (example: BkPksig;11)

	Background peak #\(\scriptstyle J\) Gaussian width; where \(\scriptstyle J\) is the background peak number.

	BkPkgam;\(\scriptstyle J\) (example: BkPkgam;11)

	Background peak #\(\scriptstyle J\) Cauchy width; where \(\scriptstyle J\) is the background peak number.

	BF mult

	Background file multiplier.

	Bab\(\scriptstyle Q\) (example: BabA)

	Babinet solvent scattering coef. \(\scriptstyle Q\); where \(\scriptstyle Q\) is one of the characters A or U.

	D\(\scriptstyle N_0\)\(\scriptstyle N_1\) (example: D11)

	Anisotropic strain coef. \(\scriptstyle N_0\)\(\scriptstyle N_1\); where \(\scriptstyle N_0\) is one of the characters 1, 2 or 3 and \(\scriptstyle N_1\) is one of the characters 1, 2 or 3.

	Extinction

	Extinction coef.

	MD

	March-Dollase coef.

	Mustrain;\(\scriptstyle J\) (example: Mustrain;11)

	Microstrain coefficient (delta Q/Q x 10**6); where \(\scriptstyle J\) can be i for isotropic or equatorial and a is axial (uniaxial broadening), a number for generalized (Stephens) broadening or mx for the Gaussian/Lorentzian mixing term (LGmix).

	Size;\(\scriptstyle J\) (example: Size;11)

	Crystallite size value (in microns); where \(\scriptstyle J\) can be i for isotropic or equatorial, and a is axial (uniaxial broadening), a number between 0 and 5 for ellipsoidal broadening or mx for the Gaussian/Lorentzian mixing term (LGmix).

	eA

	Cubic mustrain value.

	Ep

	Primary extinction.

	Es

	Secondary type II extinction.

	Eg

	Secondary type I extinction.

	Flack

	Flack parameter.

	TwinFr

	Twin fraction.

	Layer Disp

	Layer displacement along beam.

	Absorption

	Absorption coef.

	LayerDisp

	Bragg-Brentano Layer displacement.

	Displace\(\scriptstyle R\) (example: DisplaceX)

	Debye-Scherrer sample displacement \(\scriptstyle R\); where \(\scriptstyle R\) is one of the characters X or Y.

	Lam

	Wavelength.

	I(L2)\/I(L1)

	Ka2/Ka1 intensity ratio.

	Polariz.

	Polarization correction.

	SH/L

	FCJ peak asymmetry correction.

	\(\scriptstyle S\) (example: U)

	Gaussian instrument broadening \(\scriptstyle S\); where \(\scriptstyle S\) is one of the characters U, V or W.

	\(\scriptstyle T\) (example: X)

	Cauchy instrument broadening \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	Zero

	Debye-Scherrer zero correction.

	Shift

	Bragg-Brentano sample displ.

	SurfRoughA

	Bragg-Brenano surface roughness A.

	SurfRoughB

	Bragg-Brenano surface roughness B.

	Transparency

	Bragg-Brentano sample tranparency.

	DebyeA

	Debye model amplitude.

	DebyeR

	Debye model radius.

	DebyeU

	Debye model Uiso.

	RBV\(\scriptstyle J\) (example: RBV11)

	Vector rigid body parameter.

	RBVO\(\scriptstyle U\) (example: RBVOa)

	Vector rigid body orientation parameter \(\scriptstyle U\); where \(\scriptstyle U\) is one of the characters a, i, j or k.

	RBVP\(\scriptstyle M\) (example: RBVPx)

	Vector rigid body \(\scriptstyle M\) position parameter; where \(\scriptstyle M\) is one of the characters x, y or z.

	RBVf

	Vector rigid body site fraction.

	RBV\(\scriptstyle V_0\)\(\scriptstyle W_0\)\(\scriptstyle W_1\) (example: RBVT11)

	Residue rigid body group disp. param.; where \(\scriptstyle V_0\) is one of the characters T, L or S and \(\scriptstyle W_0\) is one of the characters 1, 2, 3, A or B and \(\scriptstyle W_1\) is one of the characters 1, 2, 3, A or B.

	RBVU

	Residue rigid body group Uiso param.

	RBRO\(\scriptstyle U\) (example: RBROa)

	Residue rigid body orientation parameter \(\scriptstyle U\); where \(\scriptstyle U\) is one of the characters a, i, j or k.

	RBRP\(\scriptstyle M\) (example: RBRPx)

	Residue rigid body \(\scriptstyle M\) position parameter; where \(\scriptstyle M\) is one of the characters x, y or z.

	RBRTr;\(\scriptstyle J\) (example: RBRTr;11)

	Residue rigid body torsion parameter.

	RBRf

	Residue rigid body site fraction.

	RBR\(\scriptstyle V_0\)\(\scriptstyle W_0\)\(\scriptstyle W_1\) (example: RBRT11)

	Residue rigid body group disp. param.; where \(\scriptstyle V_0\) is one of the characters T, L or S and \(\scriptstyle W_0\) is one of the characters 1, 2, 3, A or B and \(\scriptstyle W_1\) is one of the characters 1, 2, 3, A or B.

	RBRU

	Residue rigid body group Uiso param.

	RBSAtNo

	Atom number for spinning rigid body.

	RBSO\(\scriptstyle U\) (example: RBSOa)

	Spinning rigid body orientation parameter \(\scriptstyle U\); where \(\scriptstyle U\) is one of the characters a, i, j or k.

	RBSP\(\scriptstyle M\) (example: RBSPx)

	Spinning rigid body \(\scriptstyle M\) position parameter; where \(\scriptstyle M\) is one of the characters x, y or z.

	RBSShRadius

	Spinning rigid body shell radius.

	RBSShC\(\scriptstyle X\) (example: RBSShC1)

	Spinning rigid body sph. harmonics term; where \(\scriptstyle X\) is one of the characters 1, -, 2 or 0 ,, 1, -, 2 or 0.

	constr\(\scriptstyle G\) (example: constr10)

	Generated degree of freedom from constraint; where \(\scriptstyle G\) is one or more digits (0, 1,… 9).

	nv-(.+)

	New variable assignment with name 1.

	mV\(\scriptstyle H\) (example: mV0)

	Modulation vector component \(\scriptstyle H\); where \(\scriptstyle H\) is the digits 0, 1, or 2.

	Fsin

	Sin site fraction modulation.

	Fcos

	Cos site fraction modulation.

	Fzero

	Crenel function offset.

	Fwid

	Crenel function width.

	Tmin

	ZigZag/Block min location.

	Tmax

	ZigZag/Block max location.

	\(\scriptstyle T\)max (example: Xmax)

	ZigZag/Block max value for \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	\(\scriptstyle T\)sin (example: Xsin)

	Sin position wave for \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	\(\scriptstyle T\)cos (example: Xcos)

	Cos position wave for \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	U\(\scriptstyle N_0\)\(\scriptstyle N_1\)sin (example: U11sin)

	Sin thermal wave for U\(\scriptstyle N_0\)\(\scriptstyle N_1\); where \(\scriptstyle N_0\) is one of the characters 1, 2 or 3 and \(\scriptstyle N_1\) is one of the characters 1, 2 or 3.

	U\(\scriptstyle N_0\)\(\scriptstyle N_1\)cos (example: U11cos)

	Cos thermal wave for U\(\scriptstyle N_0\)\(\scriptstyle N_1\); where \(\scriptstyle N_0\) is one of the characters 1, 2 or 3 and \(\scriptstyle N_1\) is one of the characters 1, 2 or 3.

	M\(\scriptstyle T\)sin (example: MXsin)

	Sin mag. moment wave for \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	M\(\scriptstyle T\)cos (example: MXcos)

	Cos mag. moment wave for \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	PDFpos

	PDF peak position.

	PDFmag

	PDF peak magnitude.

	PDFsig

	PDF peak std. dev.

	Aspect ratio

	Particle aspect ratio.

	Length

	Cylinder length.

	Diameter

	Cylinder/disk diameter.

	Thickness

	Disk thickness.

	Shell thickness

	Multiplier to get inner(<1) or outer(>1) sphere radius.

	Dist

	Interparticle distance.

	VolFr

	Dense scatterer volume fraction.

	epis

	Sticky sphere epsilon.

	Sticky

	Stickyness.

	Depth

	Well depth.

	Width

	Well width.

	Volume

	Particle volume.

	Radius

	Sphere/cylinder/disk radius.

	Mean

	Particle mean radius.

	StdDev

	Standard deviation in Mean.

	G

	Guinier prefactor.

	Rg

	Guinier radius of gyration.

	B

	Porod prefactor.

	P

	Porod power.

	Cutoff

	Porod cutoff.

	PkInt

	Bragg peak intensity.

	PkPos

	Bragg peak position.

	PkSig

	Bragg peak sigma.

	PkGam

	Bragg peak gamma.

	e\(\scriptstyle Y_0\)\(\scriptstyle Y_1\) (example: e11)

	strain tensor e\(\scriptstyle Y_0\)\(\scriptstyle Y_1\); where \(\scriptstyle Y_0\) is one of the characters 1 or 2 and \(\scriptstyle Y_1\) is one of the characters 1 or 2.

	Dcalc

	Calc. d-spacing.

	Back

	background parameter.

	pos

	peak position.

	int

	peak intensity.

	WgtFrac

	phase weight fraction.

	alpha

	TOF profile term.

	alpha-\(\scriptstyle P\) (example: alpha-0)

	Pink profile term; where \(\scriptstyle P\) is one of the characters 0 or 1.

	beta-\(\scriptstyle Z\) (example: beta-0)

	TOF/Pink profile term; where \(\scriptstyle Z\) is one of the characters 0, 1 or q.

	sig-\(\scriptstyle a\) (example: sig-0)

	TOF profile term; where \(\scriptstyle a\) is one of the characters 0, 1, 2 or q.

	dif\(\scriptstyle b\) (example: difA)

	TOF to d-space calibration; where \(\scriptstyle b\) is one of the characters A, B or C.

	C\(\scriptstyle G_0\),\(\scriptstyle G_1\) (example: C10,10)

	spherical harmonics preferred orientation coef.; where \(\scriptstyle G_0\) is one or more digits (0, 1,… 9) and \(\scriptstyle G_1\) is one or more digits (0, 1,… 9).

	Pressure

	Pressure level for measurement in MPa.

	Temperature

	T value for measurement, K.

	FreePrm\(\scriptstyle N\) (example: FreePrm1)

	User defined measurement parameter \(\scriptstyle N\); where \(\scriptstyle N\) is one of the characters 1, 2 or 3.

	Gonio. radius

	Distance from sample to detector, mm.

3.3. Constraints Tree Item

Constraints are stored in a dict, separated into groups.
Note that parameter are named in the following pattern,
p:h:<var>:n, where p is the phase number, h is the histogram number
<var> is a variable name and n is the parameter number.
If a parameter does not depend on a histogram or phase or is unnumbered, that
number is omitted.
Note that the contents of each dict item is a List where each element in the
list is a constraint definition objects.
The constraints in this form are converted in
GSASIImapvars.ProcessConstraints() to the form used in GSASIImapvars

The keys in the Constraints dict are:

	key

	explanation

	Hist

	This specifies a list of constraints on
histogram-related parameters,
which will be of form :h:<var>:n.

	HAP

	This specifies a list of constraints on parameters
that are defined for every histogram in each phase
and are of form p:h:<var>:n.

	Phase

	This specifies a list of constraints on phase
parameters,
which will be of form p::<var>:n.

	Global

	This specifies a list of constraints on parameters
that are not tied to a histogram or phase and
are of form ::<var>:n

Each constraint is defined as an item in a list. Each constraint is of form:

[[<mult1>, <var1>], [<mult2>, <var2>],..., <fixedval>, <varyflag>, <constype>]

Where the variable pair list item containing two values [<mult>, <var>], where:

	<mult> is a multiplier for the constraint (float)

	<var> a G2VarObj object. (Note that in very old .gpx files this might be a str with a variable name of form ‘p:h:name[:at]’)

Note that the last three items in the list play a special role:

	<fixedval> is the fixed value for a constant equation (constype=c)
constraint or is None. For a New variable (constype=f) constraint,
a variable name can be specified as a str (used for externally
generated constraints)

	<varyflag> is True or False for New variable (constype=f) constraints
or is None. This indicates if this variable should be refined.

	<constype> is one of four letters, ‘e’, ‘c’, ‘h’, ‘f’ that determines the type of constraint:

	‘e’ defines a set of equivalent variables. Only the first variable is refined (if the
appropriate refine flag is set) and and all other equivalent variables in the list
are generated from that variable, using the appropriate multipliers.

	‘c’ defines a constraint equation of form,
\(m_1 \times var_1 + m_2 \times var_2 + ... = c\)

	‘h’ defines a variable to hold (not vary). Any variable on this list is not varied,
even if its refinement flag is set. Only one [mult,var] pair is allowed in a hold
constraint and the mult value is ignored.
This is of particular value when needing to hold one or more variables where a
single flag controls a set of variables such as, coordinates,
the reciprocal metric tensor or anisotropic displacement parameter.

	‘f’ defines a new variable (function) according to relationship
\(newvar = m_1 \times var_1 + m_2 \times var_2 + ...\)

3.4. Covariance Tree Item

The Covariance tree item has results from the last least-squares run. They
are stored in a dict with these keys:

	key

	sub-key

	explanation

	newCellDict

	

	(dict) ith lattice parameters computed by
GSASIIstrMath.GetNewCellParms()

	title

	

	(str) Name of gpx file(?)

	variables

	

	(list) Values for all N refined variables
(list of float values, length N,
ordered to match varyList)

	sig

	

	(list) Uncertainty values for all N refined variables
(list of float values, length N,
ordered to match varyList)

	varyList

	

	(list of str values, length N) List of directly refined variables

	newAtomDict

	

	(dict) atom position values computed in
GSASIIstrMath.ApplyXYZshifts()

	Rvals

	

	(dict) R-factors, GOF, Marquardt value for last
refinement cycle

	

	Nobs

	(int) Number of observed data points

	

	Rwp

	(float) overall weighted profile R-factor (%)

	

	chisq

	(float) \(\sum w*(I_{obs}-I_{calc})^2\)
for all data.
Note: this is not the reduced \(\chi^2\).

	

	lamMax

	(float) Marquardt value applied to Hessian diagonal

	

	GOF

	(float) The goodness-of-fit, aka square root of
the reduced chi squared.

	covMatrix

	

	(np.array) The (NxN) covVariance matrix

3.5. Phase Tree Items

Phase information is stored in the GSAS-II data tree as children of the
Phases item in a dict with keys:

	key

	sub-key

	explanation

	General

	

	(dict) Overall information for the phase

	

	3Dproj

	(list of str) projections for 3D pole distribution plots

	

	AngleRadii

	(list of floats) Default radius for each atom used to compute
interatomic angles

	

	AtomMass

	(list of floats) Masses for atoms

	

	AtomPtrs

	(list of int) four locations (cx,ct,cs & cu) to use to pull info
from the atom records

	

	AtomTypes

	(llist of str) Atom types

	

	BondRadii

	(list of floats) Default radius for each atom used to compute
interatomic distances

	

	Cell

	Unit cell parameters & ref. flag
(list with 8 items. All but first item are float.)

0: cell refinement flag (True/False),

1-3: a, b, c, (\(\AA\))

4-6: alpha, beta & gamma, (degrees)

7: volume (\(\AA^3\))

	

	Color

	(list of (r,b,g) triplets) Colors for atoms

	

	Compare

	(dict) Polygon comparison parameters

	

	Data plot type

	(str) data plot type (‘Mustrain’, ‘Size’ or
‘Preferred orientation’) for powder data

	

	DisAglCtls

	(dDict) with distance/angle search controls,
which has keys ‘Name’, ‘AtomTypes’,
‘BondRadii’, ‘AngleRadii’ which are as above
except are possibly edited. Also contains
‘Factors’, which is a 2 element list with
a multiplier for bond and angle search range
[typically (0.85,0.85)].

	

	F000X

	(float) x-ray F(000) intensity

	

	F000N

	(float) neutron F(000) intensity

	

	Flip

	(dict) Charge flip controls

	

	HydIds

	(dict) geometrically generated hydrogen atoms

	

	Isotope

	(dict) Isotopes for each atom type

	

	Isotopes

	(dict) Scattering lengths for each isotope
combination for each element in phase

	

	MCSA controls

	(dict) Monte Carlo-Simulated Annealing controls

	

	Map

	(dict) Map parameters

	

	Mass

	(float) Mass of unit cell contents in g/mol

	

	Modulated

	(bool) True if phase modulated

	

	Mydir

	(str) Directory of current .gpx file

	

	Name

	(str) Phase name

	

	NoAtoms

	(dict) Number of atoms per unit cell of each type

	

	POhkl

	(list) March-Dollase preferred orientation direction

	

	Pawley dmin

	(float) maximum Q (as d-space) to use for Pawley extraction

	

	Pawley dmax

	(float) minimum Q (as d-space) to use for Pawley extraction

	

	Pawley neg wt

	(float) Restraint value for negative Pawley intensities

	

	SGData

	(object) Space group details as a
space group (SGData)
object, as defined in GSASIIspc.SpcGroup().

	

	SH Texture

	(dict) Spherical harmonic preferred orientation parameters

	

	Super

	(int) dimension of super group (0,1 only)

	

	Type

	(str) phase type (e.g. ‘nuclear’)

	

	Z

	(dict) Atomic numbers for each atom type

	

	doDysnomia

	(bool) flag for max ent map modification via Dysnomia

	

	doPawley

	(bool) Flag for Pawley intensity extraction

	

	vdWRadii

	(dict) Van der Waals radii for each atom type

	ranId

	

	(int) unique random number Id for phase

	pId

	

	(int) Phase Id number for current project.

	Atoms

	

	(list of lists) Atoms in phase as a list of lists. The outer list
is for each atom, the inner list contains varying
items depending on the type of phase, see
the Atom Records description.

	Drawing

	

	(dict) Display parameters

	

	Atoms

	(list of lists) with an entry for each atom that is drawn

	

	Plane

	(list) Controls for contour density plane display

	

	Quaternion

	(4 element np.array) Viewing quaternion

	

	Zclip

	(float) clipping distance in \(\AA\)

	

	Zstep

	(float) Step to de/increase Z-clip

	

	atomPtrs

	(list) positions of x, type, site sym, ADP flag in Draw Atoms

	

	backColor

	(list) background for plot as and R,G,B triplet
(default = [0, 0, 0], black).

	

	ballScale

	(float) Radius of spheres in ball-and-stick display

	

	bondList

	(dict) Bonds

	

	bondRadius

	(float) Radius of binds in \(\AA\)

	

	cameraPos

	(float) Viewing position in \(\AA\) for plot

	

	contourLevel

	(float) map contour level in \(e/\AA^3\)

	

	contourMax

	(float) map contour maximum

	

	depthFog

	(bool) True if use depthFog on plot - set currently as False

	

	ellipseProb

	(float) Probability limit for display of thermal
ellipsoids in % .

	

	magMult

	(float) multiplier for magnetic moment arrows

	

	mapSize

	(float) x & y dimensions of contourmap (fixed internally)

	

	modelView

	(4,4 array) from openGL drawing transofmation matrix

	

	oldxy

	(list with two floats) previous view point

	

	radiusFactor

	(float) Distance ratio for searching for bonds. Bonds
are located that are within r(Ra+Rb) and (Ra+Rb)/r
where Ra and Rb are the atomic radii.

	

	selectedAtoms

	(list of int values) List of selected atoms

	

	showABC

	(bool) Flag to show view point triplet. True=show.

	

	showHydrogen

	(bool) Flag to control plotting of H atoms.

	

	showRigidBodies

	(bool) Flag to highlight rigid body placement

	

	showSlice

	(bool) flag to show contour map

	

	sizeH

	(float) Size ratio for H atoms

	

	unitCellBox

	(bool) Flag to control display of the unit cell.

	

	vdwScale

	(float) Multiplier of van der Waals radius for display of vdW spheres.

	

	viewDir

	(np.array with three floats) cartesian viewing direction

	

	viewPoint

	(list of lists) First item in list is [x,y,z]
in fractional coordinates for the center of
the plot. Second item list of previous & current
atom number viewed (may be [0,0])

	ISODISTORT

	

	(dict) contains controls for running ISODISTORT and results from it

	

	ISOmethod

	(int) ISODISTORT method (currently 1 or 4; 2 & 3 not implemented in GSAS-II)

	

	ParentCIF

	(str) parent cif file name for ISODISTORT method 4

	

	ChildCIF

	(str) child cif file name for ISODISTORT method 4

	

	SGselect

	(dict) selection list for lattice types in radio result from ISODISTORT method 1

	

	selection

	(int) chosen selection from radio

	

	radio

	(list) results from ISODISTORT method 1

	

	ChildMatrix

	(3x3 array) transformation matrix for method 3 (not currently used)

	

	ChildSprGp

	(str) child space group for method 3 (not currently used)

	

	ChildCell

	(str) cell ordering for nonstandard orthorhombic ChildSprGrp in method 3 (not currently used)

	

	G2ModeList

	(list) ISODISTORT mode names

	

	modeDispl

	(list) distortion mode values; refinable parameters

	

	ISOmodeDispl

	(list) distortion mode values as determined in method 4 by ISODISTORT

	

	NormList

	(list) ISODISTORT normalization values; to convert mode value to fractional coordinate dsplacement

	

	G2parentCoords

	(list) full set of parent structure coordinates transformed to child structure; starting basis for mode displacements

	

	G2VarList

	(list)

	

	IsoVarList

	(list)

	

	G2coordOffset

	(list) only adjustible set of parent structure coordinates

	

	G2OccVarList

	(list)

	

	Var2ModeMatrix

	(array) atom variable to distortion mode transformation

	

	Mode2VarMatrix

	(array) distortion mode to atom variable transformation

	

	rundata

	(dict) saved input information for use by ISODISTORT method 1

	RBModels

	

	Rigid body assignments (note Rigid body definitions
are stored in their own main top-level tree entry.)

	RMC

	

	(dict) RMCProfile, PDFfit & fullrmc controls

	Pawley ref

	

	(list) Pawley reflections

	Histograms

	

	(dict of dicts) The key for the outer dict is
the histograms tied to this phase. The inner
dict contains the combined phase/histogram
parameters for items such as scale factors,
size and strain parameters. The following are the
keys to the inner dict. (dict)

	

	Babinet

	(dict) For protein crystallography. Dictionary with two
entries, ‘BabA’, ‘BabU’

	

	Extinction

	(list of float, bool) Extinction parameter

	

	Flack

	(list of [float, bool]) Flack parameter & refine flag

	

	HStrain

	(list of two lists) Hydrostatic strain. The first is
a list of the HStrain parameters (1, 2, 3, 4, or 6
depending on unit cell), the second is a list of boolean
refinement parameters (same length)

	

	Histogram

	(str) The name of the associated histogram

	

	Layer Disp

	(list of [float, bool]) Layer displacement in beam direction & refine flag

	

	LeBail

	(bool) Flag for LeBail extraction

	

	Mustrain

	(list) Microstrain parameters, in order:

	Type, one of u’isotropic’, u’uniaxial’, u’generalized’

	Isotropic/uniaxial parameters - list of 3 floats

	Refinement flags - list of 3 bools

	Microstrain axis - list of 3 ints, [h, k, l]

	Generalized mustrain parameters - list of 2-6 floats, depending on space group

	Generalized refinement flags - list of bools, corresponding to the parameters of (4)

	

	Pref.Ori.

	(list) Preferred Orientation. List of eight parameters.
Items marked SH are only used for Spherical Harmonics.

	(str) Type, ‘MD’ for March-Dollase or ‘SH’ for Spherical Harmonics

	(float) Value

	(bool) Refinement flag

	(list) Preferred direction, list of ints, [h, k, l]

	(int) SH - number of terms

	(dict) SH -

	(list) SH

	(float) SH

	

	Scale

	(list of [float, bool]) Phase fraction & refine flag

	

	Size

	List of crystallite size parameters, in order:

	(str) Type, one of u’isotropic’, u’uniaxial’, u’ellipsoidal’

	(list) Isotropic/uniaxial parameters - list of 3 floats

	(list) Refinement flags - list of 3 bools

	(list) Size axis - list of 3 ints, [h, k, l]

	(list) Ellipsoidal size parameters - list of 6 floats

	(list) Ellipsoidal refinement flags - list of bools, corresponding to the parameters of (4)

	

	Use

	(bool) True if this histogram is to be used in refinement

	MCSA

	

	(dict) Monte-Carlo simulated annealing parameters

3.6. Rigid Body Objects

Rigid body descriptions are available for two types of rigid bodies: ‘Vector’
and ‘Residue’. Vector rigid bodies are developed by a sequence of translations each
with a refinable magnitude and Residue rigid bodies are described as Cartesian coordinates
with defined refinable torsion angles.

	key

	sub-key

	explanation

	Vector

	RBId

	(dict of dict) vector rigid bodies

	

	AtInfo

	(dict) Drad, Color: atom drawing radius & color for each atom type

	

	RBname

	(str) Name assigned by user to rigid body

	

	VectMag

	(list) vector magnitudes in \(\AA\)

	

	rbXYZ

	(list of 3 float Cartesian coordinates for Vector rigid body)

	

	rbRef

	(list of 3 int & 1 bool) 3 assigned reference atom nos. in rigid body for origin
definition, use center of atoms flag

	

	VectRef

	(list of bool refinement flags for VectMag values)

	

	rbTypes

	(list of str) Atom types for each atom in rigid body

	

	rbVect

	(list of lists) Cartesian vectors for each translation used to build rigid body

	

	useCount

	(int) Number of times rigid body is used in any structure

	Residue

	RBId

	(dict of dict) residue rigid bodies

	

	AtInfo

	(dict) Drad, Color: atom drawing radius & color for each atom type

	

	RBname

	(str) Name assigned by user to rigid body

	

	rbXYZ

	(list of 3 float) Cartesian coordinates for Residue rigid body

	

	rbTypes

	(list of str) Atom types for each atom in rigid body

	

	atNames

	(list of str) Names of each atom in rigid body (e.g. C1,N2…)

	

	rbRef

	(list of 3 int & 1 bool) 3 assigned reference atom nos. in rigid body for origin
definition, use center of atoms flag

	

	rbSeq

	(list) Orig,Piv,angle,Riding : definition of internal rigid body
torsion; origin atom (int), pivot atom (int), torsion angle (float),
riding atoms (list of int)

	

	SelSeq

	(int,int) used by SeqSizer to identify objects

	

	useCount

	(int)Number of times rigid body is used in any structure

	RBIds

	

	(dict) unique Ids generated upon creation of each rigid body

	

	Vector

	(list) Ids for each Vector rigid body

	

	Residue

	(list) Ids for each Residue rigid body

3.7. Space Group Objects

Space groups are interpreted by GSASIIspc.SpcGroup()
and the information is placed in a SGdata object
which is a dict with these keys. Magnetic ones are marked “mag”

	key

	explanation

	BNSlattsym

	mag - (str) BNS magnetic space group symbol and centering vector

	GenFlg

	mag - (list) symmetry generators indices

	GenSym

	mag - (list) names for each generator

	MagMom

	mag - (list) “time reversals” for each magnetic operator

	MagPtGp

	mag - (str) Magnetic point group symbol

	MagSpGrp

	mag - (str) Magnetic space group symbol

	OprNames

	mag - (list) names for each space group operation

	SGCen

	(np.array) Symmetry cell centering vectors. A (n,3) np.array
of centers. Will always have at least one row: np.array([[0, 0, 0]])

	SGFixed

	(bool) Only True if phase mported from a magnetic cif file
then the space group can not be changed by the user because
operator set from cif may be nonstandard

	SGGen

	(list) generators

	SGGray

	(bool) True if space group is a gray group (incommensurate magnetic structures)

	SGInv

	(bool) True if centrosymmetric, False if not

	SGLatt

	(str)Lattice centering type. Will be one of
P, A, B, C, I, F, R

	SGLaue

	(str) one of the following 14 Laue classes:
-1, 2/m, mmm, 4/m, 4/mmm, 3R,
3mR, 3, 3m1, 31m, 6/m, 6/mmm, m3, m3m

	SGOps

	(list) symmetry operations as a list of form
[[M1,T1], [M2,T2],...]
where \(M_n\) is a 3x3 np.array
and \(T_n\) is a length 3 np.array.
Atom coordinates are transformed where the
Asymmetric unit coordinates [X is (x,y,z)]
are transformed using
\(X^\prime = M_n*X+T_n\)

	SGPolax

	(str) Axes for space group polarity. Will be one of
‘’, ‘x’, ‘y’, ‘x y’, ‘z’, ‘x z’, ‘y z’,
‘xyz’. In the case where axes are arbitrary
‘111’ is used (P 1, and ?).

	SGPtGrp

	(str) Point group of the space group

	SGUniq

	unique axis if monoclinic. Will be
a, b, or c for monoclinic space groups.
Will be blank for non-monoclinic.

	SGSpin

	mag - (list) of spin flip operatiors (+1 or -1) for the space group operations

	SGSys

	(str) symmetry unit cell: type one of
‘triclinic’, ‘monoclinic’, ‘orthorhombic’,
‘tetragonal’, ‘rhombohedral’, ‘trigonal’,
‘hexagonal’, ‘cubic’

	SSGK1

	(list) Superspace multipliers

	SpGrp

	(str) space group symbol

	SpnFlp

	mag - (list) Magnetic spin flips for every magnetic space group operator

Superspace groups [3+1] are interpreted by GSASIIspc.SSpcGroup()
and the information is placed in a SSGdata object
which is a dict with these keys:

	key

	explanation

	SSGCen

	(list) 4D cell centering vectors [0,0,0,0] at least

	SSGK1

	(list) Superspace multipliers

	SSGOps

	(list) 4D symmetry operations as [M,T] so that M*x+T = x’

	SSpGrp

	(str) superspace group symbol extension to space group
symbol, accidental spaces removed

	modQ

	(list) modulation/propagation vector

	modSymb

	(list of str) Modulation symbols

3.8. Phase Information

Phase information is placed in one of the following keys:

	key

	explanation

	General

	Overall information about a phase

	Histograms

	Information about each histogram linked to the
current phase as well as parameters that
are defined for each histogram and phase
(such as sample peak widths and preferred
orientation parameters.

	Atoms

	Contains a list of atoms, as described in the
Atom Records description.

	Drawing

	Parameters that determine how the phase is
displayed, including a list of atoms to be
included, as described in the
Drawing Atom Records
description

	MCSA

	Monte-Carlo simulated annealing parameters

	pId

	The index of each phase in the project, numbered
starting at 0

	ranId

	An int value with a unique value for each phase

	RBModels

	A list of dicts with parameters for each
rigid body inserted into the current phase,
as defined in the
Rigid Body Insertions.
Note that the rigid bodies are defined as
Rigid Body Objects

	RMC

	PDF modeling parameters

	Pawley ref

	Pawley refinement parameters

3.8.1. Atom Records

If phasedict points to the phase information in the data tree, then
atoms are contained in a list of atom records (list) in
phasedict['Atoms']. Also needed to read atom information
are four pointers, cx,ct,cs,cia = phasedict['General']['AtomPtrs'],
which define locations in the atom record, as shown below. Items shown are
always present; additional ones for macromolecular phases are marked ‘mm’,
and those for magnetic structures are marked ‘mg’

	location

	explanation

	ct-4

	mm - (str) residue number

	ct-3

	mm - (str) residue name (e.g. ALA)

	ct-2

	mm - (str) chain label

	ct-1

	(str) atom label

	ct

	(str) atom type

	ct+1

	(str) refinement flags; combination of ‘F’, ‘X’, ‘U’, ‘M’

	cx,cx+1,cx+2

	(3 floats) the x,y and z coordinates

	cx+3

	(float) site occupancy

	cx+4,cx+5,cx+6

	mg - (list) atom magnetic moment along a,b,c in Bohr magnetons

	cs

	(str) site symmetry

	cs+1

	(int) site multiplicity

	cia

	(str) ADP flag: Isotropic (‘I’) or Anisotropic (‘A’)

	cia+1

	(float) Uiso

	cia+2…cia+7

	(6 floats) U11, U22, U33, U12, U13, U23

	atom[cia+8]

	(int) unique atom identifier

3.8.2. Drawing Atom Records

If phasedict points to the phase information in the data tree, then
drawing atoms are contained in a list of drawing atom records (list) in
phasedict['Drawing']['Atoms']. Also needed to read atom information
are four pointers, cx,ct,cs,ci = phasedict['Drawing']['AtomPtrs'],
which define locations in the atom record, as shown below. Items shown are
always present; additional ones for macromolecular phases are marked ‘mm’,
and those for magnetic structures are marked ‘mg’

	location

	explanation

	ct-4

	mm - (str) residue number

	ct-3

	mm - (str) residue name (e.g. ALA)

	ct-2

	mm - (str) chain label

	ct-1

	(str) atom label

	ct

	(str) atom type

	cx,cx+1,cx+2

	(3 floats) the x,y and z coordinates

	cx+3,cx+4,cx+5

	mg - (3 floats) atom magnetic moment along a,b,c in Bohr magnetons

	cs-1

	(str) Sym Op symbol; sym. op number + unit cell id (e.g. ‘1,0,-1’)

	cs

	(str) atom drawing style; e.g. ‘balls & sticks’

	cs+1

	(str) atom label style (e.g. ‘name’)

	cs+2

	(int) atom color (RBG triplet)

	cs+3

	(str) ADP flag: Isotropic (‘I’) or Anisotropic (‘A’)

	cs+4

	(float) Uiso

	cs+5…cs+11

	(6 floats) U11, U22, U33, U12, U13, U23

	ci

	(int) unique atom identifier; matches source atom Id in Atom Records

3.8.3. Rigid Body Insertions

If phasedict points to the phase information in the data tree, then
rigid body information is contained in list(s) in
phasedict['RBModels']['Residue'] and/or phasedict['RBModels']['Vector']
for each rigid body inserted into the current phase.

	key

	explanation

	fixOrig

	Should the origin be fixed (when editing, not the refinement flag)

	Ids

	Ids for assignment of atoms in the rigid body

	numChain

	Chain number for macromolecular fits

	Orient

	Orientation of the RB as a quaternion and a refinement flag (’ ‘, ‘A’ or ‘AV’)

	OrientVec

	Orientation of the RB expressed as a vector and azimuthal rotation angle

	Orig

	Origin of the RB in fractional coordinates and refinement flag (bool)

	RBId

	References the unique ID of a rigid body in the
Rigid Body Objects

	RBname

	The name for the rigid body (str)

	AtomFrac

	The atom fractions for the rigid body

	ThermalMotion

	The thermal motion description for the rigid body, which includes a choice for
the model and can include TLS parameters or an overall Uiso value.

	Torsions

	Defines the torsion angle and refinement flag for each torsion defined in
the Rigid Body Object

3.9. Powder Diffraction Tree Items

Every powder diffraction histogram is stored in the GSAS-II data tree
with a top-level entry named beginning with the string “PWDR “. The
diffraction data for that information are directly associated with
that tree item and there are a series of children to that item. The
routines GSASIIdataGUI.GSASII.GetUsedHistogramsAndPhasesfromTree()
and GSASIIstrIO.GetUsedHistogramsAndPhases() will
load this information into a dictionary where the child tree name is
used as a key, and the information in the main entry is assigned
a key of Data, as outlined below.

	key

	sub-key

	explanation

	Comments

	

	(list of str) Text strings extracted from the original powder
data header. These cannot be changed by the user;
it may be empty.

	Limits

	

	(list) two two element lists, as [[Ld,Hd],[L,H]]
where L and Ld are the current and default lowest
two-theta value to be used and
where H and Hd are the current and default highest
two-theta value to be used.

	Reflection Lists

	

	(dict of dicts) with an entry for each phase in the
histogram. The contents of each dict item
is a dict containing reflections, as described in
the Powder Reflections
description.

	Instrument Parameters

	

	(dict) The instrument parameters uses different dicts
for the constant wavelength (CW) and time-of-flight (TOF)
cases. See below for the descriptions of each.

	wtFactor

	

	(float) A weighting factor to increase or decrease
the leverage of data in the histogram .
A value of 1.0 weights the data with their
standard uncertainties and a larger value
increases the weighting of the data (equivalent
to decreasing the uncertainties).

	Sample Parameters

	

	(dict) Parameters that describe how
the data were collected, as listed
below. Refinable parameters are a list containing
a float and a bool, where the second value
specifies if the value is refined, otherwise
the value is a float unless otherwise noted.

	

	Scale

	The histogram scale factor (refinable)

	

	Absorption

	The sample absorption coefficient as
\(\mu r\) where r is the radius
(refinable). Only valid for Debye-Scherrer geometry.

	

	SurfaceRoughA

	Surface roughness parameter A as defined by
Surotti, J. Appl. Cryst, 5, 325-331, 1972.
(refinable - only valid for Bragg-Brentano geometry)

	

	SurfaceRoughB

	Surface roughness parameter B (refinable -
only valid for Bragg-Brentano geometry)

	

	DisplaceX,
DisplaceY

	Sample displacement from goniometer center
where Y is along the beam direction and
X is perpendicular. Units are \(\mu m\)
(refinable).

	

	Phi, Chi,
Omega

	Goniometer sample setting angles, in degrees.

	

	Gonio. radius

	Radius of the diffractometer in mm

	

	InstrName

	(str) A name for the instrument, used in preparing
a CIF .

	

	Force,
Temperature,
Humidity,
Pressure,
Voltage

	Variables that describe how the measurement
was performed. Not used directly in
any computations.

	

	ranId

	(int) The random-number Id for the histogram
(same value as where top-level key is ranId)

	

	Type

	(str) Type of diffraction data, may be ‘Debye-Scherrer’
or ‘Bragg-Brentano’ .

	hId

	

	(int) The number assigned to the histogram when
the project is loaded or edited (can change)

	ranId

	

	(int) A random number id for the histogram
that does not change

	Background

	

	(list) The background is stored as a list with where
the first item in the list is list and the second
item is a dict. The list contains the background
function and its coefficients; the dict contains
Debye diffuse terms and background peaks.
(TODO: this needs to be expanded.)

	Data

	

	(list) The data consist of a list of 6 np.arrays
containing in order:

	the x-postions (two-theta in degrees),

	the intensity values (Yobs),

	the weights for each Yobs value

	the computed intensity values (Ycalc)

	the background values

	Yobs-Ycalc

3.9.1. CW Instrument Parameters

Instrument Parameters are placed in a list of two dicts,
where the keys in the first dict are listed below. Note that the dict contents are different for
constant wavelength (CW) vs. time-of-flight (TOF) histograms.
The value for each item is a list containing three values: the initial value, the current value
and a refinement flag which can have a value of True, False or 0 where 0 indicates a value that
cannot be refined. The first and second values are floats unless otherwise noted.
Items not refined are noted as [*]

	key

	sub-key

	explanation

	Instrument Parameters[0]

	Type [*]

	(str) Histogram type:
* ‘PXC’ for constant wavelength x-ray
* ‘PNC’ for constant wavelength neutron

	

	Bank [*]

	(int) Data set number in a multidata file (usually 1)

	

	Lam

	(float) Specifies a wavelength in \(\AA\)

	

	Lam1 [*]

	(float) Specifies the primary wavelength in
\(\AA\), used in place of Lam
when an \(\alpha_1, \alpha_2\)
source is used.

	

	Lam2 [*]

	(float) Specifies the secondary wavelength in
\(\AA\), used with Lam1

	

	I(L2)/I(L1)

	(float) Ratio of Lam2 to Lam1, used with Lam1

	

	Zero

	(float) Two-theta zero correction in degrees

	

	Azimuth [*]

	(float) Azimuthal setting angle for data recorded with differing setting angles

	

	U, V, W

	(float) Cagliotti profile coefficients
for Gaussian instrumental broadening, where the
FWHM goes as
\(U \tan^2\theta + V \tan\theta + W\)

	

	X, Y, Z

	(float) Cauchy (Lorentzian) instrumental broadening coefficients

	

	SH/L

	(float) Variant of the Finger-Cox-Jephcoat asymmetric
peak broadening ratio. Note that this is the
sum of S/L and H/L where S is
sample height, H is the slit height and
L is the goniometer diameter.

	

	Polariz.

	(float) Polarization coefficient.

	Instrument Parameters[1]

	
	(empty dict)

3.9.2. TOF Instrument Parameters

Instrument Parameters are also placed in a list of two dicts,
where the keys in each dict listed below, but here for
time-of-flight (TOF) histograms.
The value for each item is a list containing three values: the initial value, the current value
and a refinement flag which can have a value of True, False or 0 where 0 indicates a value that
cannot be refined. The first and second values are floats unless otherwise noted.
Items not refined are noted as [*]

	key

	sub-key

	explanation

	Instrument Parameters[0]

	Type [*]

	(str) Histogram type:
* ‘PNT’ for time of flight neutron

	

	Bank

	(int) Data set number in a multidata file

	

	2-theta [*]

	(float) Nominal scattering angle for the detector

	

	fltPath [*]

	(float) Total flight path source-sample-detector

	

	Azimuth [*]

	(float) Azimuth angle for detector right hand rotation
from horizontal away from source

	

	difC,difA,
difB

	(float) Diffractometer constants for conversion of d-spacing to TOF
in microseconds

	

	Zero

	(float) Zero point offset (microseconds)

	

	alpha

	(float) Exponential rise profile coefficients

	

	beta-0
beta-1
beta-q

	(float) Exponential decay profile coefficients

	

	sig-0
sig-1
sig-2
sig-q

	(float) Gaussian profile coefficients

	

	X,Y,Z

	(float) Lorentzian profile coefficients

	Instrument Parameters[1]

	Pdabc

	(list of 4 float lists) Originally created for use in gsas as optional tables
of d, alp, bet, d-true; for a reflection alpha & beta are obtained via interpolation
from the d-spacing and these tables. The d-true column is apparently unused.

3.10. Powder Reflection Data Structure

For every phase in a histogram, the Reflection Lists value is a dict
one element of which is ‘RefList’, which is a np.array containing
reflections. The columns in that array are documented below.

	index

	explanation

	0,1,2

	h,k,l (float)

	3

	(int) multiplicity

	4

	(float) d-space, \(\AA\)

	5

	(float) pos, two-theta

	6

	(float) sig, Gaussian width

	7

	(float) gam, Lorenzian width

	8

	(float) \(F_{obs}^2\)

	9

	(float) \(F_{calc}^2\)

	10

	(float) reflection phase, in degrees

	11

	(float) intensity correction for reflection, this times
\(F_{obs}^2\) or \(F_{calc}^2\) gives Iobs or Icalc

	12

	(float) Preferred orientation correction

	13

	(float) Transmission (absorption correction)

	14

	(float) Extinction correction

3.11. Single Crystal Tree Items

Every single crystal diffraction histogram is stored in the GSAS-II data tree
with a top-level entry named beginning with the string “HKLF “. The
diffraction data for that information are directly associated with
that tree item and there are a series of children to that item. The
routines GSASIIdataGUI.GSASII.GetUsedHistogramsAndPhasesfromTree()
and GSASIIstrIO.GetUsedHistogramsAndPhases() will
load this information into a dictionary where the child tree name is
used as a key, and the information in the main entry is assigned
a key of Data, as outlined below.

	key

	sub-key

	explanation

	Data

	

	(dict) that contains the
reflection table,
as described in the
Single Crystal Reflections
description.

	Instrument Parameters

	

	(list) containing two dicts where the possible
keys in each dict are listed below. The value
for most items is a list containing two values:
the initial value, the current value.
The first and second
values are floats unless otherwise noted.

	

	Lam

	(two floats) Specifies a wavelength in \(\AA\)

	

	Type

	(two str values) Histogram type :
* ‘SXC’ for constant wavelength x-ray
* ‘SNC’ for constant wavelength neutron
* ‘SNT’ for time of flight neutron
* ‘SEC’ for constant wavelength electrons (e.g. micro-ED)

	

	InstrName

	(str) A name for the instrument, used in preparing a CIF

	wtFactor

	

	(float) A weighting factor to increase or decrease
the leverage of data in the histogram.
A value of 1.0 weights the data with their
standard uncertainties and a larger value
increases the weighting of the data (equivalent
to decreasing the uncertainties).

	hId

	

	(int) The number assigned to the histogram when
the project is loaded or edited (can change)

	ranId

	

	(int) A random number id for the histogram
that does not change

3.12. Single Crystal Reflection Data Structure

For every single crystal a histogram, the 'Data' item contains
the structure factors as an np.array in item ‘RefList’.
The columns in that array are documented below.

	index

	explanation

	0,1,2

	(float) h,k,l

	3

	(int) multiplicity

	4

	(float) d-space, \(\AA\)

	5

	(float) \(F_{obs}^2\)

	6

	(float) \(\sigma(F_{obs}^2)\)

	7

	(float) \(F_{calc}^2\)

	8

	(float) \(F_{obs}^2T\)

	9

	(float) \(F_{calc}^2T\)

	10

	(float) reflection phase, in degrees

	11

	(float) intensity correction for reflection, this times
\(F_{obs}^2\) or \(F_{calc}^2\)
gives Iobs or Icalc

3.13. Image Data Structure

Every 2-dimensional image is stored in the GSAS-II data tree
with a top-level entry named beginning with the string “IMG “. The
image data are directly associated with that tree item and there
are a series of children to that item. The routines GSASIIdataGUI.GSASII.GetUsedHistogramsAndPhasesfromTree()
and GSASIIstrIO.GetUsedHistogramsAndPhases() will
load this information into a dictionary where the child tree name is
used as a key, and the information in the main entry is assigned
a key of Data, as outlined below.

	key

	sub-key

	explanation

	Comments

	

	(list of str) Text strings extracted from the original image data
header or a metafile. These cannot be changed by
the user; it may be empty.

	Image Controls

	azmthOff

	(float) The offset to be applied to an azimuthal
value. Accomodates
detector orientations other than with the detector
X-axis
horizontal.

	

	background image

	(list:str,float) The name of a tree item (“IMG …”) that is to be subtracted
during image integration multiplied by value. It must have the same size/shape as
the integrated image. NB: value < 0 for subtraction.

	

	calibrant

	(str) The material used for determining the position/orientation
of the image. The data is obtained from ImageCalibrants()
and UserCalibrants.py (supplied by user).

	

	calibdmin

	(float) The minimum d-spacing used during the last calibration run.

	

	calibskip

	(int) The number of expected diffraction lines skipped during the last
calibration run.

	

	center

	(list:floats) The [X,Y] point in detector coordinates (mm) where the direct beam
strikes the detector plane as determined by calibration. This point
does not have to be within the limits of the detector boundaries.

	

	centerAzm

	(bool) If True then the azimuth reported for the integrated slice
of the image is at the center line otherwise it is at the leading edge.

	

	color

	(str) The name of the colormap used to display the image. Default = ‘Paired’.

	

	cutoff

	(float) The minimum value of I/Ib for a point selected in a diffraction ring for
calibration calculations. See pixLimit for details as how point is found.

	

	DetDepth

	(float) Coefficient for penetration correction to distance; accounts for diffraction
ring offset at higher angles. Optionally determined by calibration.

	

	DetDepthRef

	(bool) If True then refine DetDepth during calibration/recalibration calculation.

	

	distance

	(float) The distance (mm) from sample to detector plane.

	

	ellipses

	(list:lists) Each object in ellipses is a list [center,phi,radii,color] where
center (list) is location (mm) of the ellipse center on the detector plane, phi is the
rotation of the ellipse minor axis from the x-axis, and radii are the minor & major
radii of the ellipse. If radii[0] is negative then parameters describe a hyperbola. Color
is the selected drawing color (one of ‘b’, ‘g’ ,’r’) for the ellipse/hyperbola.

	

	edgemin

	(float) Not used; parameter in EdgeFinder code.

	

	fullIntegrate

	(bool) If True then integrate over full 360 deg azimuthal range.

	

	GonioAngles

	(list:floats) The ‘Omega’,’Chi’,’Phi’ goniometer angles used for this image.
Required for texture calculations.

	

	invert_x

	(bool) If True display the image with the x-axis inverted.

	

	invert_y

	(bool) If True display the image with the y-axis inverted.

	

	IOtth

	(list:floats) The minimum and maximum 2-theta values to be used for integration.

	

	LRazimuth

	(list:floats) The minimum and maximum azimuth values to be used for integration.

	

	Oblique

	(list:float,bool) If True apply a detector absorption correction using the value to the
intensities obtained during integration.

	

	outAzimuths

	(int) The number of azimuth pie slices.

	

	outChannels

	(int) The number of 2-theta steps.

	

	pixelSize

	(list:ints) The X,Y dimensions (microns) of each pixel.

	

	pixLimit

	(int) A box in the image with 2*pixLimit+1 edges is searched to find the maximum.
This value (I) along with the minimum (Ib) in the box is reported by GSASIIimage.ImageLocalMax()
and subject to cutoff in GSASIIimage.makeRing().
Locations are used to construct rings of points for calibration calcualtions.

	

	PolaVal

	(list:float,bool) If type=’SASD’ and if True, apply polarization correction to intensities from
integration using value.

	

	rings

	(list:lists) Each entry is [X,Y,dsp] where X & Y are lists of x,y coordinates around a
diffraction ring with the same d-spacing (dsp)

	

	ring

	(list) The x,y coordinates of the >5 points on an inner ring
selected by the user,

	

	Range

	(list) The minimum & maximum values of the image

	

	rotation

	(float) The angle between the x-axis and the vector about which the
detector is tilted. Constrained to -180 to 180 deg.

	

	SampleShape

	(str) Currently only ‘Cylinder’. Sample shape for Debye-Scherrer experiments; used for absorption
calculations.

	

	SampleAbs

	(list: float,bool) Value of absorption coefficient for Debye-Scherrer experimnents, flag if True
to cause correction to be applied.

	

	setDefault

	(bool) If True the use the image controls values for all new images to be read. (might be removed)

	

	setRings

	(bool) If True then display all the selected x,y ring positions (vida supra rings) used in the calibration.

	

	showLines

	(bool) If True then isplay the integration limits to be used.

	

	size

	(list:int) The number of pixels on the image x & y axes

	

	type

	(str) One of ‘PWDR’, ‘SASD’ or ‘REFL’ for powder, small angle or reflectometry data, respectively.

	

	tilt

	(float) The angle the detector normal makes with the incident beam; range -90 to 90.

	

	wavelength

	(float) The radiation wavelength (\(\AA\)) as entered by the user
(or someday obtained from the image header).

	Masks

	Arcs

	(list: lists) Each entry [2-theta,[azimuth[0],azimuth[1]],thickness] describes an arc mask
to be excluded from integration

	

	Frames

	(list:lists) Each entry describes the x,y points (3 or more - mm) that describe a frame outside
of which is excluded from recalibration and integration. Only one frame is allowed.

	

	Points

	(list:lists) Each entry [x,y,radius] (mm) describes an excluded spot on the image to be excluded
from integration.

	

	Polygons

	(list:lists) Each entry is a list of 3+ [x,y] points (mm) that describe a polygon on the image
to be excluded from integration.

	

	Rings

	(list: lists) Each entry [2-theta,thickness] describes a ring mask
to be excluded from integration.

	

	Thresholds

	(list:[tuple,list]) [(Imin,Imax),[Imin,Imax]] This gives lower and upper limits for points on the image to be included
in integrsation. The tuple is the image intensity limits and the list are those set by the user.

	

	SpotMask

	(dict: int & array)
‘esdMul’(int) number of standard deviations above mean ring intensity to mask
‘spotMask’ (bool array) the spot mask for every pixel in image

	Stress/Strain

	Sample phi

	(float) Sample rotation about vertical axis.

	

	Sample z

	(float) Sample translation from the calibration sample position (for Sample phi = 0)
These will be restricted by space group symmetry; result of strain fit refinement.

	

	Type

	(str) ‘True’ or ‘Conventional’: The strain model used for the calculation.

	

	d-zero

	(list:dict) Each item is for a diffraction ring on the image; all items are from the same phase
and are used to determine the strain tensor.
The dictionary items are:
‘Dset’: (float) True d-spacing for the diffraction ring; entered by the user.
‘Dcalc’: (float) Average calculated d-spacing determined from strain coeff.
‘Emat’: (list: float) The strain tensor elements e11, e12 & e22 (e21=e12, rest are 0)
‘Esig’: (list: float) Esds for Emat from fitting.
‘pixLimit’: (int) Search range to find highest point on ring for each data point
‘cutoff’: (float) I/Ib cutoff for searching.
‘ImxyObs’: (list: lists) [[X],[Y]] observed points to be used for strain calculations.
‘ImtaObs’: (list: lists) [[d],[azm]] transformed via detector calibration from ImxyObs.
‘ImtaCalc’: (list: lists [[d],[azm]] calculated d-spacing & azimuth from fit.

3.14. Parameter Dictionary

The parameter dictionary contains all of the variable parameters for the refinement.
The dictionary keys are the name of the parameter (<phase>:<hist>:<name>:<atom>).
It is prepared in two ways. When loaded from the tree
(in GSASIIdataGUI.GSASII.MakeLSParmDict() and
GSASIIIO.ExportBaseclass.loadParmDict()),
the values are lists with two elements: [value, refine flag]

When loaded from the GPX file (in
GSASIIstrMain.Refine() and GSASIIstrMain.SeqRefine()), the value in the
dict is the actual parameter value (usually a float, but sometimes a
letter or string flag value (such as I or A for iso/anisotropic).

3.15. Texture implementation

There are two different places where texture can be treated in GSAS-II.
One is for mitigating the effects of texture in a structural refinement.
The other is for texture characterization.

For reducing the effect of texture in a structural refinement
there are entries labeled preferred orientation in each phase’s
data tab. Two different approaches can be used for this, the March-Dollase
model and spherical harmonics.

For the March-Dollase model, one axis in reciprocal space is designated as
unique (defaulting to the 001 axis) and reflections are corrected
according to the angle they make with this axis depending on
the March-Dollase ratio. (If unity, no correction is made).
The ratio can be greater than one or less than one depending on if
crystallites oriented along the designated axis are
overrepresented or underrepresented. For most crystal systems there is an
obvious choice for the direction of the unique axis and then only a single
term needs to be refined. If the number is close to 1, then the correction
is not needed.

The second method for reducing the effect of texture in a structural
refinement is to create a crystallite orientation probability surface as an
expansion in terms spherical harmonic functions. Only functions consistent with
cylindrical diffraction suymmetry and having texture symmetry
consistent with the Laue class of phase are used and are allowed,
so the higher the symmetry the fewer terms that are available for a given spherical harmonics order.
To use this correction, select the lowest order that provides
refinable terms and perform a refinement. If the texture index remains close to
one, then the correction is not needed. If a significant improvement is
noted in the profile Rwp, one may wish to see if a higher order expansion
gives an even larger improvement.

To characterize texture in a material, generally one needs data collected with the
sample at multiple orientations or, for TOF, with detectors at multiple
locations around the sample. In this case the detector orientation is given in
each histogram’s Sample Parameters and the sample’s orientation is described
with the Euler angles specifed on the phase’s Texture tab, which is also
where the texture type (cylindrical, rolling,…) and the spherical
harmonic order is selected. This should not be used with a single dataset and
should not be used if the preferred orientations corrections are used.

The coordinate system used for texture characterization is defined where
the sample coordinates (Psi, gamma) are defined with an instrument coordinate
system (I, J, K) such that K is normal to the diffraction plane and J is coincident with the
direction of the incident radiation beam toward the source. We further define
a standard set of right-handed goniometer eulerian angles (Omega, Chi, Phi) so that Omega and Phi are
rotations about K and Chi is a rotation about J when Omega = 0. Finally, as the sample
may be mounted so that the sample coordinate system (Is, Js, Ks) does not coincide with
the instrument coordinate system (I, J, K), we define three eulerian sample rotation angles
(Omega-s, Chi-s, Phi-s) that describe the rotation from (Is, Js, Ks) to (I, J, K). The sample rotation
angles are defined so that with the goniometer angles at zero Omega-s and Phi-s are rotations
about K and Chi-s is a rotation about J.

Three typical examples:

	Bragg-Brentano laboratory diffractometer: Chi=0

	Debye-Scherrer counter detector; sample capillary axis perpendicular to diffraction plane: Chi=90

	Debye-Scherrer 2D area detector positioned directly behind sample; sample capillary axis horizontal; Chi=0

NB: The area detector azimuthal angle will equal 0 in horizontal plane to right as viewed from x-ray source and will equal
90 at vertical “up” direction.

3.16. ISODISTORT implementation

CIFs prepared with the ISODISTORT web site
https://stokes.byu.edu/iso/isodistort_version5.6.1/isodistort.php
[B. J. Campbell, H. T. Stokes, D. E. Tanner, and D. M. Hatch, “ISODISPLACE: An Internet Tool for Exploring Structural Distortions.”
J. Appl. Cryst. 39, 607-614 (2006).] can be read into GSAS-II using import CIF. This will cause constraints to be established for
structural distortion modes read from the CIF. At present, of the five types of modes only displacive(_iso_displacivemode…)
and occupancy (_iso_occupancymode…) are processed. Not yet processed: _iso_magneticmode…,
_iso_rotationalmode… & _iso_strainmode…

The CIF importer G2phase_CIF implements class G2phase_CIF.CIFPhaseReader which offers two methods associated
with ISODISTORT (ID) input. Method G2phase_CIF.CIFPhaseReader.ISODISTORT_test() checks to see if a CIF block contains
the loops with _iso_displacivemode_label or _iso_occupancymode_label items. If so, method
G2phase_CIF.CIFPhaseReader.ISODISTORT_proc() is called to read and interpret them. The results are placed into the
reader object’s .Phase class variable as a dict item with key 'ISODISTORT'.

Note that each mode ID has a long label with a name such as Pm-3m[1/2,1/2,1/2]R5+(a,a,0)[La:b:dsp]T1u(a). Function
G2phase_CIF.ISODISTORT_shortLbl() is used to create a short name for this, such as R5_T1u(a) which is made unique
by addition of _n if the short name is duplicated. As each mode is processed, a constraint corresponding to that mode is
created and is added to list in the reader object’s .Constraints class variable. Items placed into that list can either
be a list, which corresponds to a function (new var) type constraint definition entry, or an item
can be a dict, which provides help information for each constraint.

3.16.1. Displacive modes

The coordinate variables, as named by ISODISTORT, are placed in .Phase['ISODISTORT']['IsoVarList'] and the
corresponding GSASIIobj.G2VarObj objects for each are placed in .Phase['ISODISTORT']['G2VarList'].
The mode variables, as named by ISODISTORT, are placed in .Phase['ISODISTORT']['IsoModeList'] and the
corresponding GSASIIobj.G2VarObj objects for each are placed in .Phase['ISODISTORT']['G2ModeList'].
[Use str(G2VarObj) to get the variable name from the G2VarObj object, but note that the phase number, n, for the prefix
“n::” cannot be determined as the phase number is not yet assigned.]

Displacive modes are a bit complex in that they relate to delta displacements, relative to an offset value for each coordinate,
and because the modes are normalized. While GSAS-II also uses displacements, these are added to the coordinates after
each refinement cycle and then the delta values are set to zero.
ISODISTORT uses fixed offsets (subtracted from the actual position
to obtain the delta values) that are taken from the parent structure coordinate and the initial offset value
(in _iso_deltacoordinate_value) and these are placed in
.Phase['ISODISTORT']['G2coordOffset'] in the same order as .Phase['ISODISTORT']['G2ModeList'],
.Phase['ISODISTORT']['IsoVarList'] and ‘’.Phase[ISODISTORT’][‘G2parentCoords’]’’.’

The normalization factors (which the delta values are divided by)
are taken from _iso_displacivemodenorm_value and are placed in .Phase['ISODISTORT']['NormList'] in the same
order as as ...['IsoModeList'] and ...['G2ModeList'].

The CIF contains a sparse matrix, from the loop_ containing _iso_displacivemodematrix_value which provides the equations
for determining the mode values from the coordinates, that matrix is placed in .Phase['ISODISTORT']['Mode2VarMatrix'].
The matrix is inverted to produce .Phase['ISODISTORT']['Var2ModeMatrix'], which determines how to compute the
mode values from the delta coordinate values. These values are used for the in GSASIIconstrGUI.ShowIsoDistortCalc(),
which shows coordinate and mode values, the latter with s.u. values.

3.16.2. Occupancy modes

The delta occupancy variables, as named by ISODISTORT, are placed in
.Phase['ISODISTORT']['OccVarList'] and the corresponding GSASIIobj.G2VarObj objects for each are placed
in .Phase['ISODISTORT']['G2OccVarList']. The mode variables, as named by ISODISTORT, are placed in
.Phase['ISODISTORT']['OccModeList'] and the corresponding GSASIIobj.G2VarObj objects for each are placed
in .Phase['ISODISTORT']['G2OccModeList'].

Occupancy modes, like Displacive modes, are also refined as delta values. However, GSAS-II directly refines the fractional
occupancies. Offset values for each atom, are taken from _iso_occupancy_formula and are placed in
.Phase['ISODISTORT']['ParentOcc]. (Offset values are subtracted from the actual position to obtain the delta values.)
Modes are normalized (where the mode values are divided by the normalization factor) are taken from _iso_occupancymodenorm_value
and are placed in .Phase['ISODISTORT']['OccNormList'] in the same order as as ...['OccModeList'] and
...['G2OccModeList'].

The CIF contains a sparse matrix, from the loop_ containing _iso_occupancymodematrix_value, which provides the
equations for determining the mode values from the coordinates. That matrix is placed in .Phase['ISODISTORT']['Occ2VarMatrix'].
The matrix is inverted to produce .Phase['ISODISTORT']['Var2OccMatrix'], which determines how to compute the
mode values from the delta coordinate values.

3.16.3. Mode Computations

Constraints are processed after the CIF has been read in GSASIIdataGUI.GSASII.OnImportPhase() or
GSASIIscriptable.G2Project.add_phase() by moving them from the reader object’s .Constraints
class variable to the Constraints tree entry’s [‘Phase’] list (for list items defining constraints) or
the Constraints tree entry’s [‘_Explain’] dict (for dict items defining constraint help information)

The information in .Phase['ISODISTORT'] is used in GSASIIconstrGUI.ShowIsoDistortCalc() which shows coordinate and mode
values, the latter with s.u. values. This can be called from the Constraints and Phase/Atoms tree items.

Before each refinement, constraints are processed as described elsewhere. After a refinement
is complete, GSASIIstrIO.PrintIndependentVars() shows the shifts and s.u.’s on the refined modes,
using GSAS-II values, but GSASIIstrIO.PrintISOmodes() prints the ISODISTORT modes as computed in the web site.

3.17. Parameter Limits

One of the most often requested “enhancements” for GSAS-II would be the inclusion
of constraints to force parameters such as occupancies or Uiso values to stay within
expected ranges. While it is possible for users to supply their own restraints that would
perform this by supplying an appropriate expression with the “General” restraints, the
GSAS-II authors do not feel that use of restraints or constraints are a good solution for
this common problem where parameters refine to non-physical values. This is because when
this occurs, most likely one of the following cases is occurring:

	there is a significant problem
with the model, for example for an x-ray fit if an O atom is placed where a S is actually
present, the Uiso will refine artificially small or the occupancy much larger than unity
to try to compensate for the missing electrons; or

	the data are simply insensitive
to the parameter or combination of parameters, for example unless very high-Q data
are included, the effects of a occupancy and Uiso value can have compensating effects,
so an assumption must be made; likewise, with neutron data natural-abundance V atoms
are nearly invisible due to weak coherent scattering. No parameters can be fit for a
V atom with neutrons.

	the parameter is non-physical (such as a negative Uiso value) but within
two sigma (sigma = standard uncertainty, aka e.s.d.) of a reasonable value,
in which case the
value is not problematic as it is experimentally indistinguishable from an
expected value.

	there is a systematic problem with the data (experimental error)

In all these cases, this situation needs to be reviewed by a crystallographer to decide
how to best determine a structural model for these data. An implementation with a constraint
or restraint is likely to simply hide the problem from the user, making it more probable
that a poor model choice is obtained.

What GSAS-II does implement is to allow users to specify ranges for parameters
that works by disabling
refinement of parameters that refine beyond either a lower limit or an upper limit, where
either or both may be optionally specified. Parameters limits are specified in the Controls
tree entry in dicts named as Controls['parmMaxDict'] and Controls['parmMinDict'], where
the keys are G2VarObj objects corresponding to standard GSAS-II variable
(see getVarDescr() and CompileVarDesc()) names, where a
wildcard (‘*’) may optionally be used for histogram number or atom number
(phase number is intentionally not allowed as a wildcard as it makes little sense
to group the same parameter together different phases). Note
that prmLookup() is used to see if a name matches a wildcard. The upper or lower limit
is placed into these dicts as a float value. These values can be edited using the window
created by the Calculate/”View LS parms” menu command or in scripting with the
GSASIIscriptable.G2Project.set_Controls() function.
In the GUI, a checkbox labeled “match all histograms/atoms” is used to insert a wildcard
into the appropriate part of the variable name.

When a refinement is conducted, routine GSASIIstrMain.dropOOBvars() is used to
find parameters that have refined to values outside their limits. If this occurs, the parameter
is set to the limiting value and the variable name is added to a list of frozen variables
(as a G2VarObj objects) kept in a list in the
Controls['parmFrozen'] dict. In a sequential refinement, this is kept separate for
each histogram as a list in
Controls['parmFrozen'][histogram] (where the key is the histogram name) or as a list in
Controls['parmFrozen']['FrozenList'] for a non-sequential fit.
This allows different variables
to be frozen in each section of a sequential fit.
Frozen parameters are not included in refinements through removal from the
list of parameters to be refined (varyList) in GSASIIstrMain.Refine() or
GSASIIstrMain.SeqRefine().
The data window for the Controls tree item shows the number of Frozen variables and
the individual variables can be viewed with the Calculate/”View LS parms” menu window or
obtained with GSASIIscriptable.G2Project.get_Frozen().
Once a variable is frozen, it will not be refined in any
future refinements unless the the variable is removed (manually) from the list. This can also
be done with the Calculate/”View LS parms” menu window or
GSASIIscriptable.G2Project.set_Frozen().

See also

G2VarObj
getVarDescr()
CompileVarDesc()
prmLookup()
GSASIIctrlGUI.ShowLSParms
GSASIIctrlGUI.VirtualVarBox
GSASIIstrIO.SetUsedHistogramsAndPhases()
GSASIIstrIO.SaveUpdatedHistogramsAndPhases()
GSASIIstrIO.SetSeqResult()
GSASIIstrMain.dropOOBvars()
GSASIIscriptable.G2Project.set_Controls()
GSASIIscriptable.G2Project.get_Frozen()
GSASIIscriptable.G2Project.set_Frozen()

3.18. GSASIIobj Classes and routines

Classes and routines defined in GSASIIobj follow.

	
GSASIIobj.AddPhase2Index(rdObj, filename)

	Add a phase to the index during reading
Used where constraints are generated during import (ISODISTORT CIFs)

	
GSASIIobj.AtomIdLookup = {}

	dict listing for each phase index as a str, the atom label and atom random Id,
keyed by atom sequential index as a str;
best to access this using LookupAtomLabel()

	
GSASIIobj.AtomRanIdLookup = {}

	dict listing for each phase the atom sequential index keyed by atom random Id;
best to access this using LookupAtomId()

	
GSASIIobj.CompileVarDesc()

	Set the values in the variable lookup tables
(reVarDesc and reVarStep).
This is called in getDescr() and getVarStep() so this
initialization is always done before use. These variables are
also used in script makeVarTbl.py which creates the table in section 3.2
of the Sphinx docs (Variable names in GSAS-II).

Note that keys may contain regular expressions, where ‘[xyz]’
matches ‘x’ ‘y’ or ‘z’ (equivalently ‘[x-z]’ describes this as range
of values). ‘.*’ matches any string. For example:

'AUiso':'Atomic isotropic displacement parameter',

will match variable 'p::AUiso:a'.
If parentheses are used in the key, the contents of those parentheses can be
used in the value, such as:

'AU([123][123])':'Atomic anisotropic displacement parameter U\1',

will match AU11, AU23,… and U11, U23 etc will be displayed
in the value when used.

	
GSASIIobj.CreatePDFitems(G2frame, PWDRtree, ElList, Qlimits, numAtm=1, FltBkg=0, PDFnames=[])

	Create and initialize a new set of PDF tree entries

	Parameters:

	
	G2frame (Frame) – main GSAS-II tree frame object

	PWDRtree (str) – name of PWDR to be used to create PDF item

	ElList (dict) – data structure with composition

	Qlimits (list) – Q limits to be used for computing the PDF

	numAtm (float) – no. atom in chemical formula

	FltBkg (float) – flat background value

	PDFnames (list) – previously used PDF names

	Returns:

	the Id of the newly created PDF entry

	
GSASIIobj.DefaultControls = {'Author': 'no name', 'Copy2Next': False, 'F**2': False, 'FreePrm1': 'Sample humidity (%)', 'FreePrm2': 'Sample voltage (V)', 'FreePrm3': 'Applied load (MN)', 'HatomFix': False, 'Reverse Seq': False, 'SVDtol': 1e-06, 'ShowCell': False, 'UsrReject': {'MaxD': 500.0, 'MaxDF/F': 100.0, 'MinD': 0.05, 'MinExt': 0.01, 'minF/sig': 0.0}, 'deriv type': 'analytic Hessian', 'max cyc': 3, 'min dM/M': 0.001, 'newLeBail': False, 'shift factor': 1.0}

	Values to be used as defaults for the initial contents of the Controls
data tree item.

	
class GSASIIobj.ExpressionCalcObj(exprObj)

	An object used to evaluate an expression from a ExpressionObj
object.

	Parameters:

	exprObj (ExpressionObj) – a ExpressionObj expression object with
an expression string and mappings for the parameter labels in that object.

	
EvalExpression()

	Evaluate an expression. Note that the expression
and mapping are taken from the ExpressionObj expression object
and the parameter values were specified in SetupCalc().
:returns: a single value for the expression. If parameter
values are arrays (for example, from wild-carded variable names),
the sum of the resulting expression is returned.

For example, if the expression is 'A*B',
where A is 2.0 and B maps to '1::Afrac:*', which evaluates to:

[0.5, 1, 0.5]

then the result will be 4.0.

	
SetupCalc(parmDict)

	Do all preparations to use the expression for computation.
Adds the free parameter values to the parameter dict (parmDict).

	
UpdateDict(parmDict)

	Update the dict for the expression with values in a dict
:param dict parmDict: a dict of values, items not in use are ignored

	
UpdateVars(varList, valList)

	Update the dict for the expression with a set of values
:param list varList: a list of variable names
:param list valList: a list of corresponding values

	
__init__(exprObj)

	

	
__weakref__

	list of weak references to the object

	
compiledExpr

	The expression as compiled byte-code

	
eObj

	The expression and mappings; a ExpressionObj object

	
exprDict

	dict that defines values for labels used in expression and packages
referenced by functions

	
fxnpkgdict

	a dict with references to packages needed to
find functions referenced in the expression.

	
lblLookup

	Lookup table that specifies the expression label name that is
tied to a particular GSAS-II parameters in the parmDict.

	
parmDict

	A copy of the parameter dictionary, for distance and angle computation

	
su

	Standard error evaluation where supplied by the evaluator

	
varLookup

	Lookup table that specifies the GSAS-II variable(s)
indexed by the expression label name. (Used for only for diagnostics
not evaluation of expression.)

	
class GSASIIobj.ExpressionObj

	Defines an object with a user-defined expression, to be used for
secondary fits or restraints. Object is created null, but is changed
using LoadExpression(). This contains only the minimum
information that needs to be stored to save and load the expression
and how it is mapped to GSAS-II variables.

	
CheckVars()

	Check that the expression can be parsed, all functions are
defined and that input loaded into the object is internally
consistent. If not an Exception is raised.

	Returns:

	a dict with references to packages needed to
find functions referenced in the expression.

	
EditExpression(exprVarLst, varSelect, varName, varValue, varRefflag)

	Load the expression and associated settings from the object into
arrays used for editing.

	Parameters:

	
	exprVarLst (list) – parameter labels found in the expression

	varSelect (dict) – this will be 0 for Free parameters
and non-zero for expression labels linked to G2 variables.

	varName (dict) – Defines a name (str) associated with each free parameter

	varValue (dict) – Defines a value (float) associated with each free parameter

	varRefflag (dict) – Defines a refinement flag (bool)
associated with each free parameter

	Returns:

	the expression as a str

	
GetDepVar()

	return the dependent variable, or None

	
GetIndependentVars()

	Returns the names of the required independent parameters used in expression

	
GetVaried()

	Returns the names of the free parameters that will be refined

	
GetVariedVarVal()

	Returns the names and values of the free parameters that will be refined

	
LoadExpression(expr, exprVarLst, varSelect, varName, varValue, varRefflag)

	Load the expression and associated settings into the object. Raises
an exception if the expression is not parsed, if not all functions
are defined or if not all needed parameter labels in the expression
are defined.

This will not test if the variable referenced in these definitions
are actually in the parameter dictionary. This is checked when the
computation for the expression is done in SetupCalc().

	Parameters:

	
	expr (str) – the expression

	exprVarLst (list) – parameter labels found in the expression

	varSelect (dict) – this will be 0 for Free parameters
and non-zero for expression labels linked to G2 variables.

	varName (dict) – Defines a name (str) associated with each free parameter

	varValue (dict) – Defines a value (float) associated with each free parameter

	varRefflag (dict) – Defines a refinement flag (bool)
associated with each free parameter

	
ParseExpression(expr)

	Parse an expression and return a dict of called functions and
the variables used in the expression. Returns None in case an error
is encountered. If packages are referenced in functions, they are loaded
and the functions are looked up into the modules global
workspace.

Note that no changes are made to the object other than
saving an error message, so that this can be used for testing prior
to the save.

	Returns:

	a list of used variables

	
SetDepVar(var)

	Set the dependent variable, if used

	
UpdateVariedVars(varyList, values)

	Updates values for the free parameters (after a refinement); only updates refined vars

	
__init__()

	

	
__weakref__

	list of weak references to the object

	
assgnVars

	A dict where keys are label names in the expression mapping to a GSAS-II
variable. The value a G2 variable name.
Note that the G2 variable name may contain a wild-card and correspond to
multiple values.

	
expression

	The expression as a text string

	
freeVars

	A dict where keys are label names in the expression mapping to a free
parameter. The value is a list with:

	a name assigned to the parameter

	a value for to the parameter and

	a flag to determine if the variable is refined.

	
lastError

	Shows last encountered error in processing expression
(list of 1-3 str values)

	
GSASIIobj.FindFunction(f)

	Find the object corresponding to function f

	Parameters:

	f (str) – a function name such as ‘numpy.exp’

	Returns:

	(pkgdict,pkgobj) where pkgdict contains a dict
that defines the package location(s) and where pkgobj
defines the object associated with the function.
If the function is not found, pkgobj is None.

	
exception GSASIIobj.G2Exception(msg)

	A generic GSAS-II exception class

	
__init__(msg)

	

	
__str__()

	Return str(self).

	
__weakref__

	list of weak references to the object

	
exception GSASIIobj.G2RefineCancel(msg)

	Raised when Cancel is pressed in a refinement dialog

	
__init__(msg)

	

	
__str__()

	Return str(self).

	
__weakref__

	list of weak references to the object

	
class GSASIIobj.G2VarObj(*args)

	Defines a GSAS-II variable either using the phase/atom/histogram
unique Id numbers or using a character string that specifies
variables by phase/atom/histogram number (which can change).
Note that GSASIIstrIO.GetUsedHistogramsAndPhases(),
which calls IndexAllIds() (or
GSASIIscriptable.G2Project.index_ids()) should be used to
(re)load the current Ids
before creating or later using the G2VarObj object.

This can store rigid body variables, but does not translate the residue # and
body # to/from random Ids

A G2VarObj object can be created with a single parameter:

	Parameters:

	varname (str/tuple) –
	a single value can be used to create a G2VarObj
	object. If a string, it must be of form “p:h:var” or “p:h:var:a”, where

	p is the phase number (which may be left blank or may be ‘*’ to indicate all phases);

	h is the histogram number (which may be left blank or may be ‘*’ to indicate all histograms);

	a is the atom number (which may be left blank in which case the third colon is omitted).
The atom number can be specified as ‘*’ if a phase number is specified (not as ‘*’).
For rigid body variables, specify a will be a string of form “residue:body#”

Alternately a single tuple of form (Phase,Histogram,VarName,AtomID) can be used, where
Phase, Histogram, and AtomID are None or are ranId values (or one can be ‘*’)
and VarName is a string. Note that if Phase is ‘*’ then the AtomID is an atom number.
For a rigid body variables, AtomID is a string of form “residue:body#”.

If four positional arguments are supplied, they are:

	Parameters:

	
	phasenum (str/int) – The number for the phase (or None or ‘*’)

	histnum (str/int) – The number for the histogram (or None or ‘*’)

	varname (str) – a single value can be used to create a G2VarObj

	atomnum (str/int) – The number for the atom (or None or ‘*’)

	
__eq__(other)

	Allow comparison of G2VarObj to other G2VarObj objects or strings.
If any field is a wildcard (‘*’) that field matches.

	
__hash__()

	Allow G2VarObj to be a dict key by implementing hashing

	
__init__(*args)

	

	
__repr__()

	Return the detailed contents of the object

	
__str__()

	Return str(self).

	
__weakref__

	list of weak references to the object

	
_show()

	For testing, shows the current lookup table

	
fmtVarByMode(seqmode, note, warnmsg)

	Format a parameter object for display. Note that these changes
are only temporary and are only shown only when the Constraints
data tree is selected.

	In a non-sequential refinement or where the mode is ‘use-all’, the
name is converted unchanged to a str

	In a sequential refinement when the mode is ‘wildcards-only’ the
name is converted unchanged to a str but a warning is added
for non-wildcarded HAP or Histogram parameters

	In a sequential refinement or where the mode is ‘auto-wildcard’,
a histogram number is converted to a wildcard (*) and then
converted to str

	Parameters:

	
	mode (str) – the sequential mode (see above)

	note (str) – value displayed on the line of the constraint/equiv.

	warnmsg (str) – a message saying the constraint is not used

	Returns:

	varname, explain, note, warnmsg (all str values) where:

	varname is the parameter expressed as a string,

	explain is blank unless there is a warning explanation about
the parameter or blank

	note is the previous value unless overridden

	warnmsg is the previous value unless overridden

	
varname(hist=None)

	Formats the GSAS-II variable name as a “traditional” GSAS-II variable
string (p:h:<var>:a) or (p:h:<var>)

	Parameters:

	hist (str/int) – if specified, overrides the histogram number
with the specified value

	Returns:

	the variable name as a str

	
GSASIIobj.GenWildCard(varlist)

	Generate wildcard versions of G2 variables. These introduce ‘*’
for a phase, histogram or atom number (but only for one of these
fields) but only when there is more than one matching variable in the
input variable list. So if the input is this:

varlist = ['0::AUiso:0', '0::AUiso:1', '1::AUiso:0']

then the output will be this:

wildList = ['*::AUiso:0', '0::AUiso:*']

	Parameters:

	varlist (list) – an input list of GSAS-II variable names
(such as 0::AUiso:0)

	Returns:

	wildList, the generated list of wild card variable names.

	
GSASIIobj.GetPhaseNames(fl)

	Returns a list of phase names found under ‘Phases’ in GSASII gpx file
NB: there is another one of these in GSASIIstrIO.py that uses the gpx filename

	Parameters:

	fl (file) – opened .gpx file

	Returns:

	list of phase names

	
GSASIIobj.HistIdLookup = {}

	dict listing histogram name and random Id, keyed by sequential histogram index as a str;
best to access this using LookupHistName()

	
GSASIIobj.HistRanIdLookup = {}

	dict listing histogram sequential index keyed by histogram random Id;
best to access this using LookupHistId()

	
GSASIIobj.HowDidIgetHere(wherecalledonly=False)

	Show a traceback with calls that brought us to the current location.
Used for debugging.

	
class GSASIIobj.ImportBaseclass(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	Defines a base class for the reading of input files (diffraction
data, coordinates,…). See Writing a Import Routine
for an explanation on how to use a subclass of this class.

	
CIFValidator(filepointer)

	A ContentsValidator() for use to validate CIF files.

	
ContentsValidator(filename)

	This routine will attempt to determine if the file can be read
with the current format.
This will typically be overridden with a method that
takes a quick scan of [some of]
the file contents to do a “sanity” check if the file
appears to match the selected format.
the file must be opened here with the correct format (binary/text)

	
ExtensionValidator(filename)

	This methods checks if the file has the correct extension

	Returns:

	
	False if this filename will not be supported by this reader (only
when strictExtension is True)

	True if the extension matches the list supplied by the reader

	None if the reader allows un-registered extensions

	
exception ImportException

	Defines an Exception that is used when an import routine hits an expected error,
usually in .Reader.

Good practice is that the Reader should define a value in self.errors that
tells the user some information about what is wrong with their file.

	
__weakref__

	list of weak references to the object

	
ReInitialize()

	Reinitialize the Reader to initial settings

	
__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	

	
__weakref__

	list of weak references to the object

	
class GSASIIobj.ImportImage(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	Defines a base class for the reading of images

Images are read in only these places:

	Initial reading is typically done from a menu item
with a call to GSASIIdataGUI.GSASII.OnImportImage()
which in turn calls GSASIIdataGUI.GSASII.OnImportGeneric(). That calls
methods ExtensionValidator(), ContentsValidator() and
Reader(). This returns a list of reader objects for each read image.
Also used in GSASIIscriptable.import_generic().

	Images are read alternatively in GSASIIIO.ReadImages(), which puts image info
directly into the data tree.

	Images are reloaded with GSASIIIO.GetImageData().

When reading an image, the Reader() routine in the ImportImage class
should set:

	Comments: a list of strings (str),

	Npix: the number of pixels in the image (int),

	Image: the actual image as a numpy array (np.array)

	Data: a dict defining image parameters (dict). Within this dict the following
data items are needed:

	‘pixelSize’: size of each pixel in microns (such as [200.,200.].

	‘wavelength’: wavelength in \(\AA\).

	‘distance’: distance of detector from sample in cm.

	‘center’: uncalibrated center of beam on detector (such as [204.8,204.8].

	‘size’: size of image (such as [2048,2048]).

	‘ImageTag’: image number or other keyword used to retrieve image from
a multi-image data file (defaults to 1 if not specified).

	‘sumfile’: holds sum image file name if a sum was produced from a multi image file

optional data items:

	repeat: set to True if there are additional images to
read in the file, False otherwise

	repeatcount: set to the number of the image.

Note that the above is initialized with InitParameters().
(Also see Writing a Import Routine
for an explanation on how to use import classes in general.)

	
InitParameters()

	initialize the instrument parameters structure

	
LoadImage(ParentFrame, imagefile, imagetag=None)

	Optionally, call this after reading in an image to load it into the tree.
This saves time by preventing a reread of the same information.

	
ReInitialize()

	Reinitialize the Reader to initial settings – not used at present

	
__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	

	
class GSASIIobj.ImportPDFData(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	Defines a base class for the reading of files with PDF G(R) data.
See Writing a Import Routine
for an explanation on how to use this class.

	
ReInitialize()

	Reinitialize the Reader to initial settings

	
__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	

	
class GSASIIobj.ImportPhase(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	Defines a base class for the reading of files with coordinates

Objects constructed that subclass this (in import/G2phase_*.py etc.) will be used
in GSASIIdataGUI.GSASII.OnImportPhase() and in
GSASIIscriptable.import_generic().
See Writing a Import Routine
for an explanation on how to use this class.

	
__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	

	
class GSASIIobj.ImportPowderData(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	Defines a base class for the reading of files with powder data.

Objects constructed that subclass this (in import/G2pwd_*.py etc.) will be used
in GSASIIdataGUI.GSASII.OnImportPowder() and in
GSASIIscriptable.import_generic().
See Writing a Import Routine
for an explanation on how to use this class.

	
ReInitialize()

	Reinitialize the Reader to initial settings

	
__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	

	
class GSASIIobj.ImportReflectometryData(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	Defines a base class for the reading of files with reflectometry data.
See Writing a Import Routine
for an explanation on how to use this class.

	
ReInitialize()

	Reinitialize the Reader to initial settings

	
__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	

	
class GSASIIobj.ImportSmallAngleData(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	Defines a base class for the reading of files with small angle data.
See Writing a Import Routine
for an explanation on how to use this class.

	
ReInitialize()

	Reinitialize the Reader to initial settings

	
__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	

	
class GSASIIobj.ImportStructFactor(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	Defines a base class for the reading of files with tables
of structure factors.

Structure factors are read with a call to GSASIIdataGUI.GSASII.OnImportSfact()
which in turn calls GSASIIdataGUI.GSASII.OnImportGeneric(), which calls
methods ExtensionValidator(), ContentsValidator() and
Reader().

See Writing a Import Routine
for an explanation on how to use import classes in general. The specifics
for reading a structure factor histogram require that
the Reader() routine in the import
class need to do only a few things: It
should load RefDict item 'RefList' with the reflection list,
and set Parameters with the instrument parameters
(initialized with InitParameters() and set with UpdateParameters()).

	
Banks

	self.RefDict is a dict containing the reflection information, as read from the file.
Item ‘RefList’ contains the reflection information. See the
Single Crystal Reflection Data Structure
for the contents of each row. Dict element ‘FF’
contains the form factor values for each element type; if this entry
is left as initialized (an empty list) it will be initialized as needed later.

	
InitParameters()

	initialize the instrument parameters structure

	
Parameters

	self.Parameters is a list with two dicts for data parameter settings

	
ReInitialize()

	Reinitialize the Reader to initial settings

	
UpdateParameters(Type=None, Wave=None)

	Revise the instrument parameters

	
__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	

	
GSASIIobj.IndexAllIds(Histograms, Phases)

	Scan through the used phases & histograms and create an index
to the random numbers of phases, histograms and atoms. While doing this,
confirm that assigned random numbers are unique – just in case lightning
strikes twice in the same place.

Note: this code assumes that the atom random Id (ranId) is the last
element each atom record.

This is called when phases & histograms are looked up
in these places (only):

	GSASIIstrIO.GetUsedHistogramsAndPhases() (which loads the histograms and phases from a GPX file),

	GetUsedHistogramsAndPhasesfromTree() (which does the same thing but from the data tree.)

	OnFileClose() (clears out an old project)

Note that globals PhaseIdLookup and PhaseRanIdLookup are
also set in AddPhase2Index() to temporarily assign a phase number
as a phase is being imported.

TODO: do we need a lookup for rigid body variables?

	
GSASIIobj.LookupAtomId(pId, ranId)

	Get the atom number from a phase and atom random Id

	Parameters:

	
	pId (int/str) – the sequential number of the phase

	ranId (int) – the random Id assigned to an atom

	Returns:

	the index number of the atom (str)

	
GSASIIobj.LookupAtomLabel(pId, index)

	Get the atom label from a phase and atom index number

	Parameters:

	
	pId (int/str) – the sequential number of the phase

	index (int) – the index of the atom in the list of atoms

	Returns:

	the label for the atom (str) and the random Id of the atom (int)

	
GSASIIobj.LookupHistId(ranId)

	Get the histogram number and name from a histogram random Id

	Parameters:

	ranId (int) – the random Id assigned to a histogram

	Returns:

	the sequential Id (hId) number for the histogram (str)

	
GSASIIobj.LookupHistName(hId)

	Get the histogram number and name from a histogram Id

	Parameters:

	hId (int/str) – the sequential assigned to a histogram

	Returns:

	(hist,ranId) where hist is the name of the histogram (str)
and ranId is the random # id for the histogram (int)

	
GSASIIobj.LookupPhaseId(ranId)

	Get the phase number and name from a phase random Id

	Parameters:

	ranId (int) – the random Id assigned to a phase

	Returns:

	the sequential Id (pId) number for the phase (str)

	
GSASIIobj.LookupPhaseName(pId)

	Get the phase number and name from a phase Id

	Parameters:

	pId (int/str) – the sequential assigned to a phase

	Returns:

	(phase,ranId) where phase is the name of the phase (str)
and ranId is the random # id for the phase (int)

	
GSASIIobj.LookupWildCard(varname, varlist)

	returns a list of variable names from list varname
that match wildcard name in varname

	Parameters:

	
	varname (str) – a G2 variable name containing a wildcard
(such as *::var)

	varlist (list) – the list of all variable names used in
the current project

	Returns:

	a list of matching GSAS-II variables (may be empty)

	
GSASIIobj.MakeUniqueLabel(lbl, labellist)

	Make sure that every a label is unique against a list by adding
digits at the end until it is not found in list.

	Parameters:

	
	lbl (str) – the input label

	labellist (list) – the labels that have already been encountered

	Returns:

	lbl if not found in labellist or lbl with _1-9 (or
_10-99, etc.) appended at the end

	
GSASIIobj.PhaseIdLookup = {}

	dict listing phase name and random Id keyed by sequential phase index as a str;
best to access this using LookupPhaseName()

	
GSASIIobj.PhaseRanIdLookup = {}

	dict listing phase sequential index keyed by phase random Id;
best to access this using LookupPhaseId()

	
GSASIIobj.ReadCIF(URLorFile)

	Open a CIF, which may be specified as a file name or as a URL using PyCifRW
(from James Hester).
The open routine gets confused with DOS names that begin with a letter and colon
“C:dir” so this routine will try to open the passed name as a file and if that
fails, try it as a URL

	Parameters:

	URLorFile (str) – string containing a URL or a file name. Code will try first
to open it as a file and then as a URL.

	Returns:

	a PyCifRW CIF object.

	
GSASIIobj.SetDefaultSample()

	Fills in default items for the Sample dictionary for Debye-Scherrer & SASD

	
GSASIIobj.SetNewPhase(Name='New Phase', SGData=None, cell=None, Super=None)

	Create a new phase dict with default values for various parameters

	Parameters:

	
	Name (str) – Name for new Phase

	SGData (dict) – space group data from GSASIIspc:SpcGroup();
defaults to data for P 1

	cell (list) – unit cell parameter list; defaults to
[1.0,1.0,1.0,90.,90,90.,1.]

	
GSASIIobj.ShortHistNames = {}

	a dict containing a possibly shortened and when non-unique numbered
version of the histogram name. Keyed by the histogram sequential index.

	
GSASIIobj.ShortPhaseNames = {}

	a dict containing a possibly shortened and when non-unique numbered
version of the phase name. Keyed by the phase sequential index.

	
class GSASIIobj.ShowTiming

	An object to use for timing repeated sections of code.

	Create the object with::
	tim0 = ShowTiming()

	Tag sections of code to be timed with::
	tim0.start(‘start’)
tim0.start(‘in section 1’)
tim0.start(‘in section 2’)

etc. (Note that each section should have a unique label.)

	After the last section, end timing with::
	tim0.end()

	Show timing results with::
	tim0.show()

	
__init__()

	

	
__weakref__

	list of weak references to the object

	
GSASIIobj.SortVariables(varlist)

	Sorts variable names in a sensible manner

	
GSASIIobj.StripUnicode(string, subs='.')

	Strip non-ASCII characters from strings

	Parameters:

	
	string (str) – string to strip Unicode characters from

	subs (str) – character(s) to place into string in place of each
Unicode character. Defaults to ‘.’

	Returns:

	a new string with only ASCII characters

	
GSASIIobj.TestIndexAll()

	Test if IndexAllIds() has been called to index all phases and
histograms (this is needed before G2VarObj() can be used.

	Returns:

	Returns True if indexing is needed.

	
GSASIIobj.VarDescr(varname)

	Return two strings with a more complete description for a GSAS-II variable

	Parameters:

	name (str) – A full G2 variable name with 2 or 3 or 4
colons (<p>:<h>:name[:<a>] or <p>::RBname:<r>:<t>])

	Returns:

	(loc,meaning) where loc describes what item the variable is mapped
(phase, histogram, etc.) and meaning describes what the variable does.

	
GSASIIobj._lookup(dic, key)

	Lookup a key in a dictionary, where None returns an empty string
but an unmatched key returns a question mark. Used in G2VarObj

	
GSASIIobj.fmtVarDescr(varname)

	Return a string with a more complete description for a GSAS-II variable

	Parameters:

	varname (str) – A full G2 variable name with 2 or 3 or 4
colons (<p>:<h>:name[:<a>] or <p>::RBname:<r>:<t>])

	Returns:

	a string with the description

	
GSASIIobj.getDescr(name)

	Return a short description for a GSAS-II variable

	Parameters:

	name (str) – The descriptive part of the variable name without colons (:)

	Returns:

	a short description or None if not found

	
GSASIIobj.getVarDescr(varname)

	Return a short description for a GSAS-II variable

	Parameters:

	name (str) – A full G2 variable name with 2 or 3 or 4
colons (<p>:<h>:name[:<a1>][:<a2>])

	Returns:

	a six element list as [p,`h`,`name`,`a1`,`a2`,`description`],
where p, h, a1, a2 are str values or None, for the phase number,
the histogram number and the atom number; name will always be
a str; and description is str or None.
If the variable name is incorrectly formed (for example, wrong
number of colons), None is returned instead of a list.

	
GSASIIobj.getVarStep(name, parmDict=None)

	Return a step size for computing the derivative of a GSAS-II variable

	Parameters:

	
	name (str) – A complete variable name (with colons, :)

	parmDict (dict) – A dict with parameter values or None (default)

	Returns:

	a float that should be an appropriate step size, either from
the value supplied in CompileVarDesc() or based on the value for
name in parmDict, if supplied. If not found or the value is zero,
a default value of 1e-5 is used. If parmDict is None (default) and
no value is provided in CompileVarDesc(), then None is returned.

	
GSASIIobj.prmLookup(name, prmDict)

	Looks for a parameter in a min/max dictionary, optionally
considering a wild card for histogram or atom number (use of
both will never occur at the same time).

	Parameters:

	
	name – a GSAS-II parameter name (str, see getVarDescr()
and CompileVarDesc()) or a G2VarObj object.

	prmDict (dict) – a min/max dictionary, (parmMinDict
or parmMaxDict in Controls) where keys are G2VarObj
objects.

	Returns:

	Two values, (matchname, value), are returned where:

	matchname (str) is the G2VarObj object
corresponding to the actual matched name,
which could contain a wildcard even if name does not; and

	value (float) which contains the parameter limit.

	
GSASIIobj.reVarDesc = {re.compile('([UVW])$'): 'Gaussian instrument broadening \\1', re.compile('([XYZ])$'): 'Cauchy instrument broadening \\1', re.compile('([XYZ])cos'): 'Cos position wave for \\1', re.compile('([XYZ])max'): 'ZigZag/Block max value for \\1', re.compile('([XYZ])sin'): 'Sin position wave for \\1', re.compile('([abc])$'): 'Lattice parameter, \\1, from Ai and Djk', re.compile('([vV]ol)'): 'Unit cell volume', re.compile('A([0-5])'): 'Reciprocal metric tensor component \\1', re.compile('A([xyz])$'): 'Fractional atomic coordinate, \\1', re.compile('AD\\([0-6],-[0-6]\\)([0-6])'): ' Atomic sp. harm. coeff for orbital, \\1', re.compile('AD\\([0-6],[0-6]\\)([0-6])'): ' Atomic sp. harm. coeff for orbital, \\1', re.compile('AM([xyz])$'): 'Atomic magnetic moment parameter, \\1', re.compile('ANe([01])'): ' Atomic <j0> orbital population for orbital, \\1', re.compile('AU([123][123])'): 'Atomic anisotropic displacement parameter U\\1', re.compile('AUiso'): 'Atomic isotropic displacement parameter', re.compile('Absorption'): 'Absorption coef.', re.compile('Afrac'): 'Atomic site fraction parameter', re.compile('Akappa([0-6])'): ' Atomic orbital softness for orbital, \\1', re.compile('Amul'): 'Atomic site multiplicity value', re.compile('Aspect ratio'): 'Particle aspect ratio', re.compile('B$'): 'Porod prefactor', re.compile('BF mult'): 'Background file multiplier', re.compile('Bab([AU])'): 'Babinet solvent scattering coef. \\1', re.compile('Back$'): 'background parameter', re.compile('Back(.*)'): 'Background term #\\1', re.compile('BkPkgam;(.*)'): 'Background peak #\\1 Cauchy width', re.compile('BkPkint;(.*)'): 'Background peak #\\1 intensity', re.compile('BkPkpos;(.*)'): 'Background peak #\\1 position', re.compile('BkPksig;(.*)'): 'Background peak #\\1 Gaussian width', re.compile('C\\([0-9]*,[0-9]*\\)'): 'spherical harmonics preferred orientation coef.', re.compile('Cutoff'): 'Porod cutoff', re.compile('D([123][123])'): 'Anisotropic strain coef. \\1', re.compile('Dcalc'): 'Calc. d-spacing', re.compile('DebyeA'): 'Debye model amplitude', re.compile('DebyeR'): 'Debye model radius', re.compile('DebyeU'): 'Debye model Uiso', re.compile('Depth'): 'Well depth', re.compile('Diameter'): 'Cylinder/disk diameter', re.compile('Displace([XY])'): 'Debye-Scherrer sample displacement \\1', re.compile('Dist'): 'Interparticle distance', re.compile('Eg$'): 'Secondary type I extinction', re.compile('Ep$'): 'Primary extinction', re.compile('Es$'): 'Secondary type II extinction', re.compile('Extinction'): 'Extinction coef.', re.compile('Fcos'): 'Cos site fraction modulation', re.compile('Flack'): 'Flack parameter', re.compile('FreePrm([123])'): 'User defined measurement parameter \\1', re.compile('Fsin'): 'Sin site fraction modulation', re.compile('Fwid'): 'Crenel function width', re.compile('Fzero'): 'Crenel function offset', re.compile('G$'): 'Guinier prefactor', re.compile('Gonio. radius'): 'Distance from sample to detector, mm', re.compile('I\\(L2\\)\\/I\\(L1\\)'): 'Ka2/Ka1 intensity ratio', re.compile('Lam'): 'Wavelength', re.compile('Layer Disp'): 'Layer displacement along beam', re.compile('LayerDisp'): 'Bragg-Brentano Layer displacement', re.compile('Length'): 'Cylinder length', re.compile('M([XYZ])cos$'): 'Cos mag. moment wave for \\1', re.compile('M([XYZ])sin$'): 'Sin mag. moment wave for \\1', re.compile('MD'): 'March-Dollase coef.', re.compile('Mean'): 'Particle mean radius', re.compile('Mustrain;.*'): 'Microstrain coefficient (delta Q/Q x 10**6)', re.compile('P$'): 'Porod power', re.compile('PDFmag'): 'PDF peak magnitude', re.compile('PDFpos'): 'PDF peak position', re.compile('PDFsig'): 'PDF peak std. dev.', re.compile('PkGam'): 'Bragg peak gamma', re.compile('PkInt'): 'Bragg peak intensity', re.compile('PkPos'): 'Bragg peak position', re.compile('PkSig'): 'Bragg peak sigma', re.compile('Polariz.'): 'Polarization correction', re.compile('Pressure'): 'Pressure level for measurement in MPa', re.compile('RBR([TLS])([123AB][123AB])'): 'Residue rigid body group disp. param.', re.compile('RBRO([aijk])'): 'Residue rigid body orientation parameter \\1', re.compile('RBRP([xyz])'): 'Residue rigid body \\1 position parameter', re.compile('RBRTr;.*'): 'Residue rigid body torsion parameter', re.compile('RBRU'): 'Residue rigid body group Uiso param.', re.compile('RBRf'): 'Residue rigid body site fraction', re.compile('RBSAtNo'): 'Atom number for spinning rigid body', re.compile('RBSO([aijk])'): 'Spinning rigid body orientation parameter \\1', re.compile('RBSP([xyz])'): 'Spinning rigid body \\1 position parameter', re.compile('RBSShC([1-20,1-20])'): 'Spinning rigid body sph. harmonics term', re.compile('RBSShRadius'): 'Spinning rigid body shell radius', re.compile('RBV([TLS])([123AB][123AB])'): 'Residue rigid body group disp. param.', re.compile('RBV.*'): 'Vector rigid body parameter', re.compile('RBVO([aijk])'): 'Vector rigid body orientation parameter \\1', re.compile('RBVP([xyz])'): 'Vector rigid body \\1 position parameter', re.compile('RBVU'): 'Residue rigid body group Uiso param.', re.compile('RBVf'): 'Vector rigid body site fraction', re.compile('Radius'): 'Sphere/cylinder/disk radius', re.compile('Rg$'): 'Guinier radius of gyration', re.compile('SH/L'): 'FCJ peak asymmetry correction', re.compile('Scale'): 'Phase fraction (as p:h:Scale) or Histogram scale factor (as :h:Scale)', re.compile('Shell thickness'): 'Multiplier to get inner(<1) or outer(>1) sphere radius', re.compile('Shift'): 'Bragg-Brentano sample displ.', re.compile('Size;.*'): 'Crystallite size value (in microns)', re.compile('StdDev'): 'Standard deviation in Mean', re.compile('Sticky'): 'Stickyness', re.compile('SurfRoughA'): 'Bragg-Brenano surface roughness A', re.compile('SurfRoughB'): 'Bragg-Brenano surface roughness B', re.compile('Temperature'): 'T value for measurement, K', re.compile('Thickness'): 'Disk thickness', re.compile('Tmax'): 'ZigZag/Block max location', re.compile('Tmin'): 'ZigZag/Block min location', re.compile('Transparency'): 'Bragg-Brentano sample tranparency', re.compile('TwinFr'): 'Twin fraction', re.compile('U([123][123])cos$'): 'Cos thermal wave for U\\1', re.compile('U([123][123])sin$'): 'Sin thermal wave for U\\1', re.compile('VolFr'): 'Dense scatterer volume fraction', re.compile('Volume'): 'Particle volume', re.compile('WgtFrac'): 'phase weight fraction', re.compile('Width'): 'Well width', re.compile('Zero'): 'Debye-Scherrer zero correction', re.compile('alpha'): 'TOF profile term', re.compile('alpha-([01])'): 'Pink profile term', re.compile('beta-([01q])'): 'TOF/Pink profile term', re.compile('constr([0-9]*)'): 'Generated degree of freedom from constraint', re.compile('dA([xyz])$'): 'Refined change to atomic coordinate, \\1', re.compile('dif([ABC])'): 'TOF to d-space calibration', re.compile('e([12][12])'): 'strain tensor e\\1', re.compile('eA$'): 'Cubic mustrain value', re.compile('epis'): 'Sticky sphere epsilon', re.compile('int$'): 'peak intensity', re.compile('mV([0-2])$'): 'Modulation vector component \\1', re.compile('nv-(.+)'): 'New variable assignment with name \\1', re.compile('pos$'): 'peak position', re.compile('sig-([012q])'): 'TOF profile term', re.compile('α'): 'Lattice parameter, α, computed from both Ai and Djk', re.compile('β'): 'Lattice parameter, β, computed from both Ai and Djk', re.compile('γ'): 'Lattice parameter, γ, computed from both Ai and Djk'}

	This dictionary lists descriptions for GSAS-II variables where
keys are compiled regular expressions that will match the name portion
of a parameter name. Initialized in CompileVarDesc().

	
GSASIIobj.reVarStep = {re.compile('([UVW])$'): 1e-05, re.compile('([XYZ])$'): 1e-05, re.compile('A([0-5])'): 1e-05, re.compile('AU([123][123])'): 0.0001, re.compile('AUiso'): 0.0001, re.compile('Afrac'): 1e-05, re.compile('Displace([XY])'): 0.1, re.compile('I\\(L2\\)\\/I\\(L1\\)'): 0.001, re.compile('Lam'): 1e-06, re.compile('Polariz.'): 0.001, re.compile('SH/L'): 0.0001, re.compile('dA([xyz])$'): 1e-06}

	This dictionary lists the preferred step size for numerical
derivative computation w/r to a GSAS-II variable. Keys are compiled
regular expressions and values are the step size for that parameter.
Initialized in CompileVarDesc().

	
GSASIIobj.removeNonRefined(parmList)

	Remove items from variable list that are not refined and should not
appear as options for constraints

	Parameters:

	parmList (list) – a list of strings of form “p:h:VAR:a” where
VAR is the variable name

	Returns:

	a list after removing variables where VAR matches a
entry in local variable NonRefinedList

	
GSASIIobj.validateAtomDrawType(typ, generalData={})

	Confirm that the selected Atom drawing type is valid for the current
phase. If not, use ‘vdW balls’. This is currently used only for setting a
default when atoms are added to the atoms draw list.

 \(\renewcommand\AA{\text{Å}}\)

4. GSAS-II Utility Modules

4.1. GSASIIpath: locations & updates

Routines for dealing with file locations, etc.

Determines the location of the compiled (.pyd or .so) libraries.

Interfaces with subversion (svn):
Determine the subversion release number by determining the highest version number
where SetVersionNumber() is called (best done in every GSASII file).
Other routines will update GSASII from the subversion server if svn can be
found.

Accesses configuration options, as defined in config.py

4.1.1. GSASIIpath Classes & Routines

GSASIIpath Classes & routines follow

	
GSASIIpath.DoNothing()

	A routine that does nothing. This is called in place of IPyBreak and pdbBreak
except when the debug option is set True in config.py

	
GSASIIpath.DownloadG2Binaries(g2home, verbose=True)

	Download GSAS-II binaries from appropriate section of the
GSAS-II svn repository based on the platform, numpy and Python
version

	
GSASIIpath.GetBinaryPrefix(pyver=None)

	Creates the first part of the binary directory name
such as linux_64_p3.9 (where the full name will be
linux_64_p3.9_n1.21).

Note that any change made here is also needed in GetBinaryDir in
fsource/SConstruct

	
GSASIIpath.GetConfigValue(key, default=None)

	Return the configuration file value for key or a default value if not present

	Parameters:

	
	key (str) – a value to be found in the configuration (config.py) file

	default – a value to be supplied if none is in the config file or
the config file is not found. Defaults to None

	Returns:

	the value found or the default.

	
GSASIIpath.GetRepoUpdatesInBackground()

	Wrapper to make sure that gitGetUpdate() is called only
if git has been used to install GSAS-II.

	Returns:

	returns a Popen object (see subprocess)

	
GSASIIpath.GetVersionNumber()

	Obtain a version number for GSAS-II from git, svn or from the
files themselves, if no other choice.

This routine was used to get the GSAS-II version from strings
placed in files by svn with the version number being the latest
number found, gathered by SetVersionNumber() (not 100% accurate
as the latest version might have files changed that are not tagged
by svn or with a call to SetVersionNumber. Post-svn this info
will not be reliable, and this mechanism is replaced by a something
created with a git hook, file git_verinfo.py (see the git_filters.py file).

Before resorting to the approaches above, try to ask git or svn
directly.

	Returns:

	an int value usually, but a value of ‘unknown’ might occur

	
GSASIIpath.HowIsG2Installed()

	Determines if GSAS-II was installed with git, svn or none of the above.
Result is cached to avoid time needed for multiple calls of this.

	Returns:

	
	a string starting with ‘git’ from git,
if installed from the GSAS-II GitHub repository (defined in g2URL),
the string is ‘github’, if the post-3/2024 directory structure is
in use ‘-rev’ is appended.

	or ‘svn’ is installed from an svn repository (assumed as defined in g2home)

	or ‘noVCS’ if installed without a connection to a version control system

	
GSASIIpath.IPyBreak()

	A routine that does nothing. This is called in place of IPyBreak and pdbBreak
except when the debug option is set True in config.py

	
GSASIIpath.IPyBreak_base(userMsg=None)

	A routine that invokes an IPython session at the calling location
This routine is only used when debug=True is set in config.py

	
GSASIIpath.InstallGitBinary(tarURL, instDir, nameByVersion=False, verbose=True)

	Install the GSAS-II binary files into the location
specified.

	Parameters:

	
	tarURL (str) – a URL for the tar file.

	instDir (str) – location directory to install files. This directory
may not exist and will be created if needed.

	nameByVersion (bool) – if True, files are put into a subdirectory
of instDir, named to match the tar file (with plaform, Python &
numpy versions).
Default is False, where the binary files are put directly into
instDir.

	verbose (bool) – if True (default), status messages are printed.

	Returns:

	None

	
GSASIIpath.InvokeDebugOpts()

	Called in GSASII.py to set up debug options

	
GSASIIpath.LoadConfigFile(filename)

	Read a GSAS-II configuration file.
Comments (starting with “%”) are removed, as are empty lines

	Parameters:

	filename (str) – base file name (such as ‘file.dat’). Files with this name
are located from the path and the contents of each are concatenated.

	Returns:

	a list containing each non-empty (after removal of comments) line
found in every matching config file.

	
GSASIIpath.MacRunScript(script)

	Start a bash script in a new terminal window.
Used on Mac OS X only.

	Parameters:

	script (str) – file name for a bash script

	
GSASIIpath.MakeByte2str(arg)

	Convert output from subprocess pipes (bytes) to str (unicode) in Python 3.
In Python 2: Leaves output alone (already str).
Leaves stuff of other types alone (including unicode in Py2)
Works recursively for string-like stuff in nested loops and tuples.

typical use:

out = MakeByte2str(out)

or:

out,err = MakeByte2str(s.communicate())

	
GSASIIpath.SetBinaryPath(printInfo=False, loadBinary=False)

	Add location of GSAS-II shared libraries (binaries: .so or
.pyd files) to path

This routine must be executed after GSASIIpath is imported
and before any other GSAS-II imports are done, since
they assume binary files are in path

	Parameters:

	
	printInfo (bool) – When True, information is printed to show
has happened (default is False)

	loadBinary (bool) – when True, if the binary files fail
to load, an attempt is made to download the binaries
(default is False).

TODO: the loadBinary option not implemented at present and is
not used in any of the calls to SetBinaryPath

	
GSASIIpath.SetConfigValue(parmdict)

	Set configuration variables from a dictionary where elements are lists
First item in list is the default value and second is the value to use.

	
GSASIIpath.SetVersionNumber(RevString)

	Set the subversion (svn) version number

	Parameters:

	RevString (str) – something like “$Revision: 5770 $”
that is set by subversion when the file is retrieved from subversion.

Place GSASIIpath.SetVersionNumber("$Revision: 5770 $") in every python
file.

	
GSASIIpath.TestSPG(fpth)

	Test if pyspg.[so,.pyd] can be run from a location in the path

	
GSASIIpath.addCondaPkg()

	Install the conda API into the current conda environment using the
command line, so that the API can be used in the current Python interpreter

Attempts to do this without a shell failed on the Mac because it seems that
the environment was inherited; seems to work w/o shell on Windows.

	
GSASIIpath.addPrevGPX(fil, configDict)

	Add a GPX file to the list of previous files.
Move previous names to start of list. Keep most recent five files

	
GSASIIpath.commonPath(dir1, dir2)

	Check if two directories share a path. Note that paths
are considered the same if either directory is a subdirectory
of the other, but not if they are in different subdirectories
/a/b/c shares a path with /a/b/c/d but /a/b/c/d and /a/b/c/e do not.

	Returns:

	True if the paths are common

	
GSASIIpath.condaEnvCreate(envname, packageList, force=False)

	Create a Python interpreter in a new conda environment. Use this
when there is a potential conflict between packages and it would
be better to keep the packages separate (which is one of the reasons
conda supports environments). Note that conda should be run from the
case environment; this attempts to deal with issues if it is not.

	Parameters:

	
	envname (str) – the name of the environment to be created.
If the environment exists, it will be overwritten only if force is True.

	packageList (list) – a list of conda install create command
options, such as:

['python=3.7', 'conda', 'gsl', 'diffpy.pdffit2',
 '-c', 'conda-forge', '-c', 'diffpy']

	force (bool) – if False (default) an error will be generated
if an environment exists

	Returns:

	(status,msg) where status is True if an error occurs and
msg is a string with error information if status is True or the
location of the newly-created Python interpreter.

	
GSASIIpath.condaInstall(packageList)

	Installs one or more packages using the anaconda conda package
manager. Can be used to install multiple packages and optionally
use channels.

	Parameters:

	packageList (list) – a list of strings with name(s) of packages
and optionally conda options.
Examples:

packageList=['gsl']
packageList=['-c','conda-forge','wxpython']
packageList=['numpy','scipy','matplotlib']

	Returns:

	None if the the command ran normally, or an error message
if it did not.

	
GSASIIpath.condaTest(requireAPI=False)

	Returns True if it appears that Python is being run under Anaconda
Python with conda present. Tests for conda environment vars and that
the conda package is installed in the current environment.

	Returns:

	True, if running under Conda

	
GSASIIpath.countDetachedCommits(g2repo=None)

	Count the number of commits that have been made since
a commit that is containined in the master branch

returns the count and the commit object for the
parent commit that connects the current stranded
branch to the master branch.

None is returned if no connection is found

	
GSASIIpath.dirGitHub(dirlist, orgName='AdvancedPhotonSource', repoName='GSAS-II-Tutorials')

	Obtain a the contents of a GitHub repository directory using
the GitHub REST API.

	Parameters:

	
	dirlist (str) – a list of sub-directories [‘parent’,’child’,sub’]
for parent/child/sub or [] for a file in the top-level directory.

	orgName (str) – the name of the GitHub organization

	repoName (str) – the name of the GitHub repository

	Returns:

	a list of file names or None if the dirlist info does not
reference a directory

examples:

dirGitHub([], 'GSASII', 'TutorialTest')
dirGitHub(['TOF Sequential Single Peak Fit', 'data'])

The first example will get the contents of the top-level
directory for the specified repository

The second example will provide the contents of the
“TOF Sequential Single Peak Fit”/data directory.

	
GSASIIpath.downloadDirContents(dirlist, targetDir, orgName='AdvancedPhotonSource', repoName='GSAS-II-Tutorials')

	Download the entire contents of a directory from a repository
on GitHub. Used to download data for a tutorial.

	
GSASIIpath.exceptHook(*args)

	A routine to be called when an exception occurs. It prints the traceback
with fancy formatting and then calls an IPython shell with the environment
of the exception location.

This routine is only used when debug=True is set in config.py

	
GSASIIpath.findConda()

	Determines if GSAS-II has been installed as g2conda or gsas2full
with conda located relative to this file.
We could also look for conda relative to the python (sys.executable)
image, but I don’t want to muck around with python that someone else
installed.

	
GSASIIpath.fullsplit(fil, prev=None)

	recursive routine to split all levels of directory names

	
GSASIIpath.getGitBinaryLoc(npver=None, pyver=None, verbose=True)

	Identify the best GSAS-II binary download location from the
distributions in the latest release section of the github repository
on the CPU platform, and Python & numpy versions. The CPU & Python
versions must match, but the numpy version may only be close.

	Parameters:

	
	npver (str) – Version number to use for numpy, if None (default)
the version is taken from numpy in the current Python interpreter.

	pyver (str) – Version number to use for Python, if None (default)
the version is taken from the current Python interpreter.

	verbose (bool) – if True (default), status messages are printed

	Returns:

	a URL for the tar file (success) or None (failure)

	
GSASIIpath.getGitBinaryReleases()

	Retrieves the binaries and download urls of the latest release

	Returns:

	a URL dict for GSAS-II binary distributions found in the newest
release in a GitHub repository. The repo location is defined in global
G2binURL.

The dict keys are references to binary distributions, which are named
as f”{platform}_p{pver}_n{npver}” where platform is determined
in GSASIIpath.GetBinaryPrefix() (linux_64, mac_arm, win_64,…)
and where pver is the Python version (such as “3.10”) and npver is
the numpy version (such as “1.26”).

The value associated with each key contains the full URL to
download a tar containing that binary distribution.

	
GSASIIpath.getIconFile(imgfile)

	Looks in either the main GSAS-II install location (old) or subdirectory
icons (after reorg) for an icon

	Returns:

	the full path for the icon file

	
GSASIIpath.getsvnProxy()

	Loads a proxy for subversion from the proxyinfo.txt file created
by bootstrap.py or File => Edit Proxy…; If not found, then the
standard http_proxy and https_proxy environment variables are scanned
(see https://docs.python.org/3/library/urllib.request.html#urllib.request.getproxies)
with case ignored and that is used.

	
GSASIIpath.gitCheckForUpdates(fetch=True, g2repo=None)

	Provides a list of the commits made locally and those in the
local copy of the repo that have not been applied. Does not
provide useful information in the case of a detached Head (see
countDetachedCommits() for that.)

	Parameters:

	
	fetch (bool) – if True (default), updates are copied over from
the remote repository (git fetch), before checking for changes.

	g2repo (str) – git.Rwpo connecton to GSAS-II installation. If
None (default) it will be opened.

	Returns:

	a list containing (remotecommits, localcommits, fetched) where

	remotecommits is a list of hex hash numbers of remote commits and

	localcommits is a list of hex hash numbers of local commits and

	fetched is a bool that will be True if the update (fetch)
step ran successfully

Note that if the head is detached (GSAS-II has been reverted to an
older version) or the branch has been changed, the values for each
of the three items above will be None.

	
GSASIIpath.gitCountRegressions(g2repo=None)

	Count the number of new check ins on the master branch since
the head was detached as well as any checkins made on the detached
head.

	Returns:

	mastercount,detachedcount, where

	mastercount is the number of check ins made on the master branch
remote repository since the reverted check in was first made.

	detachedcount is the number of check ins made locally
starting from the detached head (hopefully 0)

If the connection between the current head and the master branch
cannot be established, None is returned for both.
If the connection from the reverted check in to the newest version
(I don’t see how this could happen) then only mastercount will be None.

	
GSASIIpath.gitGetUpdate(mode='Background')

	Download the latest updates into the local copy of the GSAS-II
repository from the remote master, but don’t actually update the
GSAS-II files being used. This can be done immediately or in background.

In ‘Background’ mode, a background process is launched. The results
from the process are recorded in file in ~/GSASII_bkgUpdate.log
(located in %HOME% on Windows). A pointer to the created process is
returned.

In ‘immediate’ mode, the update is performed immediately. The
function does not return until after the update is downloaded.

	Returns:

	In ‘Background’ mode, returns a Popen object (see subprocess).
In ‘immediate’ mode nothing is returned.

	
GSASIIpath.gitHash2Tags(githash=None, g2repo=None)

	Find tags associated with a particular git commit.
Note that if githash cannot be located because it does not
exist or is not unique, a git.BadName exception is raised.

	Parameters:

	
	githash (str) – hex hash code (abbreviated to as few characters as
needed to keep it unique). If None (default), the HEAD is used.

	g2repo (str) – git.Rwpo connecton to GSAS-II installation. If
None (default) it will be opened.

	Returns:

	a list of tags (each a string)

	
GSASIIpath.gitHistory(values='tag', g2repo=None, maxdepth=100)

	Provides the history of commits to the master, either as tags
or hash values

	Parameters:

	
	values (str) – specifies what type of values are returned.
If values==’hash’, then hash values or for values==’tag’, a
list of list of tag(s).

	g2repo (str) – git.Rwpo connecton to GSAS-II installation. If
None (default) it will be opened.

	Returns:

	a list of str values where each value is a hash for
a commit (values==’hash’),
for values==’tag’, a list of lists, where a list of tags is provided
for each commit. When tags are provided, for any commit that does
not have any associated tag(s), that entry is omitted from the list.
for values==’both’, a list of lists, where a hash is followed by a
list of tags (if any) is provided

	
GSASIIpath.gitLookup(repo_path, gittag=None, githash=None)

	Return information on a particular checked-in version
of GSAS-II.

	Parameters:

	
	repo_path (str) – location where GSAS-II has been installed

	gittag (str) – a tag value.

	githash (str) – hex hash code (abbreviated to as few characters as
needed to keep it unique). If None (default), a tag must be supplied.

	Returns:

	either None if the tag/hash is not found or a tuple with
four values (hash, tag-list, message,date_time) where

	hash (str) is the git checking hash code;

	tag-list is a list of tags (typically there will
be one or two);

	message is the check-in message (str)

	date_time is the check-in date as a datetime object

	
GSASIIpath.gitStartUpdate(cmdopts)

	Update GSAS-II in a separate process, by running this script with the
options supplied in the call to this function and then exiting GSAS-II.

	
GSASIIpath.gitTag2Hash(gittag, g2repo=None)

	Provides the hash number for a git tag.
Note that if gittag cannot be located because it does not
exist or is too old and is beyond the depth of the local
repository, a ValueError exception is raised.

	Parameters:

	
	repo_path (str) – location where GSAS-II has been installed.

	gittag (str) – a tag value.

	g2repo (str) – git.Rwpo connecton to GSAS-II installation. If
None (default) it will be opened.

	Returns:

	a str value with the hex hash for the commit.

	
GSASIIpath.gitTestGSASII(verbose=True, g2repo=None)

	Test a the status of a GSAS-II installation

	Parameters:

	
	verbose (bool) – if True (default), status messages are printed

	g2repo (str) – git.Rwpo connecton to GSAS-II installation. If
None (default) it will be opened.

	Returns:

	istat, with the status of the repository, with one of the
following values:

	-1: path is not found

	-2: no git repository at path

	-3: unable to access repository

	value&1==1: repository has local changes (uncommitted/stashed)

	value&2==2: repository has been regressed (detached head)

	value&4==4: repository has staged files

	value&8==8: repository has has been switched to non-master branch

	value==0: no problems noted

	
GSASIIpath.makeScriptShortcut()

	Creates a shortcut to GSAS-II in the current Python installation
so that “import G2script” (or “import G2script as GSASIIscripting”)
can be used without having to add GSASII to the path.

The new shortcut is then tested.

	Returns:

	returns the name of the created file if successful. None
indicates an error.

	
GSASIIpath.pdbBreak()

	A routine that does nothing. This is called in place of IPyBreak and pdbBreak
except when the debug option is set True in config.py

	
GSASIIpath.pipInstall(packageList)

	Installs one or more packages using the pip package installer.
Use of this should be avoided if conda can be used (see condaTest()
to test for conda). Can be used to install multiple packages together.
One can use pip options, but this is probably not needed.

	Parameters:

	packageList (list) – a list of strings with name(s) of packages
Examples:

packageList=['gsl']
packageList=['wxpython','matplotlib','scipy']
packageList=[r'\Mac\Home\Scratch\wheels\pygsl-2.3.3-py3-none-any.whl']
packageList=['z:/Scratch/wheels/pygsl-2.3.3-py3-none-any.whl']

	Returns:

	None if the the command ran normally, or an error message
if it did not.

	
GSASIIpath.rawGitHubURL(dirlist, filename, orgName='AdvancedPhotonSource', repoName='GSAS-II-Tutorials', branchname='master')

	Create a URL that can be used to view/downlaod the raw version of
file in a GitHub repository.

	Parameters:

	
	dirlist (str) – a list of sub-directories [‘parent’,’child’,sub’]
for parent/child/sub or [] for a file in the top-level directory.

	filename (str) – the name of the file

	orgName (str) – the name of the GitHub organization

	repoName (str) – the name of the GitHub repository

	branchname (str) – the name of the GitHub branch. Defaults
to “master”.

	Returns:

	a URL-encoded URL

	
GSASIIpath.runScript(cmds=[], wait=False, G2frame=None)

	run a shell script of commands in an external process

	Parameters:

	
	cmds (list) – a list of str’s, each ietm containing a shell (cmd.exe
or bash) command

	wait (bool) – if True indicates the commands should be run and then
the script should return. If False, then the currently running Python
will exit. Default is False

	G2frame (wx.Frame) – provides the location of the current .gpx file
to be used to restart GSAS-II after running the commands, if wait
is False. Default is None which prevents restarting GSAS-II regardless of
the value of wait.

	
GSASIIpath.setsvnProxy(host, port, etc=[])

	Sets the svn commands needed to use a proxy

	
GSASIIpath.svnChecksumPatch(svn, fpath, verstr)

	This performs a fix when svn cannot finish an update because of
a Checksum mismatch error. This seems to be happening on OS X for
unclear reasons.

	
GSASIIpath.svnCleanup(fpath='/home/docs/checkouts/readthedocs.org/user_builds/gsas-ii/checkouts/latest/GSASII', verbose=True)

	This runs svn cleanup on a selected local directory.

	Parameters:

	fpath (str) – path to repository dictionary, defaults to directory where
the current file is located

	
GSASIIpath.svnFindLocalChanges(fpath='/home/docs/checkouts/readthedocs.org/user_builds/gsas-ii/checkouts/latest/GSASII')

	
	Returns a list of files that were changed locally. If no files are changed,
	the list has length 0

	Parameters:

	fpath – path to repository dictionary, defaults to directory where
the current file is located

	Returns:

	None if there is a subversion error (likely because the path is
not a repository or svn is not found)

	
GSASIIpath.svnGetFileStatus(fpath='/home/docs/checkouts/readthedocs.org/user_builds/gsas-ii/checkouts/latest/GSASII', version=None)

	Compare file status to repository (svn status -u)

	Returns:

	updatecount,modcount,locked where
updatecount is the number of files waiting to be updated from
repository
modcount is the number of files that have been modified locally
locked is the number of files tagged as locked

	
GSASIIpath.svnGetLog(fpath='/home/docs/checkouts/readthedocs.org/user_builds/gsas-ii/checkouts/latest/GSASII', version=None)

	Get the revision log information for a specific version of the specified package

	Parameters:

	
	fpath (str) – path to repository dictionary, defaults to directory where
the current file is located.

	version (int) – the version number to be looked up or None (default)
for the latest version.

	Returns:

	a dictionary with keys (one hopes) ‘author’, ‘date’, ‘msg’, and ‘revision’

	
GSASIIpath.svnGetRev(fpath='/home/docs/checkouts/readthedocs.org/user_builds/gsas-ii/checkouts/latest/GSASII', local=True, verbose=True)

	Obtain the version number for the either the last update of the local version
or contacts the subversion server to get the latest update version (# of Head).

	Parameters:

	
	fpath (str) – path to repository dictionary, defaults to directory where
the current file is located

	local (bool) – determines the type of version number, where
True (default): returns the latest installed update
False: returns the version number of Head on the server

	Returns:

	the version number as an str or
None if there is a subversion error (likely because the path is
not a repository or svn is not found). The error message is placed in
global variable svnLastError

	
GSASIIpath.svnInstallDir(URL, loadpath)

	Load a subversion tree into a specified directory

	Parameters:

	
	URL (str) – the repository URL

	loadpath (str) – path to locate files

	
GSASIIpath.svnList(URL, verbose=True)

	Get a list of subdirectories from and svn repository

	
GSASIIpath.svnSwitch2branch(branch=None, loc=None, svnHome=None)

	Switch to a subversion branch if specified. Switches to trunk otherwise.

	
GSASIIpath.svnSwitchDir(rpath, filename, baseURL, loadpath=None, verbose=True)

	This performs a switch command to move files between subversion trees.
Note that if the files were previously downloaded,
the switch command will update the files to the newest version.

	Parameters:

	
	rpath (str) – path to locate files, relative to the GSAS-II
installation path (defaults to path2GSAS2)

	URL (str) – the repository URL

	loadpath (str) – the prefix for the path, if specified. Defaults to path2GSAS2

	verbose (bool) – if True (default) diagnostics are printed

	
GSASIIpath.svnUpdateDir(fpath='/home/docs/checkouts/readthedocs.org/user_builds/gsas-ii/checkouts/latest/GSASII', version=None, verbose=True)

	This performs an update of the files in a local directory from a server.

	Parameters:

	
	fpath (str) – path to repository dictionary, defaults to directory where
the current file is located

	version – the number of the version to be loaded. Used only
cast as a string, but should be an integer or something that corresponds to a
string representation of an integer value when cast. A value of None (default)
causes the latest version on the server to be used.

	
GSASIIpath.svnUpdateProcess(version=None, projectfile=None, branch=None)

	perform an update of GSAS-II in a separate python process

	
GSASIIpath.svnUpgrade(fpath='/home/docs/checkouts/readthedocs.org/user_builds/gsas-ii/checkouts/latest/GSASII')

	This reformats subversion files, which may be needed if an upgrade of subversion is
done.

	Parameters:

	fpath (str) – path to repository dictionary, defaults to directory where
the current file is located

	
GSASIIpath.svnVersion(svn=None)

	Get the version number of the current subversion executable.
The result is cached, as this takes a bit of time to run and
is done a fair number of times.

	Returns:

	a string with a version number such as “1.6.6” or None if
subversion is not found.

	
GSASIIpath.svnVersionNumber(svn=None)

	Get the version number of the current subversion executable

	Returns:

	a fractional version number such as 1.6 or None if
subversion is not found.

	
GSASIIpath.whichsvn()

	Returns a path to the subversion exe file, if any is found.
Searches the current path after adding likely places where GSAS-II
might install svn.

	Returns:

	None if svn is not found or an absolute path to the subversion
executable file.

4.2. GSASIIlog: Logging of “Actions”

4.2.1. GSASIIlog Classes & Routines

Module to provide logging services, e.g. track and replay “actions”
such as menu item, tree item, button press, value change and so on.

This capability is not currently implemented, but might be resurrected
in some future version of GSAS-II.

	
GSASIIlog.ButtonBindingLookup = {}

	Lookup table for button objects

	
class GSASIIlog.ButtonLogEntry(locationcode, label)

	Object to track button press

	
GSASIIlog.G2logList = [None]

	Contains a list of logged actions; first item is ignored

	
GSASIIlog.InvokeMenuCommand(id, G2frame, event)

	Called when a menu item is used to log the action as well as call the
routine “bind”ed to that menu item

	
class GSASIIlog.LogEntry

	Base class to define logging objects. These store information on events
in a manner that can be pickled and saved – direct references to wx objects
is not allowed.

Each object must define:

	__init__: stores the information needed to log & later recreate the action

	__str__ : shows a nice ASCII string for each action

	Replay: recreates the action when the log is played

optional:

	Repaint: redisplays the current window

	
GSASIIlog.LogInfo = {'LastPaintAction': None, 'Logging': False, 'Tree': None}

	Contains values that are needed in the module for past actions & object location

	
GSASIIlog.LogOff()

	Turn Off logging of actions

	
GSASIIlog.LogOn()

	Turn On logging of actions

	
GSASIIlog.LogVarChange(result, key)

	Called when a variable is changed to log that action

	
GSASIIlog.MakeButtonLog(locationcode, label)

	Create a ButtonLogEntry action log

	
GSASIIlog.MakeTabLog(title, tabname)

	Create a TabLogEntry action log

	
GSASIIlog.MakeTreeLog(textlist)

	Create a TreeLogEntry action log

	
GSASIIlog.MenuBindingLookup = {}

	Lookup table for Menu buttons

	
class GSASIIlog.MenuLogEntry(menulabellist)

	object that tracks when a menu command is executed

	
Replay()

	Perform a Menu item action when read from the log

	
GSASIIlog.OnReplayPress(event)

	execute one or more commands when the replay button is pressed

	
GSASIIlog.ReplayLog(event)

	replay the logged actions

	
GSASIIlog.SaveMenuCommand(id, G2frame, handler)

	Creates a table of menu items and their pseudo-bindings

	
GSASIIlog.ShowLogStatus()

	Return the logging status

	
class GSASIIlog.TabLogEntry(title, tabname)

	Object to track when tabs are pressed in the DataFrame window

	
Repaint()

	Used to redraw a window created in response to a Tab press

	
Replay()

	Perform a Tab press action when read from the log

	
class GSASIIlog.TreeLogEntry(itemlist)

	Object to track when tree items are pressed in the main window

	
Repaint()

	Used to redraw a window created in response to a click on a data tree item

	
Replay()

	Perform a Tree press action when read from the log

	
class GSASIIlog.VarLogEntry(treeRefs, indexRefs, value)

	object that tracks changes to a variable

	
Replay()

	Perform a Variable Change action, when read from the log

	
class GSASIIlog.dictLogged(obj, treeRefs, indexRefs=[])

	A version of a dict object that tracks the source of the
object back to the location on the G2 tree.
If a list (tuple) or dict are pulled from inside this object
the source information is appended to the provinance tracking
lists.

tuples are converted to lists.

	
class GSASIIlog.listLogged(obj, treeRefs, indexRefs=[])

	A version of a list object that tracks the source of the
object back to the location on the G2 tree.
If a list (tuple) or dict are pulled from inside this object
the source information is appended to the provinance tracking
lists.

tuples are converted to lists.

4.3. config_example.py: Configuration options

4.3.1. Configuration variables

This file contains optional configuration options for GSAS-II. The variables
in this file can be copied to file config.py, which is imported if present.
Access these variables using GSASIIpath.GetConfigValue(), which returns
None if the variable is not set. Note that a config.py file need not
be present, but if in use it will typically be found with the GSAS-II source
directory (GSASIIpath.Path2GSAS2) or a directory for local GSAS-II
modifications (~/.G2local/ or /Documents and Settings/<User>/.G2local/).
Note that the contents of config.py is usually changed
using GSASIIctrlGUI.SelectConfigSetting.

When defining new config variables for GSAS-II, define them here with a
default value: use None or a string for strings, or use integers or real
values. Include a doc string after each variable is defined to explain
what it does. Use names ending in _location or _directory for items
that will contain directory names. Use names ending in _exec for executable
files (.exe on windows).

For example:

test_int = 0
test_float = 0.0
test_string = None (or)
test_string = 'value'

	
config_example.Arc_mask_azimuth = 10.0

	Specifies the default azimuthal range for creation of arc masks.
Default is 10.0 degrees 2-theta.

	
config_example.Autoint_PollTime = 30.0

	Specifies the frequency, in seconds that AutoInt checks for new files.
Default is 30 seconds

	
config_example.Autoscale_ParmNames = ['userComment2', 'extraInputs\\1\\extraInputs', 'Ion_Chamber_I0']

	Gives the possible selection of incident monitor names as found in an image metadata file.
Used in AutoIntegration

	
config_example.Clip_on = True

	if True then line plots willl be clipped at plot border;
if False line plots extend nto white space around plot frme

	
config_example.Column_Metadata_directory = None

	When specified and when images are read, GSAS-II will read metadata from a 1-ID
style .par and a .EXT_lbls (EXT = image extension) or .lbls file. See GSASIIfiles.readColMetadata() for
information on how this is done.

	
config_example.Contour_color = 'GSPaired'

	Specifies the color map to be used for contour plots (images, pole figures, etc.)
will be applied for new images and if Saved for a new start of GSAS-II

	
config_example.DefaultAutoScale = 'userComment2'

	DefaultAutoScale selects one of the AutoScale_ParmNames.
Used in AutoIntegration

	
config_example.DrawAtoms_default = ''

	Allows selection of the default plotting mode for structures
in Draw Atoms. The only valid values are:
‘lines’, ‘vdW balls’, ‘sticks’, ‘balls & sticks’, ‘ellipsoids’.
%% If a non-valid choice is used (the default)
‘vdW balls’ is used.

	
config_example.Enable_logging = False

	Set to True to enable use of command logging (under development.)

	
config_example.G2RefinementWindow = False

	When True a custom progress window is displayed to track the
progress of refinements. When False a generic wxpython supplied progress
dialog is used.

	
config_example.Help_mode = 'browser'

	Set to “internal” to use a Python-based web viewer to display
help documentation and tutorials. If set to the default (“browser”)
the default web browser is used.

	
config_example.Image_2theta_max = 50.0

	Specifies a default 2-theta maximum used for calibration and integration
as the Outer 2-theta value. Will be applied for
newly-read images, but if changed the new value will be saved.

	
config_example.Image_2theta_min = 5.0

	Specifies a default 2-theta minimum used for calibration and integration
as the Inner 2-theta value. Will be applied for
newly-read images, but if changed the new value will be saved.

	
config_example.Image_calibrant = ''

	Specifies a default calibrant material for images. Will be applied for
newly-read images, but if changed the specified material will be saved.

	
config_example.Import_directory = None

	Specifies a default location for importing (reading) input files. Will be
updated if Save_paths is True.
Note that os.path.expanduser is run on this before it is used, so the user’s
home directory can be specified with a ‘~’.

	
config_example.Instprm_default = False

	when True, GSAS-II instprm file are shown as default; when False, old GSAS stype prm, etc files are default

	
config_example.Main_Pos = '(100,100)'

	Main window location - will be updated & saved when user moves
it. If position is outside screen then it will be repositioned to default

	
config_example.Main_Size = '(700,450)'

	Main window size (width, height) - initially uses wx.DefaultSize but will updated
and saved as the user changes the window

	
config_example.Movie_fps = 10

	Specifies movie frames-per-second; larger number will make smoother modulation movies but larger files.

	
config_example.Movie_time = 5

	Specifices time in sec for one modulation loop; larger number will give more frames for same fps’

	
config_example.Multiprocessing_cores = 0

	Specifies the number of cores to use when performing multicore computing. A number less
than zero causes the recommended number of cores [using multiprocessing.cpu_count()/2]
to be used. Setting this number to 0 or 1 avoids use of the multiprocessing module: all
computations are performed in-line.

	
config_example.PDF_Rmax = 100.0

	Maximum radius for G(r) calculations: range is from 10-200A; default is 100A

	
config_example.Plot_Colors = 'k r g b m c'

	The colors for line plots: use one of ‘k’-black, ‘r’-red, ‘b’-blue, ‘g’-green, ‘m’-magenta, ‘c’-cyan for the
line colors in order of obs., calc., back., diff., color5 & color6 separated by spaces; 6 items required.

	
config_example.Plot_Pos = '(200,200)'

	Plot window location - will be updated & saved when user moves it
these widows. If position is outside screen then it will be repositioned to default

	
config_example.Plot_Size = '(700,600)'

	Plot window size (width, height) - initially uses wx.DefaultSize but will updated
and saved as the user changes the window

	
config_example.Ring_mask_thickness = 0.1

	Specifies the default thickness for creation of ring and arc masks.
Default is 0.1 degrees 2-theta.

	
config_example.Save_paths = False

	When set to True, the last-used path for saving of .gpx and for
importing of input files is saved in the configuration file.
Note that since this causes the config.py file to be updated whenever files are
saved/imported, any temporary config settings can be saved to disk at that
point.

	
config_example.SeparateHistPhaseTreeItem = False

	When this is set to True, the parameters for each histogram in each phase
are placed in a separate 1st-level tree item rather than in the Data tab
for each phase. Requires GSAS-II be restarted to take effect. Default is False.

This option is under development and is not fully tested.

	
config_example.Show_timing = False

	If True, shows various timing results.

	
config_example.Spot_mask_diameter = 1.0

	Specifies the default diameter for creation of spot masks. Default is 1.0 mm

	
config_example.Starting_directory = None

	Specifies a default location for starting GSAS-II and where .gpx files
should be read from. Will be updated if Save_paths is True.
Note that os.path.expanduser is run on this before it is used, so the user’s
home directory can be specified with a ‘~’.

	
config_example.Tick_length = 8.0

	Specifies the length of phase tick marks in pixels. Default is 8.

	
config_example.Tick_width = 1.0

	Specifies the width of phase tick marks in pixels.
Fractional values do seem to produce an effect. Default is 1.

	
config_example.Transpose = False

	Set to True to cause images to be Transposed when read (for code development)

	
config_example.Tutorial_location = None

	Change this to place tutorials by in a different spot. If None, this defaults to
<user>/My Documents/G2tutorials (on windows) or <user>/G2tutorials. If you want to
use a different location, this can be set here. To install into the location where
GSAS-II is installed, use this:

Tutorial_location = GSASIIpath.path2GSAS2

As another example, to use ~/.G2tutorials do this:

Tutorial_location = '~/.G2tutorials'

Note that os.path.expanduser is run on Tutorial_location before it is used.
Also note that GSASIIpath is imported inside config.py; other imports should be
avoided.

	
config_example.debug = False

	Set to True to turn on debugging mode. This enables use of IPython on
exceptions and on calls to GSASIIpath.IPyBreak() or breakpoint().
Calls to GSASIIpath.pdbBreak() will invoke pdb at that location.
%%
If debug is False, calls to GSASIIpath.IPyBreak(), breakpoint() and
GSASIIpath.pdbBreak() are ignored.
%%
From inside Spyder, calls to breakpoint() invoke the Spyder debugger,
independent of the setting of debug.
%%
Restart GSAS-II for the setting of debug to take effect.

	
config_example.enum_DrawAtoms_default = ['', 'lines', 'vdW balls', 'sticks', 'balls & sticks', 'ellipsoids']

	choices for DrawAtoms_default

	
config_example.fullIntegrate = True

	If True then full image integration is default; False otherwise

	
config_example.fullrmc_exec = None

	Defines the full path to a Python executable that has been configured
with the fullrmc package. If None (the default), GSAS-II will see if fullrmc
can be imported into the current Python (which is unlikely to ever work).
If that does not work, GSAS-II will search for an executable named fullrmc*
(or fullrmc*.exe on Windows) in the Python sys.path search path,
which includes the GSAS-II binary directory.

	
config_example.lastUpdateNotice = 0

	Defines the version number for the last update notice that has been
shown. This should not need to be changed manually.

	
config_example.logging_debug = False

	Set to True to enable debug for logging (under development.)

	
config_example.pdffit2_exec = None

	Defines the full path to a Python executable that has been configured
with the PDFfit2 (diffpy) package. If None (the default), GSAS-II will see
if PDFfit2 can be imported into the current Python.

	
config_example.previous_GPX_files = []

	A list of previously used .gpx files

	
config_example.show_gpxSize = False

	When True, the sizes of the sections of the GPX file are listed
when the GPX file is opened. Default is False.

	
config_example.svn_exec = None

	Defines the full path to a subversion executable.
If None (the default), GSAS-II will search for a svn or svn.exe file
in the current path or in the location where the current Python is located.

	
config_example.wxInspector = False

	If set to True, the wxInspector widget is displayed when
GSAS-II is started.

4.4. GSASIIElem: functions for element types

4.4.1. GSASIIElem Routines

Routines used to define element settings follow.

	
GSASIIElem.BlenResCW(Els, BLtables, wave)

	Computes resonant scattering lengths - single wavelength version (CW)
returns bo+b’ and b”’

	
GSASIIElem.BlenResTOF(Els, BLtables, wave)

	Computes resonant scattering lengths - multiple wavelength version (TOF)
returns bo+b’ and b”’

	
GSASIIElem.CheckElement(El)

	Check if element El is in the periodic table

	Parameters:

	El (str) – One or two letter element symbol, capitaliztion ignored

	Returns:

	True if the element is found

	
GSASIIElem.ClosedFormFF(Z, SQ, k, N)

	Closed form expressions for FT Slater fxns. IT B Table 1.2.7.4
(not used at present - doesn’t make sense yet)

	Parameters:

	
	Z – element zeta factor

	SQ – (sin-theta/lambda)**2

	k – int principal Bessel fxn order as in <jk>

	N – int power

return: form factor

	
GSASIIElem.ComptonFac(El, SQ)

	compute Compton scattering factor

	Parameters:

	
	El – element dictionary

	SQ – (sin-theta/lambda)**2

	Returns:

	compton scattering factor

	
GSASIIElem.FPcalc(Orbs, KEv)

	Compute real & imaginary resonant X-ray scattering factors

	Parameters:

	
	Orbs – list of orbital dictionaries as defined in GetXsectionCoeff

	KEv – x-ray energy in keV

	Returns:

	C: (f’,f”,mu): real, imaginary parts of resonant scattering & atomic absorption coeff.

	
GSASIIElem.FixValence(El)

	Returns the element symbol, even when a valence is present

	
GSASIIElem.GetAtomInfo(El, ifMag=False)

	reads element information from atmdata.py

	
GSASIIElem.GetBLtable(General)

	returns a dictionary of neutron scattering length data for atom types & isotopes found in General

	Parameters:

	General (dict) – dictionary of phase info.; includes AtomTypes & Isotopes

	Returns:

	BLtable, dictionary of scattering length data; key is atom type

	
GSASIIElem.GetEFFtable(atomTypes)

	returns a dictionary of electron form factor data for atom types found in atomTypes
might not be needed?

	Parameters:

	atomTypes (list) – list of atom types

	Returns:

	FFtable, dictionary of form factor data; key is atom type

	
GSASIIElem.GetEFormFactorCoeff(El)

	Read electron form factor coefficients from atomdata.py file

	Parameters:

	El (str) – element 1-2 character symbol, case irrevelant

	Returns:

	FormFactors: list of form factor dictionaries

Each electrn form factor dictionary is:

	Symbol: 4 character element symbol (no valence)

	Z: atomic number

	fa: 5 A coefficients

	fb: 5 B coefficients

	
GSASIIElem.GetFFC5(ElSym)

	Get 5 term form factor and Compton scattering data

	Parameters:

	ElSym – str(1-2 character element symbol with proper case);

	Return El:

	dictionary with 5 term form factor & compton coefficients

	
GSASIIElem.GetFFtable(atomTypes)

	returns a dictionary of form factor data for atom types found in atomTypes

	Parameters:

	atomTypes (list) – list of atom types

	Returns:

	FFtable, dictionary of form factor data; key is atom type

	
GSASIIElem.GetFormFactorCoeff(El)

	Read X-ray form factor coefficients from atomdata.py file

	Parameters:

	El (str) – element 1-2 character symbol, case irrevelant

	Returns:

	FormFactors: list of form factor dictionaries

Each X-ray form factor dictionary is:

	Symbol: 4 character element symbol with valence (e.g. ‘NI+2’)

	Z: atomic number

	fa: 4 A coefficients

	fb: 4 B coefficients

	fc: C coefficient

	
GSASIIElem.GetMFtable(atomTypes, Landeg)

	returns a dictionary of magnetic form factor data for atom types found in atomTypes

	Parameters:

	
	atomTypes (list) – list of atom types

	Landeg (list) – Lande g factors for atomTypes

	Returns:

	FFtable, dictionary of form factor data; key is atom type

	
GSASIIElem.GetMagFormFacCoeff(El)

	Read magnetic form factor data from atmdata.py

	Parameters:

	El – 2 character element symbol

	Returns:

	MagFormFactors: list of all magnetic form factors dictionaries for element El.

each dictionary contains:

	‘Symbol’:Symbol

	‘Z’:Z

	‘mfa’: 4 MA coefficients

	‘nfa’: 4 NA coefficients

	‘mfb’: 4 MB coefficients

	‘nfb’: 4 NB coefficients

	‘mfc’: MC coefficient

	‘nfc’: NC coefficient

	
GSASIIElem.GetORBtable(atomTypes)

	returns a dictionary of orbital form factor data for atom types found in atomTypes

	Parameters:

	atomTypes (list) – list of atom types

	Returns:

	ORBtable, dictionary of orbital form factor data; key is atom type

	
GSASIIElem.GetXsectionCoeff(El)

	Read atom orbital scattering cross sections for fprime calculations via Cromer-Lieberman algorithm

	Parameters:

	El – 2 character element symbol

	Returns:

	Orbs: list of orbitals each a dictionary with detailed orbital information used by FPcalc

each dictionary is:

	‘OrbName’: Orbital name read from file

	‘IfBe’ 0/2 depending on orbital

	‘BindEn’: binding energy

	‘BB’: BindEn/0.02721

	‘XSectIP’: 5 cross section inflection points

	‘ElEterm’: energy correction term

	‘SEdge’: absorption edge for orbital

	‘Nval’: 10/11 depending on IfBe

	‘LEner’: 10/11 values of log(energy)

	‘LXSect’: 10/11 values of log(cross section)

	
GSASIIElem.MagScatFac(El, SQ)

	compute value of form factor

	Parameters:

	
	El – element dictionary defined in GetFormFactorCoeff

	SQ – (sin-theta/lambda)**2

	gfac – Lande g factor (normally = 2.0)

	Returns:

	real part of form factor

	
GSASIIElem.ScatFac(El, SQ)

	compute value of form factor

	Parameters:

	
	El – element dictionary defined in GetFormFactorCoeff

	SQ – (sin-theta/lambda)**2

	Returns:

	real part of form factor

	
GSASIIElem.ScatFacDer(El, SQ)

	compute derivative of form factor wrt SQ

	Parameters:

	
	El – element dictionary defined in GetFormFactorCoeff

	SQ – (sin-theta/lambda)**2

	Returns:

	real part of form factor

	
GSASIIElem.SetupGeneral(data, dirname)

	Initialize the General sections of the Phase tree contents. Should
be done after changes to the Atoms array.

Called by routine SetupGeneral (in GSASIIphsGUI.UpdatePhaseData()),
GSASIIphsGUI.makeIsoNewPhase(), SUBGROUPS.saveNewPhase(),
and in GSASIIscriptable.SetupGeneral().

	
GSASIIElem.getBLvalues(BLtables, ifList=False)

	Needs a doc string

	
GSASIIElem.getFFvalues(FFtables, SQ, ifList=False)

	Needs a doc string

	
GSASIIElem.getMFvalues(MFtables, SQ, ifList=False)

	Needs a doc string

	
GSASIIElem.scaleCoef(terms)

	rescale J2K6 form factor coeff - now correct?

4.5. GSASIIlattice: Unit Cell Computations

Performs lattice-related computations

Note that as used here
G is the reciprocal lattice tensor, and g is its inverse,
\(G = g^{-1}\), where

\[\begin{split}g = \left(\begin{matrix}
a^2 & a b\cos\gamma & a c\cos\beta \\
a b\cos\gamma & b^2 & b c \cos\alpha \\
a c\cos\beta & b c \cos\alpha & c^2
\end{matrix}\right)\end{split}\]

The “A tensor” terms are defined as
\(A = (\begin{matrix} G_{11} & G_{22} & G_{33} & 2G_{12} & 2G_{13} & 2G_{23}\end{matrix})\) and A can be used in this fashion:
\(d^* = \sqrt {A_0 h^2 + A_1 k^2 + A_2 l^2 + A_3 hk + A_4 hl + A_5 kl}\), where
d is the d-spacing, and \(d^*\) is the reciprocal lattice spacing,
\(Q = 2 \pi d^* = 2 \pi / d\).
Note that GSAS-II variables p::Ai (i = 0, 1,… 5) and p is a phase number are
used for the Ai values. See A2cell(), cell2A() for interconversion between A and
unit cell parameters; cell2Gmat() Gmat2cell() for G and cell parameters.

When the hydrostatic/elastic strain coefficients (Dij, \(D_{ij}\)) are used, they are added to the
A tensor terms (Ai, \(A_{i}\)) so that A is redefined
\(A = (\begin{matrix} A_{0} + D_{11} & A_{1} + D_{22} & A_{2} + D_{33} & A_{3} + D_{12} & A_{4} + D_{13} & A_{5} + D_{23}\end{matrix})\). See cellDijFill().
Note that GSAS-II variables p:h:Dij (i,j = 1, 2, 3) and p is a phase number
and h a histogram number are used for the Dij values.

4.5.1. GSASIIlattice Classes & Routines

GSASIIlattice Classes & routines follow

	
GSASIIlattice.A2Gmat(A, inverse=True)

	Fill real & reciprocal metric tensor (G) from A.

	Parameters:

	
	A – reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23]

	inverse (bool) – if True return both G and g; else just G

	Returns:

	reciprocal (G) & real (g) metric tensors (list of two numpy 3x3 arrays)

	
GSASIIlattice.A2cell(A)

	Compute unit cell constants from A

	Parameters:

	A – [G11,G22,G33,2*G12,2*G13,2*G23] G - reciprocal metric tensor

	Returns:

	a,b,c,alpha, beta, gamma (degrees) - lattice parameters

	
GSASIIlattice.A2invcell(A)

	Compute reciprocal unit cell constants from A
returns tuple with a*,b*,c*,alpha*, beta*, gamma* (degrees)

	
GSASIIlattice.AplusDij(A, Dij, SGData)

	returns the A corrected by Dij

	Parameters:

	
	A (list) – reciprocal metric terms A0-A5

	Dij (array) – unique Dij values as stored in Hstrain

	SGdata (dict) – a symmetry object

	Returns list newA:

	A corrected by Dij

	
GSASIIlattice.CellAbsorption(ElList, Volume)

	Compute unit cell absorption

	Parameters:

	
	ElList (dict) – dictionary of element contents including mu and
number of atoms be cell

	Volume (float) – unit cell volume

	Returns:

	mu-total/Volume

	
GSASIIlattice.CellBlock(nCells)

	Generate block of unit cells n*n*n on a side; [0,0,0] centered, n = 2*nCells+1
currently only works for nCells = 0 or 1 (not >1)

	
GSASIIlattice.CellDijCorr(Cell, SGData, Data, hist)

	Returns the cell corrected for Dij values.

	Parameters:

	
	Cell (list) – lattice parameters

	SGdata (dict) – a symmetry object

	Data (dict) – phase data structure; contains set of Dij values

	hist (str) – histogram name

	Returns:

	cell corrected for Dij values

	
GSASIIlattice.CentCheck(Cent, H)

	needs doc string

	
GSASIIlattice.CosAngle(U, V, G)

	calculate cos of angle between U & V in generalized coordinates
defined by metric tensor G

	Parameters:

	
	U – 3-vectors assume numpy arrays, can be multiple reflections as (N,3) array

	V – 3-vectors assume numpy arrays, only as (3) vector

	G – metric tensor for U & V defined space assume numpy array

	Returns:

	cos(phi)

	
GSASIIlattice.CosSinAngle(U, V, G)

	calculate sin & cos of angle between U & V in generalized coordinates
defined by metric tensor G

	Parameters:

	
	U – 3-vectors assume numpy arrays

	V – 3-vectors assume numpy arrays

	G – metric tensor for U & V defined space assume numpy array

	Returns:

	cos(phi) & sin(phi)

	
GSASIIlattice.CrsAng(H, cell, SGData)

	Convert HKL to polar coordinates with proper orientation WRT space group point group
:param array H: hkls
:param list cell: lattice parameters
:param dict SGData: space group data
:returns arrays phi,beta: polar, azimuthal angles for HKL

	
GSASIIlattice.CubicSHarm(L, M, Th, Ph)

	Calculation of the cubic harmonics given in Table 3 in M.Kara & K. Kurki-Suonio,
Acta Cryt. A37, 201 (1981). For L = 14,20 only for m3m from F.M. Mueller and M.G. Priestley,
Phys Rev 148, 638 (1966)

	Parameters:

	
	L (int) – degree of the harmonic (L >= 0)

	M (int) – order number [|M| <= L]

	Th (float/array) – Azimuthal coordinate 0 <= Th <= 360

	Ph (float/array) – Polar coordinate 0<= Ph <= 180

	Returns klm value/array:

	cubic harmonics

	
GSASIIlattice.Dsp2pos(Inst, dsp)

	convert d-spacing to powder pattern position (2-theta or TOF, musec)

	
GSASIIlattice.FindNonstandard(controls, Phase)

	Find nonstandard setting of magnetic cell that aligns with parent nuclear cell

	Parameters:

	
	controls – list unit cell indexing controls

	Phase – dict new magnetic phase data (NB:not G2 phase construction); modified here

	Returns:

	None

	
GSASIIlattice.Flnh(SHCoef, phi, beta, SGData)

	needs doc string

	
GSASIIlattice.GenCellConstraints(Trans, origPhase, newPhase, origA, oSGLaue, nSGLaue, debug=False)

	Generate the constraints between two unit cells constants for a phase transformed
by matrix Trans.

	Parameters:

	
	Trans (np.array) – a 3x3 direct cell transformation matrix where,
Trans = np.array([[2/3, 4/3, 1/3], [-1, 0, 0], [-1/3, -2/3, 1/3]])
(for a’ = 2/3a + 4/3b + 1/3c; b’ = -a; c’ = -1/3, -2/3, 1/3)

	origPhase (int) – phase id (pId) for original phase

	newPhase (int) – phase id for the transformed phase to be constrained from
original phase

	origA (list) – reciprocal cell (“A*”) tensor (used for debug only)

	oSGLaue (dict) – space group info for original phase

	nSGLaue (dict) – space group info for transformed phase

	debug (bool) – If true, the constraint input is used to compute and print A*
and from that the direct cell for the transformed phase.

	
GSASIIlattice.GenHBravais(dmin, Bravais, A, cctbx_args=None)

	Generate the positionally unique powder diffraction reflections

	Parameters:

	
	dmin – minimum d-spacing in A

	Bravais – lattice type (see GetBraviasNum). Bravais is one of:

	0 F cubic

	1 I cubic

	2 P cubic

	3 R hexagonal (trigonal not rhombohedral)

	4 P hexagonal

	5 I tetragonal

	6 P tetragonal

	7 F orthorhombic

	8 I orthorhombic

	9 A orthorhombic

	10 B orthorhombic

	11 C orthorhombic

	12 P orthorhombic

	13 I monoclinic

	14 A monoclinic

	15 C monoclinic

	16 P monoclinic

	17 P triclinic

	A – reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23]

	cctbx_args (dict) – items defined in CCTBX:

	’sg_type’: value from cctbx.sgtbx.space_group_type(symmorphic_sgs[ibrav])

	’uctbx_unit_cell’: pointer to cctbx.uctbx.unit_cell()

	’miller_index_generator’: pointer to cctbx.miller.index_generator()

	Returns:

	HKL unique d list of [h,k,l,d,-1] sorted with largest d first

	
GSASIIlattice.GenHLaue(dmin, SGData, A)

	Generate the crystallographically unique powder diffraction reflections
for a lattice and Bravais type

	Parameters:

	
	dmin – minimum d-spacing

	SGData – space group dictionary with at least

	’SGLaue’: Laue group symbol: one of ‘-1’,’2/m’,’mmm’,’4/m’,’6/m’,’4/mmm’,’6/mmm’, ‘3m1’, ‘31m’, ‘3’, ‘3R’, ‘3mR’, ‘m3’, ‘m3m’

	’SGLatt’: lattice centering: one of ‘P’,’A’,’B’,’C’,’I’,’F’

	’SGUniq’: code for unique monoclinic axis one of ‘a’,’b’,’c’ (only if ‘SGLaue’ is ‘2/m’) otherwise an empty string

	A – reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23]

	Returns:

	HKL = list of [h,k,l,d] sorted with largest d first and is unique
part of reciprocal space ignoring anomalous dispersion

	
GSASIIlattice.GenPfHKLs(nMax, SGData, A)

	Generate the unique pole figure reflections for a lattice and Bravais type.
Min d-spacing=1.0A & no more than nMax returned

	Parameters:

	
	nMax – maximum number of hkls returned

	SGData – space group dictionary with at least

	’SGLaue’: Laue group symbol: one of ‘-1’,’2/m’,’mmm’,’4/m’,’6/m’,’4/mmm’,’6/mmm’, ‘3m1’, ‘31m’, ‘3’, ‘3R’, ‘3mR’, ‘m3’, ‘m3m’

	’SGLatt’: lattice centering: one of ‘P’,’A’,’B’,’C’,’I’,’F’

	’SGUniq’: code for unique monoclinic axis one of ‘a’,’b’,’c’ (only if ‘SGLaue’ is ‘2/m’) otherwise an empty string

	A – reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23]

	Returns:

	HKL = list of ‘h k l’ strings sorted with largest d first; no duplicate zones

	
GSASIIlattice.GenRBCoeff(sytsym, RBsym, L)

	imposes rigid body symmetry on spherical harmonics terms
Key problem is noncubic RB symmetries in cubic site symmetries & vice versa.
:param str sytsym: atom position site symmetry symbol
:param str RBsym: molecular point symmetry symbol
:param int L: spherical harmonic order no.
:returns list newNames: spherical harmonic term of order L as either C(L,M) or C(L,M)c for cubic terms
:returns list newSgns: matching coefficient signs as +/- 1.0

	
GSASIIlattice.GenSHCoeff(SGLaue, SamSym, L, IfLMN=True)

	Generate spherical harmonics coefficient names for texture
:param str SGLaue: Laue symbol
:param str SamSym: sample symmetry symbol
:param int L: spherical harmonic order no.
:param bool IfLMN: if TRUE return sp.harm. name as C(L,M,N); else return C(L,N)
:returns coefficient name as C(L,M,N) or C(L,N)

	
GSASIIlattice.GenSSHLaue(dmin, SGData, SSGData, Vec, maxH, A)

	needs a doc string

	
GSASIIlattice.GenShCoeff(sytsym, L)

	Generate spherical harmonic coefficient names for atom site symmetry
:param str sytsym: site symmetry or perhaps molecular symmetry
:param int L:spherical harmonic order no.
:returns list newNames: spherical harmonic term of order L as either C(L,M) or C(L,M)c for cubic terms
:returns list newSgns: matching coefficient signs as +/- 1.0

	
GSASIIlattice.GenerateCellConstraints()

	Generate unit cell constraints for transforming one set of A tensor
values to another using symbolic math (requires the sympy package)

Note that this is only used to do the symbolic math needed to generate
cell relationships. It is not used normally in GSAS-II.

	
GSASIIlattice.GetBraviasNum(center, system)

	Determine the Bravais lattice number, as used in GenHBravais

	Parameters:

	
	center – one of: ‘P’, ‘C’, ‘I’, ‘F’, ‘R’ (see SGLatt from GSASIIspc.SpcGroup)

	system – one of ‘cubic’, ‘hexagonal’, ‘tetragonal’, ‘orthorhombic’, ‘trigonal’ (for R)
‘monoclinic’, ‘triclinic’ (see SGSys from GSASIIspc.SpcGroup)

	Returns:

	a number between 0 and 13
or throws a ValueError exception if the combination of center, system is not found (i.e. non-standard)

	
GSASIIlattice.GetKcl(L, N, SGLaue, phi, beta)

	needs doc string

	
GSASIIlattice.GetKclKsl(L, N, SGLaue, psi, phi, beta)

	
	This is used for spherical harmonics description of preferred orientation;
	cylindrical symmetry only (M=0) and no sample angle derivatives returned

	
GSASIIlattice.GetKsl(L, M, SamSym, psi, gam)

	needs doc string

	
GSASIIlattice.Glnh(SHCoef, psi, gam, SamSym)

	needs doc string

	
GSASIIlattice.Gmat2A(G)

	Extract A from reciprocal metric tensor (G)

	Parameters:

	G – reciprocal metric tensor (3x3 numpy array)

	Returns:

	A = [G11,G22,G33,2*G12,2*G13,2*G23]

	
GSASIIlattice.Gmat2AB(G)

	Computes orthogonalization matrix from reciprocal metric tensor G

	Returns:

	tuple of two 3x3 numpy arrays (A,B)

	A for crystal to Cartesian transformations (A*x = np.inner(A,x) = X)

	B (= inverse of A) for Cartesian to crystal transformation (B*X = np.inner(B,X) = x)

	
GSASIIlattice.Gmat2cell(g)

	Compute real/reciprocal lattice parameters from real/reciprocal metric tensor (g/G)
The math works the same either way.

	Parameters:

	G) (g (or) – real (or reciprocal) metric tensor 3x3 array

	Returns:

	a,b,c,alpha, beta, gamma (degrees) (or a*,b*,c*,alpha*,beta*,gamma* degrees)

	
GSASIIlattice.H2ThPh(H, Bmat, Q)

	Convert HKL to spherical polar & azimuth angles

	Parameters:

	
	H (array) – array of hkl as [n,3]

	Bmat ([3,3] array) – inv crystal to Cartesian transformation

	Q (array) – quaternion for rotation of HKL to new polar axis

	Returns array Th:

	HKL azimuth angles

	Returns array Ph:

	HKL polar angles

	
GSASIIlattice.HKL2SpAng(H, cell, SGData)

	Computes spherical coords for hkls; view along 001

	Parameters:

	
	H (array) – arrays of hkl

	cell (tuple) – a,b,c, alpha, beta, gamma (degrees)

	SGData (dict) – space group dictionary

	Returns:

	arrays of r,phi,psi (radius,inclination,azimuth) about 001

	
GSASIIlattice.Hx2Rh(Hx)

	needs doc string

	
GSASIIlattice.KslCalc(trm, psi, gam)

	Compute one angular part term in spherical harmonics
:param str trm:sp. harm term name in the form of ‘C(l,m)’ or ‘C(l,m)c’ for cubic
:param float/array psi: Azimuthal coordinate 0 <= Th <= 360
:param float/array gam: Polar coordinate 0<= Ph <= 180

	Returns array Ksl:

	spherical harmonics angular part for psi,gam pairs

	
GSASIIlattice.LaueUnique(Laue, HKLF)

	Impose Laue symmetry on hkl

	Parameters:

	
	Laue (str) – Laue symbol, as below

centrosymmetric Laue groups:

['-1','2/m','112/m','2/m11','mmm','-42m','-4m2','4/mmm','-3','-3m',
'-31m','-3m1','6/m','6/mmm','m3','m3m']

noncentrosymmetric Laue groups:

['1','2','211','112','m','m11','11m','222','mm2','m2m','2mm',
'4','-4','422','4mm','3','312','321','3m','31m','3m1','6','-6',
'622','6mm','-62m','-6m2','23','432','-43m']

	HKLF – np.array([[h,k,l,…]]) reflection set to be converted

	Returns:

	HKLF new reflection array with imposed Laue symmetry

	
GSASIIlattice.LaueUnique2(SGData, refList)

	Impose Laue symmetry on hkl

	Parameters:

	
	SGData – space group data from ‘P ‘+Laue

	HKLF – np.array([[h,k,l,…]]) reflection set to be converted

	Returns:

	HKLF new reflection array with imposed Laue symmetry

	
GSASIIlattice.MaxIndex(dmin, A)

	needs doc string

	
GSASIIlattice.OdfChk(SGLaue, L, M)

	finds symmetry rules for spherical harmonic coefficients for Laue groups
:param str SGLaue: Laue symbol
:param int L: principal harmonic term; only evens are used
:param int M: second harmonic term; can be -L <= M <= L
:returns True if allowed

	
GSASIIlattice.PlaneIntercepts(Amat, H, phase, stack)

	find unit cell intercepts for a stack of hkl planes

	
GSASIIlattice.Pos2dsp(Inst, pos)

	convert powder pattern position (2-theta or TOF, musec) to d-spacing
is currently only approximate for EDX data; accurate for others.

	
GSASIIlattice.RBChk(sytsym, L, M)

	finds symmetry rules for spherical harmonic coefficients for site symmetries
:param str sytsym: atom site symmetry symbol
:param int L: principal harmonic term L>0
:param int M: second harmonic term; can be -L <= M <= L
:returns True if allowed and sign for term
NB: not complete for all possible site symmetries! Many are missing
Based on Tables 2 & 4 of M. Kara & K. Kurki-Suonio, Acta Cryst. A37, 201-210 (1981).

	
GSASIIlattice.RBsymCheck(Atoms, ct, cx, cs, AtLookUp, Amat, RBObjIds, SGData)

	Checks members of a rigid body to see if one is a symmetry equivalent of another.
If so the atom site frac is set to zero.

	Parameters:

	
	Atoms – atom array as defined in GSAS-II; modified here

	ct – int location of atom type in Atoms item

	cx – int location of x,y,z,frac in Atoms item

	AtLookUp (dict) – atom lookup by Id table

	Amat (np.array) – crystal-to-Cartesian transformation matrix

	RBObjIds (list) – atom Id belonging to rigid body being tested

	SGData (dict) – GSAS-II space group info.

	Returns:

	Atoms with modified atom frac entries

	
GSASIIlattice.RBsymChk(RBsym, cubic, coefNames, L=18)

	imposes rigid body symmetry on spherical harmonics terms
Key problem is noncubic RB symmetries in cubic site symmetries & vice versa.
:param str RBsym: molecular point symmetry symbol
:param bool cubic: True if atom site symmetry is cubic
:param list coefNames: sp. harm coefficient names to be checked/converted
:param int L: maximum spherical harmonic order no. for cubic generation if needed

	
GSASIIlattice.Rh2Hx(Rh)

	needs doc string

	
GSASIIlattice.SHarmcal(SytSym, SHFln, psi, gam)

	Perform a surface spherical harmonics computation.
Presently only used for plotting
Note that the the number of gam values must either be 1 or must match psi

	Parameters:

	
	SytSym (str) – sit symmetry - only looking for cubics - remove this

	SHFln (dict) – spherical harmonics coefficients; key has L & M

	psi (float/array) – Azimuthal coordinate 0 <= Th <= 360

	gam (float/array) – Polar coordinate 0<= Ph <= 180

	Returns array SHVal:

	spherical harmonics array for psi,gam values

	
GSASIIlattice.SamAng(Tth, Gangls, Sangl, IFCoup)

	Compute sample orientation angles vs laboratory coord. system

	Parameters:

	
	Tth – Signed theta

	Gangls – Sample goniometer angles phi,chi,omega,azmuth

	Sangl – Sample angle zeros om-0, chi-0, phi-0

	IFCoup – True if omega & 2-theta coupled in CW scan

	Returns:

	psi,gam: Sample odf angles
dPSdA,dGMdA: Angle zero derivatives

	
GSASIIlattice.SphHarmAng(L, M, P, Th, Ph)

	Compute spherical harmonics values using scipy.special.sph_harm

	Parameters:

	
	L (int) – degree of the harmonic (L >= 0)

	M (int) – order number (|M| <= L)

	P (int) – sign flag = -1 or 1

	Th (float/array) – Azimuthal coordinate 0 <= Th <= 360

	Ph (float/array) – Polar coordinate 0<= Ph <= 180

	Returns ylmp value/array:

	as reals

	
GSASIIlattice.SwapIndx(Axis, H)

	needs doc string

	
GSASIIlattice.SwapItems(Alist, pos1, pos2)

	exchange 2 items in a list

	
GSASIIlattice.TOF2dsp(Inst, Pos)

	convert powder pattern TOF, musec to d-spacing by successive approximation
Pos can be numpy array

	
GSASIIlattice.TransformCell(cell, Trans)

	Transform lattice parameters by matrix

	Parameters:

	
	cell – list a,b,c,alpha,beta,gamma,(volume)

	Trans – array transformation matrix

	Returns:

	array transformed a,b,c,alpha,beta,gamma,volume

	
GSASIIlattice.TransformPhase(oldPhase, newPhase, Trans, Uvec, Vvec, ifMag, Force=True)

	Transform atoms from oldPhase to newPhase
M’ is inv(M)
does X’ = M(X-U)+V transformation for coordinates and U’ = MUM/det(M)
for anisotropic thermal parameters

	Parameters:

	
	oldPhase – dict G2 phase info for old phase

	newPhase – dict G2 phase info for new phase; with new cell & space group
atoms are from oldPhase & will be transformed

	Trans – lattice transformation matrix M

	Uvec – array parent coordinates transformation vector U

	Vvec – array child coordinate transformation vector V

	ifMag – bool True if convert to magnetic phase;
if True all nonmagnetic atoms will be removed

	Returns:

	newPhase dict modified G2 phase info

	Returns:

	atCodes list atom transformation codes

	
GSASIIlattice.U6toUij(U6)

	Fill matrix (Uij) from U6 = [U11,U22,U33,U12,U13,U23]
NB: there is a non numpy version in GSASIIspc: U2Uij

	Parameters:

	U6 (list) – 6 terms of u11,u22,…

	Returns:

	Uij - numpy [3][3] array of uij

	
GSASIIlattice.Uij2Ueqv(Uij, GS, Amat)

	returns 1/3 trace of diagonalized U matrix
:param Uij: numpy array [Uij]
:param GS: Uij too betaij conversion matrix
:param Amat: crystal to Cartesian transformation matrix
:returns: 1/3 trace of diagonalized U matrix
:returns: True if nonpositive-definite; False otherwise

	
GSASIIlattice.Uij2betaij(Uij, G)

	Convert Uij to beta-ij tensors – stub for eventual completion

	Parameters:

	
	Uij – numpy array [Uij]

	G – reciprocal metric tensor

	Returns:

	beta-ij - numpy array [beta-ij]

	
GSASIIlattice.UijtoU6(U)

	Fill vector [U11,U22,U33,U12,U13,U23] from Uij
NB: there is a non numpy version in GSASIIspc: Uij2U

	
GSASIIlattice.UniqueCellByLaue = [[['m3', 'm3m'], (0,)], [['3R', '3mR'], (0, 3)], [['3', '3m1', '31m', '6/m', '6/mmm', '4/m', '4/mmm'], (0, 2)], [['mmm'], (0, 1, 2)], [['2/ma'], (0, 1, 2, 3)], [['2/mb'], (0, 1, 2, 4)], [['2/mc'], (0, 1, 2, 5)], [['-1'], (0, 1, 2, 3, 4, 5)]]

	List the unique cell terms by index for each Laue class

	
GSASIIlattice.betaij2Uij(betaij, G)

	Convert beta-ij to Uij tensors

:param beta-ij - numpy array [beta-ij]
:param G: reciprocal metric tensor
:returns: Uij: numpy array [Uij]

	
GSASIIlattice.calc_V(A)

	Compute the real lattice volume (V) from A

	
GSASIIlattice.calc_rDsq(H, A)

	needs doc string

	
GSASIIlattice.calc_rDsq2(H, G)

	needs doc string

	
GSASIIlattice.calc_rDsqSS(H, A, vec)

	needs doc string

	
GSASIIlattice.calc_rDsqT(H, A, Z, tof, difC)

	needs doc string

	
GSASIIlattice.calc_rDsqTSS(H, A, vec, Z, tof, difC)

	needs doc string

	
GSASIIlattice.calc_rDsqZ(H, A, Z, tth, lam)

	needs doc string

	
GSASIIlattice.calc_rDsqZSS(H, A, vec, Z, tth, lam)

	needs doc string

	
GSASIIlattice.calc_rV(A)

	Compute the reciprocal lattice volume (V*) from A

	
GSASIIlattice.calc_rVsq(A)

	Compute the square of the reciprocal lattice volume (1/V**2) from A’

	
GSASIIlattice.cell2A(cell)

	Obtain A = [G11,G22,G33,2*G12,2*G13,2*G23] from lattice parameters

	Parameters:

	cell – [a,b,c,alpha,beta,gamma] (degrees)

	Returns:

	G reciprocal metric tensor as 3x3 numpy array

	
GSASIIlattice.cell2AB(cell, alt=False)

	Computes orthogonalization matrix from unit cell constants

	Parameters:

	cell (tuple) – a,b,c, alpha, beta, gamma (degrees)

	Returns:

	tuple of two 3x3 numpy arrays (A,B)
A for crystal to Cartesian transformations A*x = np.inner(A,x) = X
B (= inverse of A) for Cartesian to crystal transformation B*X = np.inner(B,X) = x
both rounded to 12 places (typically zero terms = +/-10e-6 otherwise)

	
GSASIIlattice.cell2GS(cell)

	returns Uij to betaij conversion matrix

	
GSASIIlattice.cell2Gmat(cell)

	Compute real and reciprocal lattice metric tensor from unit cell constants

	Parameters:

	cell – tuple with a,b,c,alpha, beta, gamma (degrees)

	Returns:

	reciprocal (G) & real (g) metric tensors (list of two numpy 3x3 arrays)

	
GSASIIlattice.cellAlbl = ('a', 'b', 'c', 'alpha', 'beta', 'gamma')

	ASCII labels for a, b, c, alpha, beta, gamma

	
GSASIIlattice.cellDijFill(pfx, phfx, SGData, parmDict)

	Returns the filled-out reciprocal cell (A) terms
from the parameter dictionaries corrected for Dij.

	Parameters:

	
	pfx (str) – parameter prefix (“n::”, where n is a phase number)

	SGdata (dict) – a symmetry object

	parmDict (dict) – a dictionary of parameters

	Returns:

	A,sigA where each is a list of six terms with the A terms

	
GSASIIlattice.cellUlbl = ('a', 'b', 'c', 'α', 'β', 'γ')

	unicode labels for a, b, c, alpha, beta, gamma

	
GSASIIlattice.cellUnique(SGData)

	Returns the indices for the unique A tensor terms
based on the Laue class.
Any terms that are determined from others or are zero are not included.

	Parameters:

	SGdata (dict) – a symmetry object

	Returns:

	a list of 0 to 6 terms with indices of the unique A terms

	
GSASIIlattice.cellXformRelations = {0: ['1.0*A0*T[0,0]**2', '1.0*A1*T[0,1]**2', '1.0*A2*T[0,2]**2', '1.0*A3*T[0,0]*T[0,1]', '1.0*A4*T[0,0]*T[0,2]', '1.0*A5*T[0,1]*T[0,2]'], 1: ['1.0*A0*T[1,0]**2', '1.0*A1*T[1,1]**2', '1.0*A2*T[1,2]**2', '1.0*A3*T[1,0]*T[1,1]', '1.0*A4*T[1,0]*T[1,2]', '1.0*A5*T[1,1]*T[1,2]'], 2: ['1.0*A0*T[2,0]**2', '1.0*A1*T[2,1]**2', '1.0*A2*T[2,2]**2', '1.0*A3*T[2,0]*T[2,1]', '1.0*A4*T[2,0]*T[2,2]', '1.0*A5*T[2,1]*T[2,2]'], 3: ['2.0*A0*T[0,0]*T[1,0]', '2.0*A1*T[0,1]*T[1,1]', '2.0*A2*T[0,2]*T[1,2]', '1.0*A3*(T[0,0]*T[1,1] + T[1,0]*T[0,1])', '1.0*A4*(T[0,0]*T[1,2] + T[1,0]*T[0,2])', '1.0*A5*(T[0,1]*T[1,2] + T[1,1]*T[0,2])'], 4: ['2.0*A0*T[0,0]*T[2,0]', '2.0*A1*T[0,1]*T[2,1]', '2.0*A2*T[0,2]*T[2,2]', '1.0*A3*(T[0,0]*T[2,1] + T[2,0]*T[0,1])', '1.0*A4*(T[0,0]*T[2,2] + T[2,0]*T[0,2])', '1.0*A5*(T[0,1]*T[2,2] + T[2,1]*T[0,2])'], 5: ['2.0*A0*T[1,0]*T[2,0]', '2.0*A1*T[1,1]*T[2,1]', '2.0*A2*T[1,2]*T[2,2]', '1.0*A3*(T[1,0]*T[2,1] + T[2,0]*T[1,1])', '1.0*A4*(T[1,0]*T[2,2] + T[2,0]*T[1,2])', '1.0*A5*(T[1,1]*T[2,2] + T[2,1]*T[1,2])']}

	cellXformRelations provide the constraints on newA[i] values for a new
cell generated from oldA[i] values.

	
GSASIIlattice.cellZeros(SGData)

	Returns a list with the A terms required to be zero based on Laue symmetry

	Parameters:

	SGdata (dict) – a symmetry object

	Returns:

	A list of six terms where the values are True if the
A term must be zero, False otherwise.

	
GSASIIlattice.combinations(items, n)

	take n distinct items, order matters

	
GSASIIlattice.criticalEllipse(prob)

	Calculate critical values for probability ellipsoids from probability

	
GSASIIlattice.fillgmat(cell)

	Compute lattice metric tensor from unit cell constants

	Parameters:

	cell – tuple with a,b,c,alpha, beta, gamma (degrees)

	Returns:

	3x3 numpy array

	
GSASIIlattice.fmtCellConstraints(cellConstr)

	Format the cell relationships created in GenerateCellConstraints()
in a format that can be used to generate constraints.

Use:

cXforms = G2lat.fmtCellConstraints(G2lat.GenerateCellConstraints())

Note that this is only used to do the symbolic math needed to generate
cell relationships. It is not used normally in GSAS-II.

	
GSASIIlattice.getHKLmax(dmin, SGData, A)

	finds maximum allowed hkl for given A within dmin

	
GSASIIlattice.getPeakPos(dataType, parmdict, dsp)

	convert d-spacing to powder pattern position (2-theta, E or TOF, musec)

	
GSASIIlattice.invcell2Gmat(invcell)

	
	Compute real and reciprocal lattice metric tensor from reciprocal
	unit cell constants

	Parameters:

	invcell – [a*,b*,c*,alpha*, beta*, gamma*] (degrees)

	Returns:

	reciprocal (G) & real (g) metric tensors (list of two 3x3 arrays)

	
GSASIIlattice.invpolfcal(ODFln, SGData, phi, beta)

	needs doc string

	
GSASIIlattice.permutations(items)

	take all items, order matters

	
GSASIIlattice.polfcal(ODFln, SamSym, psi, gam)

	Perform a pole figure computation.
Note that the the number of gam values must either be 1 or must
match psi. Updated for numpy 1.8.0

	
GSASIIlattice.prodMGMT(G, Mat)

	Transform metric tensor by matrix

	Parameters:

	
	G – array metric tensor

	Mat – array transformation matrix

	Returns:

	array new metric tensor

	
GSASIIlattice.rotdMat(angle, axis=0)

	Prepare rotation matrix for angle in degrees about axis(=0,1,2)

	Parameters:

	
	angle – angle in degrees

	axis – axis (0,1,2 = x,y,z) about which for the rotation

	Returns:

	rotation matrix - 3x3 numpy array

	
GSASIIlattice.rotdMat4(angle, axis=0)

	Prepare rotation matrix for angle in degrees about axis(=0,1,2) with scaling for OpenGL

	Parameters:

	
	angle – angle in degrees

	axis – axis (0,1,2 = x,y,z) about which for the rotation

	Returns:

	rotation matrix - 4x4 numpy array (last row/column for openGL scaling)

	
GSASIIlattice.sec2HMS(sec)

	Convert time in sec to H:M:S string

	Parameters:

	sec – time in seconds

	Returns:

	H:M:S string (to nearest 100th second)

	
GSASIIlattice.selections(items, n)

	take n (not necessarily distinct) items, order matters

	
GSASIIlattice.selftestlist = []

	Defines a list of self-tests

	
GSASIIlattice.sortHKLd(HKLd, ifreverse, ifdup, ifSS=False)

	sort reflection list on d-spacing; can sort in either order

	Parameters:

	
	HKLd – a list of [h,k,l,d,…];

	ifreverse – True for largest d first

	ifdup – True if duplicate d-spacings allowed

	Returns:

	sorted reflection list

	
GSASIIlattice.subVals(expr, A, T)

	Evaluate the symbolic expressions by substituting for A0-A5 & Tij

This can be used on the cell relationships created in
GenerateCellConstraints() like this:

Trans = np.array([[2/3, 4/3, 1/3], [-1, 0, 0], [-1/3, -2/3, 1/3]])
T = np.linalg.inv(Trans).T
print([subVals(i,Aold,T) for i in GenerateCellConstraints()])

	Parameters:

	
	expr (list) – a list of sympy expressions.

	A (list) – This is the A* tensor as defined above.

	T (np.array) – a 3x3 transformation matrix where,
Trans = np.array([[2/3, 4/3, 1/3], [-1, 0, 0], [-1/3, -2/3, 1/3]])
(for a’ = 2/3a + 4/3b + 1/3c; b’ = -a; c’ = -1/3, -2/3, 1/3)
then T = np.linalg.inv(Trans).T

Note that this is only used to do the symbolic math needed to generate
cell relationships. It is not used normally in GSAS-II.

	
GSASIIlattice.symInner(M1, M2)

	Compute inner product of two square matrices with symbolic processing
Use dot product because sympy does not define an inner product primitive

This requires that M1 & M2 be two sympy objects, as created in
GenerateCellConstraints().

Note that this is only used to do the symbolic math needed to generate
cell relationships. It is not used normally in GSAS-II.

	
GSASIIlattice.test1()

	test cell2A and A2Gmat

	
GSASIIlattice.test2()

	test Gmat2A, A2cell, A2Gmat, Gmat2cell

	
GSASIIlattice.test3()

	test invcell2Gmat

	
GSASIIlattice.test4()

	test calc_rVsq, calc_rV, calc_V

	
GSASIIlattice.test5()

	test A2invcell

	
GSASIIlattice.test6()

	test cell2AB

	
GSASIIlattice.test7()

	test GetBraviasNum(…) and GenHBravais(…)

	
GSASIIlattice.test8()

	test GenHLaue

	
GSASIIlattice.test9()

	test GenHLaue

	
GSASIIlattice.textureIndex(SHCoef)

	needs doc string

	
GSASIIlattice.transposeHKLF(transMat, Super, refList)

	Apply transformation matrix to hkl(m)
param: transmat: 3x3 or 4x4 array
param: Super: 0 or 1 for extra index
param: refList list of h,k,l,….
return: newRefs transformed list of h’,k’,l’,,,
return: badRefs list of noninteger h’,k’,l’…

	
GSASIIlattice.uniqueCombinations(items, n)

	take n distinct items, order is irrelevant

4.6. GSASIIspc: Space Group Computations

Space group interpretation routines. Note that space group information is
stored in a Space Group (SGData) object.

4.6.1. GSASIIspc Classes & Routines

GSASIIspc Classes & routines follow

	
GSASIIspc.AllOps(SGData)

	Returns a list of all operators for a space group, including those for
centering and a center of symmetry

	Parameters:

	SGData – from SpcGroup()

	Returns:

	(SGTextList,offsetList,symOpList,G2oprList) where

	SGTextList: a list of strings with formatted and normalized
symmetry operators.

	offsetList: a tuple of (dx,dy,dz) offsets that relate the GSAS-II
symmetry operation to the operator in SGTextList and symOpList.
these dx (etc.) values are added to the GSAS-II generated
positions to provide the positions that are generated
by the normalized symmetry operators.

	symOpList: a list of tuples with the normalized symmetry
operations as (M,T) values
(see SGOps in the Space Group object)

	G2oprList: a list with the GSAS-II operations for each symmetry operation as
a tuple with (center,mult,opnum,opcode), where center is (0,0,0), (0.5,0,0),
(0.5,0.5,0.5),…; where mult is 1 or -1 for the center of symmetry
where opnum is the number for the symmetry operation, in SGOps
(starting with 0) and opcode is mult*(100*icen+j+1).

	G2opcodes: a list with the name that GSAS-II uses for each symmetry
operation (same as opcode, above)

	
GSASIIspc.ApplyStringOps(A, SGData, X, Uij=[])

	Needs a doc string

	
GSASIIspc.ApplyStringOpsMom(A, SGData, SSGData, Mom)

	Applies string operations to modulated magnetic moment components used in drawing
Drawing matches Bilbao MVISUALIZE

	
GSASIIspc.AtomDxSymFix(Dx, SytSym, CSIX)

	Applies site symmetry restrictions to atom position shifts. 1st parameter value
of each kind encountered is assumed to be the independent one. Needed for ISODISTORT mode shifts.

	
GSASIIspc.CheckSpin(isym, SGData)

	Check for exceptions in spin rules

	
GSASIIspc.ElemPosition(SGData)

	Under development.
Object here is to return a list of symmetry element types and locations suitable
for say drawing them.
So far I have the element type… getting all possible locations without lookup may be impossible!

	
GSASIIspc.GenAtom(XYZ, SGData, All=False, Uij=[], Move=True)

	Generates the equivalent positions for a specified coordinate and space group

	Parameters:

	
	XYZ – an array, tuple or list containing 3 elements: x, y & z

	SGData – from SpcGroup()

	All – True return all equivalent positions including duplicates;
False return only unique positions

	Uij – [U11,U22,U33,U12,U13,U23] or [] if no Uij

	Move – True move generated atom positions to be inside cell
False do not move atoms

	Returns:

	[[XYZEquiv],Idup,[UijEquiv],spnflp]

	[XYZEquiv] is list of equivalent positions (XYZ is first entry)

	Idup = [-][C]SS where SS is the symmetry operator number (1-24), C (if not 0,0,0)

	is centering operator number (1-4) and - is for inversion
Cell = unit cell translations needed to put new positions inside cell
[UijEquiv] - equivalent Uij; absent if no Uij given

	+1/-1 for spin inversion of operator - empty if not magnetic

	
GSASIIspc.GenHKL(HKL, SGData)

	Generates all equivlent reflections including Friedel pairs
:param HKL: [h,k,l] must be integral values
:param SGData: space group data obtained from SpcGroup
:returns: array Uniq: equivalent reflections

	
GSASIIspc.GenHKLf(HKL, SGData)

	Uses old GSAS Fortran routine genhkl.for

	Parameters:

	
	HKL – [h,k,l] must be integral values for genhkl.for to work

	SGData – space group data obtained from SpcGroup

	Returns:

	iabsnt,mulp,Uniq,phi

	iabsnt = True if reflection is forbidden by symmetry

	mulp = reflection multiplicity including Friedel pairs

	Uniq = numpy array of equivalent hkl in descending order of h,k,l

	phi = phase offset for each equivalent h,k,l

	
GSASIIspc.GetCSpqinel(SpnFlp, dupDir)

	returns Mxyz terms, multipliers, GUI flags

	
GSASIIspc.GetCSuinel(siteSym)

	returns Uij terms, multipliers, GUI flags & Uiso2Uij multipliers

	
GSASIIspc.GetCSxinel(siteSym)

	returns Xyz terms, multipliers, GUI flags

	
GSASIIspc.GetGenSym(SGData)

	Get the space group generator symbols
:param SGData: from SpcGroup()
LaueSym = (‘-1’,’2/m’,’mmm’,’4/m’,’4/mmm’,’3R’,’3mR’,’3’,’3m1’,’31m’,’6/m’,’6/mmm’,’m3’,’m3m’)
LattSym = (‘P’,’A’,’B’,’C’,’I’,’F’,’R’)

	
GSASIIspc.GetKNsym(key)

	Needs a doc string

	
GSASIIspc.GetLittleGrpOps(SGData, vec)

	Find rotation part of operators that leave vec unchanged

	Parameters:

	
	SGData – space group data structure as defined in SpcGroup above.

	vec – a numpy array of fractional vector coordinates

	Returns:

	Little - list of operators [M,T] that form the little gropu

	
GSASIIspc.GetNXUPQsym(siteSym)

	The codes XUPQ are for lookup of symmetry constraints for position(X), thermal parm(U) & magnetic moments (P & Q)

	
GSASIIspc.GetOprName(key)

	Needs a doc string

	
GSASIIspc.GetOprPtrName(key)

	Needs a doc string

	
GSASIIspc.GetOprPtrNumber(key)

	Needs a doc string

	
GSASIIspc.GetSGSpin(SGData, MSgSym)

	get spin generators from magnetic space group symbol

	
GSASIIspc.HStrainNames(SGData)

	Needs a doc string

	
GSASIIspc.Latt2text(Cen)

	From lattice centering vectors returns ‘;’ delimited cell centering vectors

	
GSASIIspc.MT2text(Opr, reverse=False)

	From space group matrix/translation operator returns text version

	
GSASIIspc.MagSSText2MTS(Opr, G2=False)

	From magnetic super space group cif text returns matrix/translation + spin flip

	
GSASIIspc.MagSytSym(SytSym, dupDir, SGData)

	site sym operations: 1,-1,2,3,-3,4,-4,6,-6,m need to be marked if spin inversion

	
GSASIIspc.MagText2MTS(mcifOpr, CIF=True)

	From magnetic space group cif text returns matrix/translation + spin flip

	
GSASIIspc.MoveToUnitCell(xyz)

	Translates a set of coordinates so that all values are >=0 and < 1

	Parameters:

	xyz – a list or numpy array of fractional coordinates

	Returns:

	XYZ - numpy array of new coordinates now 0 or greater and less than 1

	
GSASIIspc.Muiso2Shkl(muiso, SGData, cell)

	this is to convert isotropic mustrain to generalized Shkls

	
GSASIIspc.MustrainCoeff(HKL, SGData)

	Needs a doc string

	
GSASIIspc.MustrainNames(SGData)

	Needs a doc string

	
GSASIIspc.Opposite(XYZ, toler=0.0002)

	
	Gives opposite corner, edge or face of unit cell for position within tolerance.
	Result may be just outside the cell within tolerance

	Parameters:

	
	XYZ – 0 >= np.array[x,y,z] > 1 as by MoveToUnitCell

	toler – unit cell fraction tolerance making opposite

	Returns:

	XYZ: dict of opposite positions; key=unit cell & always contains XYZ

	
GSASIIspc.SGErrors(IErr)

	Interprets the error message code from SpcGroup. Used in SpaceGroup.

	Parameters:

	IErr – see SGError in SpcGroup()

	Returns:

	ErrString - a string with the error message or “Unknown error”

	
GSASIIspc.SGPrint(SGData, AddInv=False)

	Print the output of SpcGroup in a nicely formatted way. Used in SpaceGroup

	Parameters:

	SGData – from SpcGroup()

	Returns:

	SGText - list of strings with the space group details
SGTable - list of strings for each of the operations

	
GSASIIspc.SGProd(OpA, OpB)

	
	Form space group operator product. OpA & OpB are [M,V] pairs;
	both must be of same dimension (3 or 4). Returns [M,V] pair

	
GSASIIspc.SGPtGroup(SGData)

	Determine point group of the space group - done after space group symbol has
been evaluated by SpcGroup. Only short symbols are allowed

	Parameters:

	SGData – from SpcGroup()

	Returns:

	SSGPtGrp & SSGKl (only defaults for Mono & Ortho)

	
GSASIIspc.SGpolar(SGData)

	Determine identity of polar axes if any

	
GSASIIspc.SSChoice(SGData)

	Gets the unique set of possible super space groups for a given space group

	
GSASIIspc.SSGModCheck(Vec, modSymb, newMod=True)

	Checks modulation vector compatibility with supersymmetry space group symbol.
if newMod: Superspace group symbol takes precidence & the vector will be modified accordingly

	
GSASIIspc.SSGPrint(SGData, SSGData, AddInv=False)

	Print the output of SSpcGroup in a nicely formatted way. Used in SSpaceGroup

	Parameters:

	
	SGData – space group data structure as defined in SpcGroup above.

	SSGData – from SSpcGroup()

	Returns:

	SSGText - list of strings with the superspace group details
SGTable - list of strings for each of the operations

	
GSASIIspc.SSLatt2text(SSGCen)

	Lattice centering vectors to text

	
GSASIIspc.SSMT2text(Opr)

	From superspace group matrix/translation operator returns text version

	
GSASIIspc.SSpaceGroup(SGSymbol, SSymbol)

	Print the output of SSpcGroup in a nicely formatted way.

	Parameters:

	
	SGSymbol – space group symbol with spaces between axial fields.

	SSymbol – superspace group symbol extension (string).

	Returns:

	nothing

	
GSASIIspc.SSpcGroup(SGData, SSymbol)

	Determines supersymmetry information from superspace group name; currently only for (3+1) superlattices

	Parameters:

	
	SGData – space group data structure as defined in SpcGroup above (see SGData).

	SSymbol – superspace group symbol extension (string) defining modulation direction & generator info.

	Returns:

	(SSGError,SSGData)

	SGError = 0 for no errors; >0 for errors (see SGErrors below for details)

	SSGData - is a dict (see Superspace Group object) with entries:

	’SSpGrp’: full superspace group symbol, accidental spaces removed; for display only

	’SSGCen’: 4D cell centering vectors [0,0,0,0] at least

	’SSGOps’: 4D symmetry operations as [M,T] so that M*x+T = x’

	
GSASIIspc.SpaceGroup(SGSymbol)

	Print the output of SpcGroup in a nicely formatted way.

	Parameters:

	SGSymbol – space group symbol (string) with spaces between axial fields

	Returns:

	nothing

	
GSASIIspc.SpcGroup(SGSymbol)

	Determines cell and symmetry information from a short H-M space group name

	Parameters:

	SGSymbol – space group symbol (string) with spaces between axial fields

	Returns:

	(SGError,SGData)

	SGError = 0 for no errors; >0 for errors (see SGErrors() for details)

	SGData - is a dict (see Space Group object) with entries:

	’SpGrp’: space group symbol, slightly cleaned up

	’SGFixed’: True if space group data can not be changed, e.g. from magnetic cif; otherwise False

	’SGGray’: True if 1’ in symbol - gray group for mag. incommensurate phases

	’SGLaue’: one of ‘-1’, ‘2/m’, ‘mmm’, ‘4/m’, ‘4/mmm’, ‘3R’,
‘3mR’, ‘3’, ‘3m1’, ‘31m’, ‘6/m’, ‘6/mmm’, ‘m3’, ‘m3m’

	’SGInv’: boolean; True if centrosymmetric, False if not

	’SGLatt’: one of ‘P’, ‘A’, ‘B’, ‘C’, ‘I’, ‘F’, ‘R’

	’SGUniq’: one of ‘a’, ‘b’, ‘c’ if monoclinic, ‘’ otherwise

	’SGCen’: cell centering vectors [0,0,0] at least

	’SGOps’: symmetry operations as [M,T] so that M*x+T = x’

	’SGSys’: one of ‘triclinic’, ‘monoclinic’, ‘orthorhombic’,
‘tetragonal’, ‘rhombohedral’, ‘trigonal’, ‘hexagonal’, ‘cubic’

	’SGPolax’: one of ‘ ‘, ‘x’, ‘y’, ‘x y’, ‘z’, ‘x z’, ‘y z’,
‘xyz’, ‘111’ for arbitrary axes

	’SGPtGrp’: one of 32 point group symbols (with some permutations), which
is filled by SGPtGroup, is external (KE) part of supersymmetry point group

	’SSGKl’: default internal (Kl) part of supersymmetry point group; modified
in supersymmetry stuff depending on chosen modulation vector for Mono & Ortho

	’BNSlattsym’: BNS lattice symbol & cenering op - used for magnetic structures

	
GSASIIspc.StandardizeSpcName(spcgroup)

	Accept a spacegroup name where spaces may have not been used
in the names according to the GSAS convention (spaces between symmetry
for each axis) and return the space group name as used in GSAS

	
GSASIIspc.StringOpsProd(A, B, SGData)

	Find A*B where A & B are in strings ‘-’ + ‘100*c+n’ + ‘+ijk’
where ‘-’ indicates inversion, c(>0) is the cell centering operator,
n is operator number from SgOps and ijk are unit cell translations (each may be <0).
Should return resultant string - C. SGData - dictionary using entries:

	‘SGCen’: cell centering vectors [0,0,0] at least

	‘SGOps’: symmetry operations as [M,T] so that M*x+T = x’

	
GSASIIspc.SytSym(XYZ, SGData)

	Generates the number of equivalent positions and a site symmetry code for a specified coordinate and space group

	Parameters:

	
	XYZ – an array, tuple or list containing 3 elements: x, y & z

	SGData – from SpcGroup

	Returns:

	a four element tuple:

	The 1st element is a code for the site symmetry (see GetKNsym)

	The 2nd element is the site multiplicity

	Ndup number of overlapping operators

	dupDir Dict - dictionary of overlapping operators

	
GSASIIspc.Text2MT(mcifOpr, CIF=True)

	From space group cif text returns matrix/translation

	
GSASIIspc.TextOps(text, table, reverse=False)

	Makes formatted operator list
:param text,table: arrays of text made by SGPrint
:param reverse: True for x+1/2 form; False for 1/2+x form
:returns: OpText: full list of symmetry operators; one operation per line
generally printed to console for use via cut/paste in other programs, but
could be used for direct input

	
GSASIIspc.Trans2Text(Trans)

	from transformation matrix to text

	
GSASIIspc.UpdateSytSym(Phase)

	Update site symmetry/site multiplicity after space group/BNS lattice change

	
GSASIIspc.altSettingOrtho = {'A b a 2': {'abc': 'A b a 2', 'acb': 'A c 2 a', 'bac': 'B b a 2', 'bca': 'C c 2 a', 'cab': 'B 2 c b', 'cba': 'C 2 c b'}, 'A b m 2': {'abc': 'A b m 2', 'acb': 'A c 2 m', 'bac': 'B m a 2', 'bca': 'C m 2 a', 'cab': 'B 2 c m', 'cba': 'C 2 m b'}, 'A m a 2': {'abc': 'A m a 2', 'acb': 'A m 2 a', 'bac': 'B b m 2', 'bca': 'C c 2 m', 'cab': 'B 2 m b', 'cba': 'C 2 c m'}, 'A m m 2': {'abc': 'A m m 2', 'acb': 'A m 2 m', 'bac': 'B m m 2', 'bca': 'C m 2 m', 'cab': 'B 2 m m', 'cba': 'C 2 m m'}, 'C 2 2 2': {'abc': 'C 2 2 2', 'acb': 'B 2 2 2', 'bac': 'C 2 2 2', 'bca': 'B 2 2 2', 'cab': 'A 2 2 2', 'cba': 'A 2 2 2'}, 'C 2 2 21': {'abc': 'C 2 2 21', 'acb': 'B 2 21 2', 'bac': 'C 2 2 21', 'bca': 'B 2 21 2', 'cab': 'A 21 2 2', 'cba': 'A 21 2 2'}, 'C c c 2': {'abc': 'C c c 2', 'acb': 'B b 2 b', 'bac': 'C c c 2', 'bca': 'B b 2 b', 'cab': 'A 2 a a', 'cba': 'A 2 a a'}, 'C c c a': {'abc': 'C c a a', 'acb': 'B b a b', 'bac': 'C c c b', 'bca': 'B b c b', 'cab': 'A b a a', 'cba': 'A c a a'}, 'C c c m': {'abc': 'C c c m', 'acb': 'B b m b', 'bac': 'C c c m', 'bca': 'B b m b', 'cab': 'A m a a', 'cba': 'A m a a'}, 'C m c 21': {'abc': 'C m c 21', 'acb': 'B m 21 b', 'bac': 'C c m 21', 'bca': 'B b 21 m', 'cab': 'A 21 m a', 'cba': 'A 21 a m'}, 'C m c a': {'abc': 'C m c a', 'acb': 'B m a b', 'bac': 'C c m b', 'bca': 'B b c m', 'cab': 'A b m a', 'cba': 'A c a m'}, 'C m c m': {'abc': 'C m c m', 'acb': 'B m m b', 'bac': 'C c m m', 'bca': 'B b m m', 'cab': 'A m m a', 'cba': 'A m a m'}, 'C m m 2': {'abc': 'C m m 2', 'acb': 'B m 2 m', 'bac': 'C m m 2', 'bca': 'B m 2 m', 'cab': 'A 2 m m', 'cba': 'A 2 m m'}, 'C m m a': {'abc': 'C m m a', 'acb': 'B m a m', 'bac': 'C m m b', 'bca': 'B m c m', 'cab': 'A b m m', 'cba': 'A c m m'}, 'C m m m': {'abc': 'C m m m', 'acb': 'B m m m', 'bac': 'C m m m', 'bca': 'B m m m', 'cab': 'A m m m', 'cba': 'A m m m'}, 'F 2 2 2': {'abc': 'F 2 2 2', 'acb': 'F 2 2 2', 'bac': 'F 2 2 2', 'bca': 'F 2 2 2', 'cab': 'F 2 2 2', 'cba': 'F 2 2 2'}, 'F d d 2': {'abc': 'F d d 2', 'acb': 'F d 2 d', 'bac': 'F d d 2', 'bca': 'F d 2 d', 'cab': 'F 2 d d', 'cba': 'F 2 d d'}, 'F d d d': {'abc': 'F d d d', 'acb': 'F d d d', 'bac': 'F d d d', 'bca': 'F d d d', 'cab': 'F d d d', 'cba': 'F d d d'}, 'F m m 2': {'abc': 'F m m 2', 'acb': 'F m 2 m', 'bac': 'F m m 2', 'bca': 'F m 2 m', 'cab': 'F 2 m m', 'cba': 'F 2 m m'}, 'F m m m': {'abc': 'F m m m', 'acb': 'F m m m', 'bac': 'F m m m', 'bca': 'F m m m', 'cab': 'F m m m', 'cba': 'F m m m'}, 'I 2 2 2': {'abc': 'I 2 2 2', 'acb': 'I 2 2 2', 'bac': 'I 2 2 2', 'bca': 'I 2 2 2', 'cab': 'I 2 2 2', 'cba': 'I 2 2 2'}, 'I 21 21 21': {'abc': 'I 21 21 21', 'acb': 'I 21 21 21', 'bac': 'I 21 21 21', 'bca': 'I 21 21 21', 'cab': 'I 21 21 21', 'cba': 'I 21 21 21'}, 'I b a 2': {'abc': 'I b a 2', 'acb': 'I c 2 a', 'bac': 'I b a 2', 'bca': 'I c 2 a', 'cab': 'I 2 c b', 'cba': 'I 2 c b'}, 'I b a m': {'abc': 'I b a m', 'acb': 'I c m a', 'bac': 'I b a m', 'bca': 'I c m a', 'cab': 'I m c b', 'cba': 'I m c b'}, 'I b c a': {'abc': 'I b c a', 'acb': 'I c a b', 'bac': 'I c a b', 'bca': 'I b c a', 'cab': 'I b c a', 'cba': 'I c a b'}, 'I m a 2': {'abc': 'I m a 2', 'acb': 'I m 2 a', 'bac': 'I b m 2', 'bca': 'I c 2 m', 'cab': 'I 2 m b', 'cba': 'I 2 c m'}, 'I m m 2': {'abc': 'I m m 2', 'acb': 'I m 2 m', 'bac': 'I m m 2', 'bca': 'I m 2 m', 'cab': 'I 2 m m', 'cba': 'I 2 m m'}, 'I m m a': {'abc': 'I m m a', 'acb': 'I m a m', 'bac': 'I m m b', 'bca': 'I m c m', 'cab': 'I b m m', 'cba': 'I c m m'}, 'I m m m': {'abc': 'I m m m', 'acb': 'I m m m', 'bac': 'I m m m', 'bca': 'I m m m', 'cab': 'I m m m', 'cba': 'I m m m'}, 'P 2 2 2': {'abc': 'P 2 2 2', 'acb': 'P 2 2 2', 'bac': 'P 2 2 2', 'bca': 'P 2 2 2', 'cab': 'P 2 2 2', 'cba': 'P 2 2 2'}, 'P 2 2 21': {'abc': 'P 2 2 21', 'acb': 'P 2 21 2', 'bac': 'P 2 2 21', 'bca': 'P 2 21 2', 'cab': 'P 21 2 2', 'cba': 'P 21 2 2'}, 'P 21 21 2': {'abc': 'P 21 21 2', 'acb': 'P 21 2 21', 'bac': 'P 21 21 2', 'bca': 'P 21 2 21', 'cab': 'P 2 21 21', 'cba': 'P 2 21 21'}, 'P 21 21 21': {'abc': 'P 21 21 21', 'acb': 'P 21 21 21', 'bac': 'P 21 21 21', 'bca': 'P 21 21 21', 'cab': 'P 21 21 21', 'cba': 'P 21 21 21'}, 'P b a 2': {'abc': 'P b a 2', 'acb': 'P c 2 a', 'bac': 'P b a 2', 'bca': 'P c 2 a', 'cab': 'P 2 c b', 'cba': 'P 2 c b'}, 'P b a m': {'abc': 'P b a m', 'acb': 'P c m a', 'bac': 'P b a m', 'bca': 'P c m a', 'cab': 'P m c b', 'cba': 'P m c b'}, 'P b a n': {'abc': 'P b a n', 'acb': 'P c n a', 'bac': 'P b a n', 'bca': 'P c n a', 'cab': 'P n c b', 'cba': 'P n c b'}, 'P b c a': {'abc': 'P b c a', 'acb': 'P c a b', 'bac': 'P c a b', 'bca': 'P b c a', 'cab': 'P b c a', 'cba': 'P c a b'}, 'P b c m': {'abc': 'P b c m', 'acb': 'P c m b', 'bac': 'P c a m', 'bca': 'P b m a', 'cab': 'P m c a', 'cba': 'P m a b'}, 'P b c n': {'abc': 'P b c n', 'acb': 'P c n b', 'bac': 'P c a n', 'bca': 'P b n a', 'cab': 'P n c a', 'cba': 'P n a b'}, 'P c a 21': {'abc': 'P c a 21', 'acb': 'P b 21 a', 'bac': 'P b c 21', 'bca': 'P c 21 b', 'cab': 'P 21 a b', 'cba': 'P 21 c a'}, 'P c c 2': {'abc': 'P c c 2', 'acb': 'P b 2 b', 'bac': 'P c c 2', 'bca': 'P b 2 b', 'cab': 'P 2 a a', 'cba': 'P 2 a a'}, 'P c c a': {'abc': 'P c c a', 'acb': 'P b a b', 'bac': 'P c c b', 'bca': 'P b c b', 'cab': 'P b a a', 'cba': 'P c a a'}, 'P c c m': {'abc': 'P c c m', 'acb': 'P b m b', 'bac': 'P c c m', 'bca': 'P b m b', 'cab': 'P m a a', 'cba': 'P m a a'}, 'P c c n': {'abc': 'P c c n', 'acb': 'P b n b', 'bac': 'P c c n', 'bca': 'P b n b', 'cab': 'P n a a', 'cba': 'P n a a'}, 'P m a 2': {'abc': 'P m a 2', 'acb': 'P m 2 a', 'bac': 'P b m 2', 'bca': 'P c 2 m', 'cab': 'P 2 m b', 'cba': 'P 2 c m'}, 'P m c 21': {'abc': 'P m c 21', 'acb': 'P m 21 b', 'bac': 'P c m 21', 'bca': 'P b 21 m', 'cab': 'P 21 m a', 'cba': 'P 21 a m'}, 'P m m 2': {'abc': 'P m m 2', 'acb': 'P m 2 m', 'bac': 'P m m 2', 'bca': 'P m 2 m', 'cab': 'P 2 m m', 'cba': 'P 2 m m'}, 'P m m a': {'abc': 'P m m a', 'acb': 'P m a m', 'bac': 'P m m b', 'bca': 'P m c m', 'cab': 'P b m m', 'cba': 'P c m m'}, 'P m m m': {'abc': 'P m m m', 'acb': 'P m m m', 'bac': 'P m m m', 'bca': 'P m m m', 'cab': 'P m m m', 'cba': 'P m m m'}, 'P m m n': {'abc': 'P m m n', 'acb': 'P m n m', 'bac': 'P m m n', 'bca': 'P m n m', 'cab': 'P n m m', 'cba': 'P n m m'}, 'P m n 21': {'abc': 'P m n 21', 'acb': 'P m 21 n', 'bac': 'P n m 21', 'bca': 'P n 21 m', 'cab': 'P 21 m n', 'cba': 'P 21 n m'}, 'P m n a': {'abc': 'P m n a', 'acb': 'P m a n', 'bac': 'P n m b', 'bca': 'P n c m', 'cab': 'P b m n', 'cba': 'P c n m'}, 'P n a 21': {'abc': 'P n a 21', 'acb': 'P n 21 a', 'bac': 'P b n 21', 'bca': 'P c 21 n', 'cab': 'P 21 n b', 'cba': 'P 21 c n'}, 'P n c 2': {'abc': 'P n c 2', 'acb': 'P n 2 b', 'bac': 'P c n 2', 'bca': 'P b 2 n', 'cab': 'P 2 n a', 'cba': 'P 2 a n'}, 'P n m a': {'abc': 'P n m a', 'acb': 'P n a m', 'bac': 'P m n b', 'bca': 'P m c n', 'cab': 'P b n m', 'cba': 'P c m n'}, 'P n n 2': {'abc': 'P n n 2', 'acb': 'P n 2 n', 'bac': 'P n n 2', 'bca': 'P n 2 n', 'cab': 'P 2 n n', 'cba': 'P 2 n n'}, 'P n n a': {'abc': 'P n n a', 'acb': 'P n a n', 'bac': 'P n n b', 'bca': 'P n c n', 'cab': 'P b n n', 'cba': 'P c n n'}, 'P n n m': {'abc': 'P n n m', 'acb': 'P n m n', 'bac': 'P n n m', 'bca': 'P n m n', 'cab': 'P m n n', 'cba': 'P m n n'}, 'P n n n': {'abc': 'P n n n', 'acb': 'P n n n', 'bac': 'P n n n', 'bca': 'P n n n', 'cab': 'P n n n', 'cba': 'P n n n'}}

	A dictionary of alternate settings for orthorhombic unit cells

	
GSASIIspc.checkHKLextc(HKL, SGData)

	Checks if reflection extinct - does not check centering

	Parameters:

	
	HKL – [h,k,l]

	SGData – space group data obtained from SpcGroup

	Returns:

	True if extinct; False if allowed

	
GSASIIspc.checkMagextc(HKL, SGData)

	Checks if reflection magnetically extinct; does fullcheck (centering, too)
uses algorthm from Gallego, et al., J. Appl. Cryst. 45, 1236-1247 (2012)

	Parameters:

	
	HKL – [h,k,l]

	SGData – space group data obtained from SpcGroup; must have magnetic symmetry SpnFlp data

	Returns:

	True if magnetically extinct; False if allowed (to match GenHKLf)

	
GSASIIspc.fixMono(SpGrp)

	fixes b-unique monoclinics in e.g. P 1 2/1c 1 –> P 21/c

	
GSASIIspc.fullHM2shortHM(SpcGp)

	Accepts a full H-M space group symbol and returns a short H-M symbol that the space group
interpreter can translate

	
GSASIIspc.selftestlist = [<function test0>, <function test1>, <function test2>, <function test3>]

	Defines a list of self-tests

	
GSASIIspc.sgequiv_2002_orthorhombic = {'AE2A': 'A c 2 a', 'AE2M': 'A c 2 m', 'AEA2': 'A b a 2', 'AEAA': 'A b a a', 'AEAM': 'A c a m', 'AEM2': 'A b m 2', 'AEMA': 'A b m a', 'AEMM': 'A b m m', 'B2EB': 'B 2 c b', 'B2EM': 'B 2 c m', 'BBE2': 'B b a 2', 'BBEB': 'B b c b', 'BBEM': 'B b c m', 'BME2': 'B m a 2', 'BMEB': 'B m a b', 'BMEM': 'B m c m', 'C2CE': 'C 2 c b', 'C2ME': 'C 2 m b', 'CC2E': 'C c 2 a', 'CCCE': 'C c c a', 'CCME': 'C c m b', 'CM2E': 'C m 2 a', 'CMCE': 'C m c a', 'CMME': 'C m m a'}

	A dictionary of orthorhombic space groups that were renamed in the 2002 Volume A,
along with the pre-2002 name. The e designates a double glide-plane

	
GSASIIspc.spg2origins = {'A b a a': [-0.25, 0, -0.25], 'A c a a': [-0.25, -0.25, 0], 'B b a b': [0, -0.25, -0.25], 'B b c b': [-0.25, -0.25, 0], 'C c c a': [0, -0.25, -0.25], 'C c c b': [-0.25, 0, -0.25], 'F d - c': [-0.375, -0.375, -0.375], 'F d -3': [-0.125, -0.125, -0.125], 'F d -3 c': [-0.375, -0.375, -0.375], 'F d -3 m': [-0.125, -0.125, -0.125], 'F d 3': [-0.125, -0.125, -0.125], 'F d 3 m': [-0.125, -0.125, -0.125], 'F d d d': [-0.125, -0.125, -0.125], 'I 41/a': [0, -0.25, -0.125], 'I 41/a c d': [0, 0.25, -0.125], 'I 41/a m d': [0, 0.25, -0.125], 'P 4/n': [-0.25, -0.25, 0], 'P 4/n b m': [-0.25, -0.25, 0], 'P 4/n c c': [-0.25, -0.25, 0], 'P 4/n m m': [-0.25, -0.25, 0], 'P 4/n n c': [-0.25, -0.25, -0.25], 'P 42/n': [-0.25, -0.25, -0.25], 'P 42/n b c': [-0.25, -0.25, -0.25], 'P 42/n c m': [-0.25, 0.25, -0.25], 'P 42/n m c': [-0.25, 0.25, -0.25], 'P 42/n n m': [-0.25, 0.25, -0.25], 'P b a n': [-0.25, -0.25, 0], 'P c n a': [-0.25, 0, -0.25], 'P m m n': [-0.25, -0.25, 0], 'P m n m': [-0.25, 0, -0.25], 'P n -3 m': [-0.25, -0.25, -0.25], 'P n -3 n': [-0.25, -0.25, -0.25], 'P n 3 m': [-0.25, -0.25, -0.25], 'P n 3 n': [-0.25, -0.25, -0.25], 'P n c b': [0, -0.25, -0.25], 'P n m m': [0, -0.25, -0.25], 'P n n n': [-0.25, -0.25, -0.25], 'p n -3': [-0.25, -0.25, -0.25], 'p n 3': [-0.25, -0.25, -0.25]}

	A dictionary of all spacegroups that have 2nd settings; the value is the
1st –> 2nd setting transformation vector as X(2nd) = X(1st)-V, nonstandard ones are included.

	
GSASIIspc.spgbyNum = [None, 'P 1', 'P -1', 'P 2', 'P 21', 'C 2', 'P m', 'P c', 'C m', 'C c', 'P 2/m', 'P 21/m', 'C 2/m', 'P 2/c', 'P 21/c', 'C 2/c', 'P 2 2 2', 'P 2 2 21', 'P 21 21 2', 'P 21 21 21', 'C 2 2 21', 'C 2 2 2', 'F 2 2 2', 'I 2 2 2', 'I 21 21 21', 'P m m 2', 'P m c 21', 'P c c 2', 'P m a 2', 'P c a 21', 'P n c 2', 'P m n 21', 'P b a 2', 'P n a 21', 'P n n 2', 'C m m 2', 'C m c 21', 'C c c 2', 'A m m 2', 'A b m 2', 'A m a 2', 'A b a 2', 'F m m 2', 'F d d 2', 'I m m 2', 'I b a 2', 'I m a 2', 'P m m m', 'P n n n', 'P c c m', 'P b a n', 'P m m a', 'P n n a', 'P m n a', 'P c c a', 'P b a m', 'P c c n', 'P b c m', 'P n n m', 'P m m n', 'P b c n', 'P b c a', 'P n m a', 'C m c m', 'C m c a', 'C m m m', 'C c c m', 'C m m a', 'C c c a', 'F m m m', 'F d d d', 'I m m m', 'I b a m', 'I b c a', 'I m m a', 'P 4', 'P 41', 'P 42', 'P 43', 'I 4', 'I 41', 'P -4', 'I -4', 'P 4/m', 'P 42/m', 'P 4/n', 'P 42/n', 'I 4/m', 'I 41/a', 'P 4 2 2', 'P 4 21 2', 'P 41 2 2', 'P 41 21 2', 'P 42 2 2', 'P 42 21 2', 'P 43 2 2', 'P 43 21 2', 'I 4 2 2', 'I 41 2 2', 'P 4 m m', 'P 4 b m', 'P 42 c m', 'P 42 n m', 'P 4 c c', 'P 4 n c', 'P 42 m c', 'P 42 b c', 'I 4 m m', 'I 4 c m', 'I 41 m d', 'I 41 c d', 'P -4 2 m', 'P -4 2 c', 'P -4 21 m', 'P -4 21 c', 'P -4 m 2', 'P -4 c 2', 'P -4 b 2', 'P -4 n 2', 'I -4 m 2', 'I -4 c 2', 'I -4 2 m', 'I -4 2 d', 'P 4/m m m', 'P 4/m c c', 'P 4/n b m', 'P 4/n n c', 'P 4/m b m', 'P 4/m n c', 'P 4/n m m', 'P 4/n c c', 'P 42/m m c', 'P 42/m c m', 'P 42/n b c', 'P 42/n n m', 'P 42/m b c', 'P 42/m n m', 'P 42/n m c', 'P 42/n c m', 'I 4/m m m', 'I 4/m c m', 'I 41/a m d', 'I 41/a c d', 'P 3', 'P 31', 'P 32', 'R 3', 'P -3', 'R -3', 'P 3 1 2', 'P 3 2 1', 'P 31 1 2', 'P 31 2 1', 'P 32 1 2', 'P 32 2 1', 'R 3 2', 'P 3 m 1', 'P 3 1 m', 'P 3 c 1', 'P 3 1 c', 'R 3 m', 'R 3 c', 'P -3 1 m', 'P -3 1 c', 'P -3 m 1', 'P -3 c 1', 'R -3 m', 'R -3 c', 'P 6', 'P 61', 'P 65', 'P 62', 'P 64', 'P 63', 'P -6', 'P 6/m', 'P 63/m', 'P 6 2 2', 'P 61 2 2', 'P 65 2 2', 'P 62 2 2', 'P 64 2 2', 'P 63 2 2', 'P 6 m m', 'P 6 c c', 'P 63 c m', 'P 63 m c', 'P -6 m 2', 'P -6 c 2', 'P -6 2 m', 'P -6 2 c', 'P 6/m m m', 'P 6/m c c', 'P 63/m c m', 'P 63/m m c', 'P 2 3', 'F 2 3', 'I 2 3', 'P 21 3', 'I 21 3', 'P m 3', 'P n 3', 'F m -3', 'F d -3', 'I m -3', 'P a -3', 'I a -3', 'P 4 3 2', 'P 42 3 2', 'F 4 3 2', 'F 41 3 2', 'I 4 3 2', 'P 43 3 2', 'P 41 3 2', 'I 41 3 2', 'P -4 3 m', 'F -4 3 m', 'I -4 3 m', 'P -4 3 n', 'F -4 3 c', 'I -4 3 d', 'P m -3 m', 'P n -3 n', 'P m -3 n', 'P n -3 m', 'F m -3 m', 'F m -3 c', 'F d -3 m', 'F d -3 c', 'I m -3 m', 'I a -3 d']

	Space groups indexed by number

	
GSASIIspc.spglist = {'A2/m': ('A 2', 'A m', 'A a', 'A n', 'A 2/m', 'A 2/a', 'A 2/n'), 'Ammm': ('A 21 2 2', 'A 2 2 2', 'A 2 m m', 'A 21 m a', 'A 21 a m', 'A 2 a a', 'A m 2 m', 'A m m 2', 'A b m 2', 'A c 2 m', 'A m a 2', 'A m 2 a', 'A b a 2', 'A c 2 a', 'A m m a', 'A m a m', 'A b m a', 'A c a m', 'A m m m', 'A m a a', 'A b m m', 'A c m m', 'A c a a', 'A b a a'), 'Bmmm': ('B 2 21 2', 'B 2 2 2', 'B m 2 m', 'B m 21 b', 'B b 21 m', 'B b 2 b', 'B m m 2', 'B 2 m m', 'B 2 c m', 'B m a 2', 'B 2 m b', 'B b m 2', 'B 2 c b', 'B b a 2', 'B b m m', 'B m m b', 'B b c m', 'B m a b', 'B m m m', 'B b m b', 'B m a m', 'B m c m', 'B b a b', 'B b c b'), 'C1': ('C 1', 'C -1'), 'C2/m': ('C 2', 'C m', 'C c', 'C n', 'C 2/m', 'C 2/c', 'C 2/n'), 'Cmmm': ('C 2 2 21', 'C 2 2 2', 'C m m 2', 'C m c 21', 'C c m 21', 'C c c 2', 'C m 2 m', 'C 2 m m', 'C m 2 a', 'C 2 m b', 'C c 2 m', 'C 2 c m', 'C c 2 a', 'C 2 c b', 'C m c m', 'C c m m', 'C m c a', 'C c m b', 'C m m m', 'C c c m', 'C m m a', 'C m m b', 'C c c a', 'C c c b'), 'Fm3m': ('F 2 3', 'F m 3', 'F m -3', 'F d 3', 'F d -3', 'F 4 3 2', 'F 41 3 2', 'F -4 3 m', 'F -4 3 c', 'F m 3 m', 'F m -3 m', 'F m 3 c', 'F m -3 c', 'F d 3 m', 'F d -3 m', 'F d 3 c', 'F d -3 c'), 'Fmmm': ('F 2 2 2', 'F m m m', 'F d d d', 'F m m 2', 'F m 2 m', 'F 2 m m', 'F d d 2', 'F d 2 d', 'F 2 d d'), 'I2/m': ('I 2', 'I m', 'I a', 'I n', 'I c', 'I 2/m', 'I 2/a', 'I 2/c', 'I 2/n'), 'I4/mmm': ('I 4', 'I 41', 'I -4', 'I 4/m', 'I 41/a', 'I 4 2 2', 'I 41 2 2', 'I 4 m m', 'I 4 c m', 'I 41 m d', 'I 41 c d', 'I -4 m 2', 'I -4 c 2', 'I -4 2 m', 'I -4 2 d', 'I 4/m m m', 'I 4/m c m', 'I 41/a m d', 'I 41/a c d'), 'Im3m': ('I 2 3', 'I 21 3', 'I m 3', 'I m -3', 'I a 3', 'I a -3', 'I 4 3 2', 'I 41 3 2', 'I -4 3 m', 'I -4 3 d', 'I m -3 m', 'I m 3 m', 'I a 3 d', 'I a -3 d', 'I n 3 n', 'I n -3 n'), 'Immm': ('I 2 2 2', 'I 21 21 21', 'I m m 2', 'I m 2 m', 'I 2 m m', 'I b a 2', 'I 2 c b', 'I c 2 a', 'I m a 2', 'I 2 m b', 'I c 2 m', 'I m 2 a', 'I b m 2', 'I 2 c m', 'I m m m', 'I b a m', 'I m c b', 'I c m a', 'I b c a', 'I c a b', 'I m m a', 'I b m m ', 'I m c m', 'I m a m', 'I m m b', 'I c m m'), 'P1': ('P 1', 'P -1'), 'P2/m': ('P 2', 'P 21', 'P m', 'P a', 'P c', 'P n', 'P 2/m', 'P 21/m', 'P 2/c', 'P 2/a', 'P 2/n', 'P 21/c', 'P 21/a', 'P 21/n'), 'P4/mmm': ('P 4', 'P 41', 'P 42', 'P 43', 'P -4', 'P 4/m', 'P 42/m', 'P 4/n', 'P 42/n', 'P 4 2 2', 'P 4 21 2', 'P 41 2 2', 'P 41 21 2', 'P 42 2 2', 'P 42 21 2', 'P 43 2 2', 'P 43 21 2', 'P 4 m m', 'P 4 b m', 'P 42 c m', 'P 42 n m', 'P 4 c c', 'P 4 n c', 'P 42 m c', 'P 42 b c', 'P -4 2 m', 'P -4 2 c', 'P -4 21 m', 'P -4 21 c', 'P -4 m 2', 'P -4 c 2', 'P -4 b 2', 'P -4 n 2', 'P 4/m m m', 'P 4/m c c', 'P 4/n b m', 'P 4/n n c', 'P 4/m b m', 'P 4/m n c', 'P 4/n m m', 'P 4/n c c', 'P 42/m m c', 'P 42/m c m', 'P 42/n b c', 'P 42/n n m', 'P 42/m b c', 'P 42/m n m', 'P 42/n m c', 'P 42/n c m'), 'P6/mmm': ('P 3', 'P 31', 'P 32', 'P -3', 'P 3 1 2', 'P 3 2 1', 'P 31 1 2', 'P 31 2 1', 'P 32 1 2', 'P 32 2 1', 'P 3 m 1', 'P 3 1 m', 'P 3 c 1', 'P 3 1 c', 'P -3 1 m', 'P -3 1 c', 'P -3 m 1', 'P -3 c 1', 'P 6', 'P 61', 'P 65', 'P 62', 'P 64', 'P 63', 'P -6', 'P 6/m', 'P 63/m', 'P 6 2 2', 'P 61 2 2', 'P 65 2 2', 'P 62 2 2', 'P 64 2 2', 'P 63 2 2', 'P 6 m m', 'P 6 c c', 'P 63 c m', 'P 63 m c', 'P -6 m 2', 'P -6 c 2', 'P -6 2 m', 'P -6 2 c', 'P 6/m m m', 'P 6/m c c', 'P 63/m c m', 'P 63/m m c'), 'Pm3m': ('P 2 3', 'P 21 3', 'P m 3', 'P m -3', 'P n 3', 'P n -3', 'P a 3', 'P a -3', 'P 4 3 2', 'P 42 3 2', 'P 43 3 2', 'P 41 3 2', 'P -4 3 m', 'P -4 3 n', 'P m 3 m', 'P m -3 m', 'P n 3 n', 'P n -3 n', 'P m 3 n', 'P m -3 n', 'P n 3 m', 'P n -3 m'), 'Pmmm': ('P 2 2 2', 'P 2 2 21', 'P 21 2 2', 'P 2 21 2', 'P 21 21 2', 'P 2 21 21', 'P 21 2 21', 'P 21 21 21', 'P m m 2', 'P 2 m m', 'P m 2 m', 'P m c 21', 'P 21 m a', 'P b 21 m', 'P m 21 b', 'P c m 21', 'P 21 a m', 'P c c 2', 'P 2 a a', 'P b 2 b', 'P m a 2', 'P 2 m b', 'P c 2 m', 'P m 2 a', 'P b m 2', 'P 2 c m', 'P c a 21', 'P 21 a b', 'P c 21 b', 'P b 21 a', 'P b c 21', 'P 21 c a', 'P n c 2', 'P 2 n a', 'P b 2 n', 'P n 2 b', 'P c n 2', 'P 2 a n', 'P m n 21', 'P 21 m n', 'P n 21 m', 'P m 21 n', 'P n m 21', 'P 21 n m', 'P b a 2', 'P 2 c b', 'P c 2 a', 'P n a 21', 'P 21 n b', 'P c 21 n', 'P n 21 a', 'P b n 21', 'P 21 c n', 'P n n 2', 'P 2 n n', 'P n 2 n', 'P m m m', 'P n n n', 'P c c m', 'P m a a', 'P b m b', 'P b a n', 'P n c b', 'P c n a', 'P m m a', 'P b m m', 'P m c m', 'P m a m', 'P m m b', 'P c m m', 'P n n a', 'P b n n', 'P n c n', 'P n a n', 'P n n b', 'P c n n', 'P m n a', 'P b m n', 'P n c m', 'P m a n', 'P n m b', 'P c n m', 'P c c a', 'P b a a', 'P b c b', 'P b a b', 'P c c b', 'P c a a', 'P b a m', 'P m c b', 'P c m a', 'P c c n', 'P n a a', 'P b n b', 'P b c m', 'P m c a', 'P b m a', 'P c m b', 'P c a m', 'P m a b', 'P n n m', 'P m n n', 'P n m n', 'P m m n', 'P n m m', 'P m n m', 'P b c n', 'P n c a', 'P b n a', 'P c n b', 'P c a n', 'P n a b', 'P b c a', 'P c a b', 'P n m a', 'P b n m', 'P m c n', 'P n a m', 'P m n b', 'P c m n'), 'R3-H': ('R 3', 'R -3', 'R 3 2', 'R 3 m', 'R 3 c', 'R -3 m', 'R -3 c')}

	A dictionary of space groups as ordered and named in the pre-2002 International
Tables Volume A, except that spaces are used following the GSAS convention to
separate the different crystallographic directions.
Note that the symmetry codes here will recognize many non-standard space group
symbols with different settings. They are ordered by Laue group

	
GSASIIspc.splitSSsym(SSymbol)

	Splits supersymmetry symbol into two lists of strings

	
GSASIIspc.test0()

	self-test #0: exercise MoveToUnitCell

	
GSASIIspc.test1()

	self-test #1: SpcGroup against previous results

	
GSASIIspc.test2()

	self-test #2: SpcGroup against cctbx (sgtbx) computations

	
GSASIIspc.test3()

	self-test #3: exercise SytSym (includes GetOprPtrName, GenAtom, GetKNsym)
for selected space groups against info in IT Volume A

4.7. GSASIIfiles: data (non-GUI) I/O routines

Module with miscellaneous routines for input and output from files.

4.7.1. GSASIIfiles Classes & Routines

This module should not contain any references to wxPython so that it
can be imported for scriptable use or potentially on clients where
wx is not installed.

Future refactoring: Module GSASIIIO needs some work to
move non-wx routines to here and wx routines to a GSASII*GUI.py file.
It will likely make sense to rename the GSASIIIO module after that is done.

	
GSASIIfiles.FormatPadValue(val, maxdigits=None)

	Format a float to fit in maxdigits[0] spaces with maxdigits[1] after decimal.

	Parameters:

	
	val (float) – number to be formatted.

	maxdigits (list) – the number of digits & places after decimal to be used for display of the
number (defaults to [10,2]).

	Returns:

	a string with exactly maxdigits[0] characters (except under error conditions),
but last character will always be a space

	
GSASIIfiles.FormatSigFigs(val, maxdigits=10, sigfigs=5, treatAsZero=1e-20)

	Format a float to use maxdigits or fewer digits with sigfigs
significant digits showing (if room allows).

	Parameters:

	
	val (float) – number to be formatted.

	maxdigits (int) – the number of digits to be used for display of the
number (defaults to 10).

	sigfigs (int) – the number of significant figures to use, if room allows

	treatAsZero (float) – numbers that are less than this in magnitude
are treated as zero. Defaults to 1.0e-20, but this can be disabled
if set to None.

	Returns:

	a string with <= maxdigits characters (I hope).

	
GSASIIfiles.FormatValue(val, maxdigits=None)

	Format a float to fit in at most maxdigits[0] spaces with maxdigits[1] after decimal.
Note that this code has been hacked from FormatSigFigs and may have unused sections.

	Parameters:

	
	val (float) – number to be formatted.

	maxdigits (list) – the number of digits, places after decimal and ‘f’ or ‘g’ to be used for display of the
number (defaults to [10,2,’f’]).

	Returns:

	a string with <= maxdigits characters (usually).

	
GSASIIfiles.FormulaEval(string)

	Evaluates a algebraic formula into a float, if possible. Works
properly on fractions e.g. 2/3 only with python 3.0+ division.

Expressions such as 2/3, 3*pi, sin(45)/2, 2*sqrt(2), 2**10 can all
be evaluated.

	Parameters:

	string (str) – Character string containing a Python expression
to be evaluated.

	Returns:

	the value for the expression as a float or None if the expression does not
evaluate to a valid number.

	
GSASIIfiles.G2Print(*args, **kwargs)

	Print with filtering based level of output (see G2SetPrintLevel()).
Use G2Print() as replacement for print().

	Parameters:

	mode (str) – if specified, this should contain the mode for printing
(‘error’, ‘warn’ or anything else). If not specified, the first argument
of the print command (args[0]) should contain the string ‘error’ for
error messages and ‘warn’ for warning messages
(capitalization and additional letters ignored.)

	
GSASIIfiles.G2SetPrintLevel(level)

	Set the level of output from calls to G2Print(), which should
be used in place of print() within GSASII. Settings for the mode are
‘all’, ‘warn’, ‘error’ or ‘none’

	Parameters:

	level (str) – a string used to set the print level, which may be
‘all’, ‘warn’, ‘error’ or ‘none’.
Note that capitalization and extra letters in level are ignored, so
‘Warn’, ‘warnings’, etc. will all set the mode to ‘warn’

	
GSASIIfiles.G2printLevel = 'all'

	This defines the level of output from calls to GSASIIfiles.G2Print(),
which should be used in place of print() within GSASII where possible.
Settings for this are ‘all’, ‘warn’, ‘error’ or ‘none’. Best to change this
with G2SetPrintLevel().

See also

G2Print()
G2SetPrintLevel().

	
GSASIIfiles.GetColumnMetadata(reader)

	Add metadata to an image from a column-type metadata file
using readColMetadata()

	Parameters:

	reader – a reader object from reading an image

	
GSASIIfiles.LoadControls(Slines, data)

	Read values from a .imctrl (Image Controls) file

	
GSASIIfiles.LoadExportRoutines(parent, traceback=False)

	Routine to locate GSASII exporters. Warns if more than one file
with the same name is in the path or if a file is found that is not
in the main directory tree.

	
GSASIIfiles.LoadImportRoutines(prefix, errprefix=None, traceback=False)

	Routine to locate GSASII importers matching a prefix string.

Warns if more than one file with the same name is in the path
or if a file is found that is not in the main directory tree.

	
GSASIIfiles.PDFWrite(PDFentry, fileroot, PDFsaves, PDFControls, Inst={}, Limits=[])

	Write PDF-related data (G(r), S(Q),…) into files, as
selected.

	Parameters:

	
	PDFentry (str) – name of the PDF entry in the tree. This is
used for comments in the file specifying where it came from;
it can be arbitrary

	fileroot (str) – name of file(s) to be written. The extension
will be ignored.

	PDFsaves (list) – flags that determine what type of file will be
written:
PDFsaves[0], if True writes a I(Q) file with a .iq extension
PDFsaves[1], if True writes a S(Q) file with a .sq extension
PDFsaves[2], if True writes a F(Q) file with a .fq extension
PDFsaves[3], if True writes a G(r) file with a .gr extension
PDFsaves[4], if True writes G(r) in a pdfGUI input file with
a .gr extension. Note that if PDFsaves[3] and PDFsaves[4] are
both True, the pdfGUI overwrites the G(r) file.
PDFsaves[5], if True writes F(Q) & g(R) with .fq & .gr extensions
overwrites these if selected by option 2, 3 or 4

	PDFControls (dict) – The PDF parameters and computed results

	Inst (dict) – Instrument parameters from the PDWR entry used
to compute the PDF. Needed only when PDFsaves[4] is True.

	Limits (list) – Computation limits from the PDWR entry used
to compute the PDF. Needed only when PDFsaves[4] is True.

	
GSASIIfiles.ReadPowderInstprm(instLines, bank, databanks, rd)

	Read lines from a GSAS-II (new) instrument parameter file
similar to G2pwdGUI.OnLoad
If instprm file has multiple banks each with header #Bank n: …, this
finds matching bank no. to load - problem with nonmatches?

Note that this routine performs a similar role to GSASIIdataGUI.GSASII.ReadPowderInstprm(),
but that will call a GUI routine for selection when needed. This routine will raise exceptions
on errors and will select the first bank when a choice might be appropriate.
TODO: refactor to combine the two routines.

	Parameters:

	
	instLines (list) – strings from GSAS-II parameter file; can be concatenated with ‘;’

	bank (int) – bank number to check when instprm file has ‘#BANK n:…’ strings
when bank = n then use parameters; otherwise skip that set. Ignored if BANK n:
not present. NB: this kind of instprm file made by a Save all profile command in Instrument Par ameters

	Return dict:

	Inst instrument parameter dict if OK, or
str: Error message if failed

(transliterated from GSASIIdataGUI.py:1235 (rev 3008), function of the same name)

	
GSASIIfiles.RereadImageData(ImageReaderlist, imagefile, ImageTag=None, FormatName='')

	Read a single image with an image importer. This is called to
reread an image after it has already been imported, so it is not
necessary to reload metadata.

Based on GetImageData.GetImageData() which this can replace
where imageOnly=True

	Parameters:

	
	ImageReaderlist (list) – list of Reader objects for images

	imagefile (str) – name of image file

	ImageTag (int/str) – specifies a particular image to be read from a file.
First image is read if None (default).

	formatName (str) – the image reader formatName

	Returns:

	an image as a numpy array

	
GSASIIfiles.SetPowderInstParms(Iparm, rd)

	extracts values from instrument parameters in rd.instdict
or in array Iparm.
Create and return the contents of the instrument parameter tree entry.

	
GSASIIfiles.WriteControls(filename, data)

	Write current values to a .imctrl (Image Controls) file

	
GSASIIfiles.evalColMetadataDicts(items, labels, lbldict, keyCols, keyExp, ShowError=False)

	Evaluate the metadata for a line in the .par file

	
GSASIIfiles.find(name, path)

	find 1st occurance of file in path

	
GSASIIfiles.readColMetadata(imagefile)

	Reads image metadata from a column-oriented metadata table
(1-ID style .par file). Called by GetColumnMetadata()

The .par file has any number of columns separated by spaces.
The directory for the file must be specified in
Config variable config_example.Column_Metadata_directory.
As an index to the .par file a second “label file” must be specified with the
same file root name as the .par file but the extension must be .XXX_lbls (where
.XXX is the extension of the image) or if that is not present extension
.lbls.

	Parameters:

	imagefile (str) – the full name of the image file (with extension, directory optional)

	Returns:

	a dict with parameter values. Named parameters will have the type based on
the specified Python function, named columns will be character strings

The contents of the label file will look like this:

define keywords
filename:lambda x,y: "{}_{:0>6}".format(x,y)|33,34
distance: float | 75
wavelength:lambda keV: 12.398425/float(keV)|9
pixelSize:lambda x: [74.8, 74.8]|0
ISOlikeDate: lambda dow,m,d,t,y:"{}-{}-{}T{} ({})".format(y,m,d,t,dow)|0,1,2,3,4
Temperature: float|53
FreePrm2: int | 34 | Free Parm2 Label
define other variables
0:day
1:month
2:date
3:time
4:year
7:I_ring

	This file contains three types of lines in any order.
	
	Named parameters are evaluated with user-supplied Python code (see
subsequent information). Specific named parameters are used
to determine values that are used for image interpretation (see table,
below). Any others are copied to the Comments subsection of the Image
tree item.

	Column labels are defined with a column number (integer) followed by
a colon (:) and a label to be assigned to that column. All labeled
columns are copied to the Image’s Comments subsection.

	Comments are any line that does not contain a colon.

Note that columns are numbered starting at zero.

Any named parameter may be defined provided it is not a valid integer,
but the named parameters in the table have special meanings, as descibed.
The parameter name is followed by a colon. After the colon, specify
Python code that defines or specifies a function that will be called to
generate a value for that parameter.

Note that several keywords, if defined in the Comments, will be found and
placed in the appropriate section of the powder histogram(s)’s Sample
Parameters after an integration: Temperature, Pressure, Time,
FreePrm1, FreePrm2, FreePrm3, Omega, Chi, and Phi.

After the Python code, supply a vertical bar (|) and then a list of one
more more columns that will be supplied as arguments to that function.

Note that the labels for the three FreePrm items can be changed by
including that label as a third item with an additional vertical bar. Labels
will be ignored for any other named parameters.

The examples above are discussed here:

	filename:lambda x,y: "{}_{:0>6}".format(x,y)|33,34
	Here the function to be used is defined with a lambda statement:

lambda x,y: "{}_{:0>6}".format(x,y)

This function will use the format function to create a file name from the
contents of columns 33 and 34. The first parameter (x, col. 33) is inserted directly into
the file name, followed by a underscore (_), followed by the second parameter (y, col. 34),
which will be left-padded with zeros to six characters (format directive :0>6).

When there will be more than one image generated per line in the .par file, an alternate way to
generate list of file names takes into account the number of images generated:

lambda x,y,z: ["{}_{:0>6}".format(x,int(y)+i) for i in range(int(z))]

Here a third parameter is used to specify the number of images generated, where
the image number is incremented for each image.

	distance: float | 75
	Here the contents of column 75 will be converted to a floating point number
by calling float on it. Note that the spaces here are ignored.

	wavelength:lambda keV: 12.398425/float(keV)|9
	Here we define an algebraic expression to convert an energy in keV to a
wavelength and pass the contents of column 9 as that input energy

	pixelSize:lambda x: [74.8, 74.8]|0
	In this case the pixel size is a constant (a list of two numbers). The first
column is passed as an argument as at least one argument is required, but that
value is not used in the expression.

	ISOlikeDate: lambda dow,m,d,t,y:"{}-{}-{}T{} ({})".format(y,m,d,t,dow)|0,1,2,3,4
	This example defines a parameter that takes items in the first five columns
and formats them in a different way. This parameter is not one of the pre-defined
parameter names below. Some external code could be used to change the month string
(argument m) to a integer from 1 to 12.

	FreePrm2: int | 34 | Free Parm2 Label
	In this example, the contents of column 34 will be converted to an integer and
placed as the second free-named parameter in the Sample Parameters after an
integration. The label for this parameter will be changed to “Free Parm2 Label”.

Pre-defined parameter names

	keyword

	required

	type

	Description

	filename

	yes

	str or
list

	generates the file name prefix for the matching image
file (MyImage001 for file /tmp/MyImage001.tif) or
a list of file names.

	polarization

	no

	float

	generates the polarization expected based on the
monochromator angle, defaults to 0.99.

	center

	no

	list of
2 floats

	generates the approximate beam center on the detector
in mm, such as [204.8, 204.8].

	distance

	yes

	float

	generates the distance from the sample to the detector
in mm

	pixelSize

	no

	list of
2 floats

	generates the size of the pixels in microns such as
[200.0, 200.0].

	wavelength

	yes

	float

	generates the wavelength in Angstroms

	
GSASIIfiles.readColMetadataLabels(lblFil)

	Read the .*lbls file and setup for metadata assignments

	
GSASIIfiles.readMasks(filename, masks, ignoreThreshold)

	Read a GSAS-II masks file

	
GSASIIfiles.sfloat(S)

	Convert a string to float. An empty field or a unconvertable value is treated as zero

4.8. GSASIImpsubs: routines used in multiprocessing

4.8.1. GSASIImpsubs Classes & Routines

The routines here are called either directly when GSAS-II is used without multiprocessing
or in separate cores when multiprocessing is used.

These routines are designed to be used in one of two ways:

	when multiprocessing is
enabled (see global variable useMP) the computational routines are called in
separate Python interpreter that is created and then deleted after use.

	when useMP is False, these routines are called directly from the main “thread”.

Note that GSASIImpsubs.InitMP() should be called before any of the other routines
in this module are used.

	
GSASIImpsubs.ComputePwdrProfCW(profList)

	Compute the peaks profile for a set of CW peaks and add into the yc array

	
GSASIImpsubs.ComputePwdrProfED(profList)

	Compute the peaks profile for a set of TOF peaks and add into the yc array

	
GSASIImpsubs.ComputePwdrProfPink(profList)

	Compute the peaks profile for a set of TOF peaks and add into the yc array

	
GSASIImpsubs.ComputePwdrProfTOF(profList)

	Compute the peaks profile for a set of TOF peaks and add into the yc array

	
GSASIImpsubs.InitFobsSqGlobals(x1, ratio1, shl1, xB1, xF1, im1, lamRatio1, kRatio1, xMask1, Ka21)

	Initialize for the computation of Fobs Squared for powder histograms.
Puts lots of junk into the global namespace in this module.

	
GSASIImpsubs.InitMP(allowMP=True)

	Called to initialize use of Multiprocessing

	
GSASIImpsubs.InitPwdrProfGlobals(im1, shl1, x1)

	Initialize for the computation of Fobs Squared for powder histograms.
Puts lots of junk into the global namespace in this module.

	
GSASIImpsubs.ResetMP()

	Call after changing Config var ‘Multiprocessing_cores’ to force a resetting
of the useMP from the parameter.

4.9. Module nistlat: NIST*LATTICE cell computations

4.9.1. nistlat Classes & Routines

This implements an interface to the NIST*LATTICE code using
the Spring 1991 program version. NIST*LATTICE, “A Program to Analyze
Lattice Relationships” was created by Vicky Lynn Karen and Alan D. Mighell
(National Institute of Standards and Technology, Materials Science and
Engineering Laboratory, Gaithersburg, Maryland 20899.)
Minor code modifications made to provide more significant digits for
cell reduction matrix terms.

Please cite V. L. Karen and A. D. Mighell, NIST Technical Note 1290 (1991),
https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1290.pdf;
and V. L. Karen & A. D. Mighell, U.S. Patent 5,235,523,
https://patents.google.com/patent/US5235523A/en?oq=5235523 if this module
is used.

	
nistlat.CellSymSearch(cellin, center, tolerance=[0.2, 0.2, 0.2, 1, 1, 1], mode=0, deltaV=2, output=None)

	Search for a higher symmetry lattice related to an input unit cell,
and optionally to the supercells and/or subcells with a specified
volume ratio to the input cell.

	Parameters:

	
	cellin (list) – six lattice constants as float values

	center (str) – cell centering code; one of P/A/B/C/F/I/R
Note that ‘R’ is used for rhombohedral lattices in either
hexagonal or rhombohedral (primitive) cells

	tolerance (list) – comparison tolerances for a, b, c, alpha, beta
& gamma (defaults to [0.2,0.2,0.2,1.,1.,1.]

	mode (int) –
	0: use only input cell,

	1: generate supercells,

	2: generate subcells

	3: generate sub- and supercells

	deltaV (int) – volume ratios for sub/supercells if mode != 0 as
ratio of original cell to smallest subcell or largest supercell
to original cell. Ignored if mode=0. Otherwise should be 2, 3, 4 or 5

	output (str) – name of file to write the NIST*LATTICE output. Default
is None, which does not produce a file.

	Returns:

	a list of processed cells (only one entry in list when mode=0)
where for each cell the the following items are included:

	conventional input cell;

	reduced input cell;

	symmetry-generated conventional cell;

	symmetry-generated reduced cell;

	matrix to convert sym-generated output cell to input conventional cell

	
nistlat.CompareCell(cell1, center1, cell2, center2, tolerance=[0.2, 0.2, 0.2, 1, 1, 1], mode='I', vrange=8, output=None)

	Search for matrices that relate two unit cells

	Parameters:

	
	cell1 (list) – six lattice constants as float values for 1st cell

	center1 (str) – cell centering code for 1st cell; one of P/A/B/C/F/I/R
Note that ‘R’ is used for rhombohedral lattices in either
hexagonal or rhombohedral (primitive) cells

	cell2 (list) – six lattice constants as float values for 2nd cell

	center2 (str) – cell centering code for 2nd cell (see center1)

	tolerance (list) – comparison tolerances for a, b, c, alpha, beta
& gamma (defaults to [0.2,0.2,0.2,1.,1.,1.]

	mode (str) – search mode, which should be either ‘I’ or ‘F’
‘I’ provides searching with integral matrices or
‘F’ provides searching with integral and fractional matrices

	vrange (int) – maximum matrix term range.
Must be 1 <= vrange <= 10 for mode=’F’ or
Must be 1 <= vrange <= 40 for mode=’I’

	output (str) – name of file to write the NIST*LATTICE output.
Default is None, which does not produce a file.

	Returns:

	A list of matrices that match cell1 to cell2 where
each entry contains (det, im, m, tol, one2two, two2one) where:

	det is the determinant, giving the volume ratio between cells

	im relates the reduced cell for cell1 to the reduced cell for cell2

	m relates the reduced cell for cell2 to the reduced cell for cell1

	
	tol shows the quality of agreement, as six differences between the
	two reduced cells

	one2two: a numpy matrix that transforms cell1 to cell2

	two2one: a numpy matrix that transforms cell2 to cell1

	
nistlat.ConvCell(redcell)

	Converts a reduced cell to a conventional cell

	Parameters:

	redcell (list) – unit cell parameters as 3 cell lengths
and 3 angles (in degrees)

	Returns:

	tuple (cell,center,setting,mat) where:

	cell: has the six cell dimensions for the conventional cell;

	center: is P/A/B/C/F/I/R;

	setting: is ‘ ‘ except for rhombohedral symmetry (center=R), where
it will always be H (for hexagonal cell choice);

	mat: is the matrix that gives the conventional cell when the reduced
cell is multiplied by mat.

	
nistlat.ReduceCell(center, cellin, mode=0, deltaV=0, output=None)

	Compute reduced cell(s) with NIST*LATTICE

	Parameters:

	
	center (str) – cell centering code; one of P/A/B/C/F/I/R
Note that ‘R’ is used for rhombohedral lattices in either
hexagonal or rhombohedral (primitive) cells

	cellin (list) – six lattice constants as float values

	mode (int) –
	0: reduction,

	1: generate supercells,

	2: generate subcells

	3: generate sub- and supercells

	deltaV (int) – volume ratios for sub/supercells if mode != 0 as
ratio of original cell to smallest subcell or largest supercell
to original cell. Ignored if mode=0. Otherwise should be 2, 3, 4 or 5

	output (str) – name of file to write the NIST*LATTICE output.
Default is None, which does not produce a file.

	Returns:

	a dict with two items, ‘input’ and ‘output’. The value for
‘input’ is the input cell as (cell,center,setting). The value for
‘output’ is a list of reduced cells of form
(d,cell,vol,mat,center,setting). In these:

	cell: a list with the six cell dimensions;

	center: is as above (always ‘P’ on output);

	setting: is ‘ ‘ except for rhombohedral symmetry where it may be R or H for the cell type;

	d: is the volume ratio for new cell over input cell;

	vol: is volume of output cell

	mat: is the matrix that gives the output cell when the input cell is multiplied by mat.

	
nistlat.showCell(cell, center='P', setting=' ', *ignored)

	show unit cell input or output nicely formatted.

	Parameters:

	
	cell (list) – six lattice constants as float values; a 7th volume value
is ignored if present.

	center (str) – cell centering code; one of P/A/B/C/F/I/R
Note that ‘R’ is used for rhombohedral lattices in either
rhombohedral (primitive) or hexagonal cells.

	setting (str) – is ‘ ‘ except for rhombohedral symmetry where
it will be R or H for the cell type.

	Returns:

	a formatted string

	
nistlat.uniqCells(cellList)

	remove duplicated cells from a cell output list from ReduceCell()

	Parameters:

	cellList (list) – A list of reduced cells where each entry represents a
reduced cell as (_,cell,_,_,center,…) where cell has six lattice
constants and center is the cell centering code (P/A/B/C/F/I/R).

	Returns:

	a list as above, but where each unique cell is listed only once

4.10. ReadMarCCDFrame: Read Mar Files

	
class ReadMarCCDFrame.marFrame(File, byteOrd='<', IFD={})

	A class to extract correct mar header and image info from a MarCCD file

	Parameters:

	
	File (str) – file object [from open()]

	byteOrd – ‘<’ (default) or ‘>’

	IFD (dict) – ?

4.11. G2shapes: Compute SAS particle shapes

Program SHAPES from
“A New Algroithm for the Reconstruction of Protein Molecular Envelopes
from X-ray Solution Scattering Data”,
John Badger, J. Appl. Cryst. (2019) 52, 937-944.
(DOI: 10.1107/S1600576719009774) modified to run inside GSAS-II.

 \(\renewcommand\AA{\text{Å}}\)

5. GSAS-II GUI Support Modules

The modules documented here provide GUI or graphics capabilities that
are used in multiple sections of the GSAS-II GUI or graphics.

5.1. GSASIIctrlGUI: Custom GUI controls

A library of GUI controls for reuse throughout GSAS-II, as indexed below

	Class or function name

	Description

	EnumSelector

	A combo box with a built-in call back routine that
automatically sets a dict or list entry.

	DisAglDialog

	Distance/Angle Controls input dialog.

	FlagSetDialog

	Dialog that provides a table of items along with a
checkbox for each.

	G2ChoiceButton

	A customized wx.Choice that automatically initializes to
the initial value and saves the choice directly into a dict
or list value. Optionally calls function when a
choice is selected

	G2CheckBox

	A customized wx.CheckBox that automatically initializes to
the initial value and saves the choice directly into a dict
or list value. Optionally calls function when a
choice is selected

	G2CheckBoxFrontLbl()

	A version of G2CheckBox that places the label
for the check box in front. Otherwise works the same.

	G2RadioButtons()

	Creates a series of grouped radio buttons.

	G2SliderWidget

	A customized combination of a wx.Slider and a validated
wx.TextCtrl (see ValidatedTxtCtrl).

	G2Slider

	A wrapped version of wx.Slider that implements scaling

	G2SpinWidget

	A customized combination of a wx.SpinButton and a validated
wx.TextCtrl (see ValidatedTxtCtrl).

	G2ColumnIDDialog

	A dialog for matching column data to desired items; some
columns may be ignored.

	G2HistoDataDialog

	A dialog for global edits to histogram data globally

	G2MultiChoiceDialog

	Dialog similar to wx.MultiChoiceDialog, but provides
a filter to select choices and buttons to make selection
of multiple items more simple.

	G2MultiChoiceWindow

	Similar to G2MultiChoiceDialog but provides
a sizer that can be placed in a frame or panel.

	G2SingleChoiceDialog

	Dialog similar to wx.SingleChoiceDialog, but provides
a filter to help search through choices.

	HelpButton

	Creates a button labeled with a “?” that when pressed
displays help text in a modal message window
or web browser.

	MultiColumnSelection

	A dialog that builds a multicolumn table, word wrapping
is used for the 2nd, 3rd,… columns.

	MultiDataDialog

	Dialog to obtain multiple data values from user,
with optional range validation; items can be float, str or bool

	MultiIntegerDialog

	Dialog to obtain multiple integer values from user,
with a description for each value and optional
defaults.

	MultiStringDialog

	Dialog to obtain multiple string values from user,
with a description for each value and optional
defaults.

	OrderBox

	Creates a wx.Panel with scrollbars where items can be
ordered into columns.

	SortableLstCtrl

	Creates a wx.Panel for a table of data that
can be sorted by clicking on a column label.

	ScrolledMultiEditor

	wx.Dialog for editing many dict- or list-contained items.
with validation. Results are placed in dict or list.

	SGMagSpinBox

	Special version of MessageBox that displays magnetic spin text

	SGMessageBox

	Special version of MessageBox that displays space group &
super space group text in two blocks

	SingleFloatDialog

	Dialog to obtain a single float value from user, with
optional range validation.

	SingleIntDialog

	Dialog to obtain a single integer value from user,
with optional range validation.

	SingleStringDialog

	Dialog to obtain a single string value from user,
with optional an optional default value.

	ValidatedTxtCtrl

	A text control with a built-in call back routine to set dict
or list elements. Optionally validates input as float, int or
for strings non-blank. Value is set when focus changes

	CallScrolledMultiEditor()

	Routine for editing many dict- or list-contained items.
using the ScrolledMultiEditor dialog

	Define_wxId()

	Create a unique wx.Id symbol in _initMenus in GSASIIdataGUI.
Such symbols are needed when the menu item is defined in a
different location from the wx.Bind that links the menu item
to a function. This function allows all the menu Ids to be
defined as the menus are created in one place and then can be
used in Bind elsewhere in the code.

	G2MessageBox()

	Displays text typically used for errors or warnings.

	ShowScrolledInfo()

	Displays longer text where scrolling is possibly needed

	G2ScrolledGrid()

	Displays a multicolumn table of information with
possible scroll bars

	ShowScrolledColText()

	Displays tabular text with scrolling where needed

	GetItemOrder()

	Creates a dialog for ordering items into columns

	GetImportFile()

	Gets one ore more file from the appropriate import
directory, which can be overridden. Arguments follow those
of wx.FileDialog()

	HorizontalLine()

	Places a line in a Frame or Dialog to separate sections.

	ItemSelector()

	Select a single item or multiple items from list of choices.
Creates and then destroys a wx.Dialog and returns the
selections(s).

	SelectEdit1Var()

	Select a variable from a list, then edit it and select
histograms to copy it to.

	askSaveFile()

	Get a file name from user

	askSaveDirectory()

	Get a directory name from user

	BlockSelector()

	Select a single block for instrument parameters

	MultipleBlockSelector()

	Select one or more blocks of data, used for
CIF powder histogram imports only

	MultipleChoicesSelector()

	Dialog for displaying fairly complex choices, used for
CIF powder histogram imports only

	PhaseSelector()

	Select a phase from a list (used for phase importers)

	gpxFileSelector

	File browser dialog for opening existing .gpx files

	ScrolledStaticText

	A wx.StaticText widget that fits a large string into a
small space by scrolling it

	ReadOnlyTextCtrl()

	A wx.TextCtrl widget to be used wx.StaticText
(no edits allowed) text appears in a box.

	setColorButton()

	A button for color selection as a replacement
for wx.ColourSelect

	openInNewTerm()

	opens a Python routine (usually GSASII.py) in a
new terminal window (works on all platforms)

Other miscellaneous non-GUI routines that may be of use for GUI-related actions:

	Function name

	Description

	StripIndents()

	Regularizes the intentation from a string with multiple
newline characters by removing spaces at the beginning
of each line.

	StripUnicode()

	Removes unicode characters from strings

	GetImportPath()

	Determines the default location to use for importing files.
Tries sequentially G2frame.TutorialImportDir,
config var Import_directory and
G2frame.LastImportDir.

	GetExportPath()

	Determines the default location to use for writing files.
Tries sequentially G2frame.LastExportDir and
G2frame.LastGPXdir

5.1.1. GSASIIctrlGUI Classes & Routines

Documentation for all the routines in module GSASIIctrlGUI
follows.

	
class GSASIIctrlGUI.ASCIIValidator(result=None, key=None)

	A validator to be used with a TextCtrl to prevent
entering characters other than ASCII characters.

	The value is checked for validity after every keystroke
	If an invalid number is entered, the box is highlighted.
If the number is valid, it is saved in result[key]

	Parameters:

	
	result (dict/list) – List or dict where value should be placed when valid

	key (any) – key to use for result (int for list)

	
Clone()

	Create a copy of the validator, a strange, but required component

	
OnChar(event)

	Called each type a key is pressed
ignores keys that are not allowed for int and float types

	
TestValid(tc)

	Check if the value is valid by casting the input string
into ASCII.

Save it in the dict/list where the initial value was stored

	Parameters:

	tc (wx.TextCtrl) – A reference to the TextCtrl that the validator
is associated with.

	
TransferFromWindow()

	Needed by validator, strange, but required component

	
TransferToWindow()

	Needed by validator, strange, but required component

	
GSASIIctrlGUI.BlockSelector(ChoiceList, ParentFrame=None, title='Select a block', size=None, header='Block Selector', useCancel=True)

	Provide a wx dialog to select a single block where one must
be selected. Used for selecting for banks for instrument
parameters if the file contains more than one set.

	
GSASIIctrlGUI.CallScrolledMultiEditor(parent, dictlst, elemlst, prelbl=[], postlbl=[], title='Edit items', header='', size=(300, 250), CopyButton=False, ASCIIonly=False, **kw)

	Shell routine to call a ScrolledMultiEditor dialog. See
ScrolledMultiEditor for parameter definitions.

	Returns:

	True if the OK button is pressed; False if the window is closed
with the system menu or the Cancel button.

	
GSASIIctrlGUI.Define_wxId(*args)

	routine to create unique global wx Id symbols in this module.

	
class GSASIIctrlGUI.DisAglDialog(parent, data, default, Reset=True, Angle=True)

	Distance/Angle Controls input dialog. After
ShowModal() returns, the results are found in
dict self.data, which is accessed using GetData().

	Parameters:

	
	parent (wx.Frame) – reference to parent frame (or None)

	data (dict) – a dict containing the current
search ranges or an empty dict, which causes default values
to be used.
Will be used to set element DisAglCtls in
Phase Tree Item

	default (dict) – A dict containing the default
search ranges for each element.

	Reset (bool) – if True (default), show Reset button

	Angle (bool) – if True (default), show angle radii

	
Draw(data)

	Creates the contents of the dialog. Normally called
by __init__().

	
GetData()

	Returns the values from the dialog

	
OnOk(event)

	Called when the OK button is pressed

	
OnReset(event)

	Called when the Reset button is pressed

	
class GSASIIctrlGUI.EnumSelector(parent, dct, item, choices, values=None, OnChange=None, **kw)

	A customized wxpython.ComboBox that selects items from a list
of choices, but sets a dict (list) entry to the corresponding
entry from the input list of values.

	Parameters:

	
	parent (wx.Panel) – the parent to the ComboBox (usually a
frame or panel)

	dct – a dict or list to contain the value set
for the ComboBox.

	item – the dict key (or list index) where dct[item] will
be set to the value selected in the ComboBox. Also, dct[item]
contains the starting value shown in the widget. If the value
does not match an entry in values, the first value
in choices is used as the default, but dct[item] is
not changed.

	choices (list) – a list of choices to be displayed to the
user such as

["default","option 1","option 2",]

Note that these options will correspond to the entries in
values (if specified) item by item.

	values (list) – a list of values that correspond to
the options in choices, such as

[0,1,2]

The default for values is to use the same list as
specified for choices.

	OnChange (function) – an optional routine that will be called
when the
ComboBox can be specified.

	(other) – additional keyword arguments accepted by
ComboBox can be specified.

	
class GSASIIctrlGUI.FlagSetDialog(parent, title, colnames, rownames, flags)

	Creates popup with table of variables to be checked for e.g. refinement flags

	
class GSASIIctrlGUI.G2CheckBox(parent, label, loc, key, OnChange=None)

	A customized version of a CheckBox that automatically initializes
the control to a supplied list or dict entry and updates that
entry as the widget is used.

	Parameters:

	
	parent (wx.Panel) – name of panel or frame that will be
the parent to the widget. Can be None.

	label (str) – text to put on check button

	loc (dict/list) – the dict or list with the initial value to be
placed in the CheckBox.

	key (int/str) – the dict key or the list index for the value to be
edited by the CheckBox. The loc[key] element must exist.
The CheckBox will be initialized from this value.
If the value is anything other that True (or 1), it will be taken as
False.

	OnChange (function) – specifies a function or method that will be
called when the CheckBox is changed (Default is None).
The called function is supplied with one argument, the calling event.

	
GSASIIctrlGUI.G2CheckBoxFrontLbl(parent, label, loc, key, OnChange=None)

	A customized version of a CheckBox that automatically initializes
the control to a supplied list or dict entry and updates that
entry as the widget is used. Same as G2CheckBox except the
label is placed before the CheckBox and returns a sizer rather than the
G2CheckBox.

If the CheckBox is needed, reference Sizer.myCheckBox.

	
class GSASIIctrlGUI.G2ChoiceButton(parent, choiceList, indLoc=None, indKey=None, strLoc=None, strKey=None, onChoice=None, **kwargs)

	A customized version of a wx.Choice that automatically initializes
the control to match a supplied value and saves the choice directly
into an array or list. Optionally a function can be called each time a
choice is selected. The widget can be used with an array item that is set to
to the choice by number (indLoc[indKey]) or by string value
(strLoc[strKey]) or both. The initial value is taken from indLoc[indKey]
if not None or strLoc[strKey] if not None.

	Parameters:

	
	parent (wx.Panel) – name of panel or frame that will be
the parent to the widget. Can be None.

	choiceList (list) – a list or tuple of choices to offer the user.

	indLoc (dict/list) – a dict or list with the initial value to be
placed in the Choice button. If this is None, this is ignored.

	indKey (int/str) – the dict key or the list index for the value to be
edited by the Choice button. If indLoc is not None then this
must be specified and the indLoc[indKey] will be set. If the value
for indLoc[indKey] is not None, it should be an integer in
range(len(choiceList)). The Choice button will be initialized to the
choice corresponding to the value in this element if not None.

	strLoc (dict/list) – a dict or list with the string value corresponding to
indLoc/indKey. Default (None) means that this is not used.

	strKey (int/str) – the dict key or the list index for the string value
The strLoc[strKey] element must exist or strLoc must be None (default).

	onChoice (function) – name of a function to call when the choice is made.

	
setByString(string)

	Find an entry matching string and select it

	
class GSASIIctrlGUI.G2ColumnIDDialog(parent, title, header, Comments, ChoiceList, ColumnData, monoFont=False, **kw)

	A dialog for matching column data to desired items; some columns may be ignored.

	Parameters:

	
	ParentFrame (wx.Frame) – reference to parent frame

	title (str) – heading above list of choices

	header (str) – Title to place on window frame

	ChoiceList (list) – a list of possible choices for the columns

	ColumnData (list) – lists of column data to be matched with ChoiceList

	monoFont (bool) – If False (default), use a variable-spaced font;
if True use a equally-spaced font.

	kw – optional keyword parameters for the wx.Dialog may
be included such as size [which defaults to (320,310)] and
style (which defaults to wx.DEFAULT_DIALOG_STYLE | wx.RESIZE_BORDER | wx.CENTRE | wx.OK | wx.CANCEL);
note that wx.OK and wx.CANCEL controls
the presence of the eponymous buttons in the dialog.

	Returns:

	the name of the created dialog

	
GetSelection()

	Returns the selected sample parm for each column

	
class GSASIIctrlGUI.G2HistoDataDialog(parent, title, header, ParmList, ParmFmt, HistoList, ParmData, monoFont=False, **kw)

	A dialog for editing histogram data globally.

	Parameters:

	
	ParentFrame (wx.Frame) – reference to parent frame

	title (str) – heading above list of choices

	header (str) – Title to place on window frame

	ParmList (list) – a list of names for the columns

	ParmFmt (list) – a list of formatting strings for the columns

	list – HistoList: a list of histogram names

	ParmData (list) – a list of lists of data matched to ParmList; one for each item in HistoList

	monoFont (bool) – If False (default), use a variable-spaced font;
if True use a equally-spaced font.

	kw – optional keyword parameters for the wx.Dialog may
be included such as size [which defaults to (320,310)] and
style (which defaults to
wx.DEFAULT_DIALOG_STYLE | wx.RESIZE_BORDER | wx.CENTRE | wx.OK | wx.CANCEL);
note that wx.OK and wx.CANCEL controls the presence of the eponymous buttons in the dialog.

	Returns:

	the modified ParmData

	
GetData()

	Returns the modified ParmData

	
class GSASIIctrlGUI.G2HtmlWindow(parent, *args, **kwargs)

	Displays help information in a primitive HTML browser type window

	
HistoryBack() → bool

	Moves back to the previous page.

	
LoadPage(location) → bool

	Unlike SetPage() this function first loads the HTML page from location
and then displays it.

	
OnLinkClicked(link)

	Called when user clicks on hypertext link.

	
class GSASIIctrlGUI.G2LoggedButton(parent, id=-1, label='', locationcode='', handler=None, *args, **kwargs)

	A version of wx.Button that creates logging events. Bindings are saved
in the object, and are looked up rather than directly set with a bind.
An index to these buttons is saved as log.ButtonBindingLookup
:param wx.Panel parent: parent widget
:param int id: Id for button
:param str label: label for button
:param str locationcode: a label used internally to uniquely indentify the button
:param function handler: a routine to call when the button is pressed

	
onPress(event)

	create log event and call handler

	
class GSASIIctrlGUI.G2LstCtrl(parent, ID=-1, pos=wx.Point(-1, -1), size=wx.Size(-1, -1), style=0)

	Creates a custom ListCtrl with support for images in column labels

	
GetSortImages()

	Returns a tuple of image list indexesthe indexes in the image list for an image to be put on the column
header when sorting in descending order.

	
GSASIIctrlGUI.G2MessageBox(parent, msg, title='Error')

	Simple code to display a error or warning message

TODO: replace wx.MessageDialog with one derived from wx.Dialog because
on most platforms wx.MessageDialog is a native widget and CentreOnParent
will not function.

	
class GSASIIctrlGUI.G2MultiChoiceDialog(parent, title, header, ChoiceList, toggle=True, monoFont=False, filterBox=True, extraOpts={}, selected=[], **kw)

	A dialog similar to wx.MultiChoiceDialog except that buttons are
added to set all choices and to toggle all choices and a filter is
available to select from available entries. Note that if multiple
entries are placed in the filter box separated by spaces, all
of the strings must be present for an item to be shown.

	Parameters:

	
	ParentFrame (wx.Frame) – reference to parent frame

	title (str) – heading above list of choices

	header (str) – Title to place on window frame

	ChoiceList (list) – a list of choices where one more will be selected

	toggle (bool) – If True (default) the toggle and select all buttons
are displayed

	monoFont (bool) – If False (default), use a variable-spaced font;
if True use a equally-spaced font.

	filterBox (bool) – If True (default) an input widget is placed on
the window and only entries matching the entered text are shown.

	extraOpts (dict) – a dict containing a entries of form label_i and value_i with extra
options to present to the user, where value_i is the default value.
Options are listed ordered by the value_i values.

	selected (list) – list of indicies for items that should be

	kw – optional keyword parameters for the wx.Dialog may
be included such as size [which defaults to (320,310)] and
style (which defaults to wx.DEFAULT_DIALOG_STYLE|wx.RESIZE_BORDER|wx.CENTRE| wx.OK | wx.CANCEL);
note that wx.OK and wx.CANCEL style items control
the presence of the eponymous buttons in the dialog.

	Returns:

	the name of the created dialog

	
Filter(event)

	Read text from filter control and select entries that match. Called by
Timer after a delay with no input or if Enter is pressed.

	
GetSelections()

	Returns a list of the indices for the selected choices

	
OnCheck(event)

	for CheckListBox events; if Set Range is in use, this sets/clears all
entries in range between start and end according to the value in start.
Repeated clicks on the start change the checkbox state, but do not trigger
the range copy.
The caption next to the button is updated on the first button press.

	
SetRange(event)

	Respond to a press of the Set Range button. Set the range flag and
the caption next to the button

	
SetSelections(selList)

	Sets the selection indices in selList as selected. Resets any previous
selections for compatibility with wx.MultiChoiceDialog. Note that
the state for only the filtered items is shown.

	Parameters:

	selList (list) – indices of items to be selected. These indices
are referenced to the order in self.ChoiceList

	
onChar(event)

	Respond to keyboard events in the Filter box

	
class GSASIIctrlGUI.G2MultiChoiceWindow(parent, title, ChoiceList, SelectList, toggle=True, monoFont=False, filterBox=True, OnChange=None, OnChangeArgs=[], helpText=None)

	Creates a sizer similar to G2MultiChoiceDialog except that
buttons are added to set all choices and to toggle all choices. This
is placed in a sizer, so that it can be used in a frame or panel.

	Parameters:

	
	parent – reference to parent frame/panel

	title (str) – heading above list of choices

	ChoiceList (list) – a list of choices where one more will be selected

	SelectList (list) – a list of selected choices

	toggle (bool) – If True (default) the toggle and select all buttons
are displayed

	monoFont (bool) – If False (default), use a variable-spaced font;
if True use a equally-spaced font.

	filterBox (bool) – If True (default) an input widget is placed on
the window and only entries matching the entered text are shown.

	OnChange (function) – a reference to a callable object, that
is called each time any a choice is changed. Default is None which
will not be called.

	OnChangeArgs (list) – a list of arguments to be supplied to function
OnChange. The default is a null list.

	Returns:

	the name of the created sizer

	
Filter(event)

	Read text from filter control and select entries that match. Called by
Timer after a delay with no input or if Enter is pressed.

	
GetSelections()

	Returns a list of the indices for the selected choices

	
OnCheck(event)

	for CheckListBox events; if Set Range is in use, this sets/clears all
entries in range between start and end according to the value in start.
Repeated clicks on the start change the checkbox state, but do not trigger
the range copy.
The caption next to the button is updated on the first button press.

	
SetRange(event)

	Respond to a press of the Set Range button. Set the range flag and
the caption next to the button

	
SetSelections(selList)

	Sets the selection indices in selList as selected. Resets any previous
selections for compatibility with wx.MultiChoiceDialog. Note that
the state for only the filtered items is shown.

	Parameters:

	selList (list) – indices of items to be selected. These indices
are referenced to the order in self.ChoiceList

	
onChar(event)

	Respond to keyboard events in the Filter box

	
GSASIIctrlGUI.G2RadioButtons(parent, loc, key, choices, values=None, OnChange=None)

	A customized version of wx.RadioButton that returns a list
of coupled RadioButtons

	Parameters:

	
	parent (wx.Panel) – name of panel or frame that will be
the parent to the widgets. Can be None.

	loc (dict/list) – the dict or list with the initial value to be
placed in the CheckBox.

	key (int/str) – the dict key or the list index for the value to be
edited by the CheckBox. The loc[key] element must exist.
The CheckButton will be initialized from this value.

	choices (list) –

	values (list) –

	OnChange (function) – specifies a function or method that will be
called when the CheckBox is changed (Default is None).
The called function is supplied with one argument, the calling event.

	
class GSASIIctrlGUI.G2RefinementProgress(title='Refinement progress', message='All data Rw =', maximum=101, parent=None, trialMode=False, seqLen=0, seqShow=3, style=None)

	Defines an replacement for wx.ProgressDialog to be used for
showing refinement progress.

	Parameters:

	
	title (str) – string to place on border of window (default is
‘Refinement progress’).

	message (str) – initial string to place on top line of window.

	maximum (int) – maximum value for progress gauge bar on bottom
of window.

	parent (wx.Frame) – parent window for creation of this dialog

	trialMode (bool) – Set to True for Levenberg-Marquardt fitting
where Rw may be computed several times for a single cycle.
Call AdvanceCycle() when trialMode is True to indicate that a cycle
has been completed. Default is False.

	seqLen (int) – Number of histograms in sequential fit. A value of
zero (default) means that the fit is not a sequential fit.

	seqShow (int) – Number of histograms to shown in a sequential fit (default 3)

	style (int) – optional parameters that determine how the dialog is
is displayed.

	
AdvanceCycle(cycle=None)

	Call this directly with Levenberg-Marquardt fitting after a
cycle completes.
Plots the results.

	
Destroy()

	Destroy the window, but allow events to clear before doing so

	
SetHistogram(nextHist, histLbl)

	Set this before beginning processing of each histogram

	
SetMaxCycle(value)

	Set the maximum number of cycles or histograms (sequential fit).
Used to scale settings so the gauge bar completes close to 100%.
Ignored for sequential refinements.

	
Update(value=None, newmsg='')

	designed to work with calls intended for wx.ProgressDialog.Update
the value is assumed to be the current wR value for the histogram
selected with SetHistogram and newmsg goes into the 2nd status line.

	
GSASIIctrlGUI.G2ScrolledGrid(G2frame, lbl, title, tbl, colLbls, colTypes, maxSize=(600, 300), comment='')

	Display a scrolled table of information in a dialog window

	Parameters:

	
	G2frame (wx.Frame) – parent for dialog

	lbl (str) – label for window

	title (str) – window title

	tbl (list) – list of lists where inner list is each row

	colLbls (list) – list of str with labels for each column

	colTypes (list) – Data types for each column (such as
wg.GRID_VALUE_STRING,wg.GRID_VALUE_FLOAT)

	maxSize (list) – Maximum size for the table in points. Defaults to
(600,300)
:param str comment: optional text that appears below table

Example:

row = ['item1',1.234,'description of item']
colTypes = [wg.GRID_VALUE_STRING,wg.GRID_VALUE_FLOAT+':8,4',wg.GRID_VALUE_STRING]
colLbls = ['item name','value','Description']
G2ScrolledGrid(frm,'window label','title',20*[row],colLbls,colTypes)

	
class GSASIIctrlGUI.G2SingleChoiceDialog(parent, title, header, ChoiceList, monoFont=False, filterBox=True, **kw)

	A dialog similar to wx.SingleChoiceDialog except that a filter can be
added.

	Parameters:

	
	ParentFrame (wx.Frame) – reference to parent frame

	title (str) – heading above list of choices

	header (str) – Title to place on window frame

	ChoiceList (list) – a list of choices where one will be selected

	monoFont (bool) – If False (default), use a variable-spaced font;
if True use a equally-spaced font.

	filterBox (bool) – If True (default) an input widget is placed on
the window and only entries matching the entered text are shown.

	kw – optional keyword parameters for the wx.Dialog may
be included such as size [which defaults to (320,310)] and
style (which defaults to wx.DEFAULT_DIALOG_STYLE | wx.RESIZE_BORDER | wx.CENTRE | wx.OK | wx.CANCEL);
note that wx.OK and wx.CANCEL controls
the presence of the eponymous buttons in the dialog.

	Returns:

	the name of the created dialog

	
GetSelection()

	Returns the index of the selected choice

	
class GSASIIctrlGUI.G2Slider(parent, id=-1, value=0, minValue=0, maxValue=100, *arg, **kwarg)

	Wrapper around wx.Slider widget that implements scaling
Also casts floats as integers to avoid py3.10+ errors

	
SetMax(maxValue)

	Sets the maximum slider value.

	
SetMin(minValue)

	Sets the minimum slider value.

	
SetValue(value)

	Sets the slider position.

	
GSASIIctrlGUI.G2SliderWidget(parent, loc, key, label, xmin, xmax, iscale, onChange=None, onChangeArgs=[], sizer=None, nDig=None, size=(50, 20))

	A customized combination of a wx.Slider and a validated
wx.TextCtrl (see ValidatedTxtCtrl) that allows either
a slider or text entry to set a value within a range.

	Parameters:

	
	parent (wx.Panel) – name of panel or frame that will be
the parent to the TextCtrl. Can be None.

	loc (dict/list) – the dict or list with the initial value to be
placed in the TextCtrl.

	key (int/str) – the dict key or the list index for the value to be
edited by the TextCtrl. The loc[key] element must exist and should
have a float value. It will be forced to an initial value
between xmin and xmax.

	label (str) – A label to be placed to the left of the slider.

	xmin (float) – the minimum allowed valid value.

	xmax (float) – the maximum allowed valid value.

	iscale (float) – number to scale values to integers, which is what the
Scale widget uses. If the xmin=1 and xmax=4 and iscale=1 then values
only the values 1,2,3 and 4 can be set with the slider. However,
if iscale=2 then the values 1, 1.5, 2, 2.5, 3, 3.5 and 4 are all allowed.

	onChange (callable) – function to call when value is changed.
Default is None where nothing will be called.

	onChangeArgs (list) – arguments to be passed to onChange function
when called.

	Returns:

	returns a wx.BoxSizer containing the widgets

	
GSASIIctrlGUI.G2SpinWidget(parent, loc, key, label, xmin=None, xmax=None, onChange=None, onChangeArgs=[], hsize=35)

	A customized combination of a wx.SpinButton and a validated
wx.TextCtrl (see ValidatedTxtCtrl) that allows either
a the spin button or text entry to set a value within a range.

	Parameters:

	
	parent (wx.Panel) – name of panel or frame that will be
the parent to the TextCtrl. Can be None.

	loc (dict/list) – the dict or list with the initial value to be
placed in the TextCtrl.

	key (int/str) – the dict key or the list index for the value to be
edited by the TextCtrl. The loc[key] element must exist and should
have a float or int value. It will be forced to an integer initial value
between xmin and xmax.

	label (str) – A label to be placed to the left of the entry widget.

	xmin (int) – the minimum allowed valid value. If None it is ignored.

	xmax (int) – the maximum allowed valid value. If None it is ignored.

	onChange (callable) – function to call when value is changed.
Default is None where nothing will be called.

	onChangeArgs (list) – arguments to be passed to onChange function
when called.

	hsize (int) – length of TextCtrl in pixels. Defaults to 35.

	Returns:

	returns a wx.BoxSizer containing the widgets

	
class GSASIIctrlGUI.G2TreeCtrl(parent=None, *args, **kwargs)

	Create a wrapper around the standard TreeCtrl so we can “wrap”
various events.

This logs when a tree item is selected (in onSelectionChanged())

This also wraps lists and dicts pulled out of the tree to track where
they were retrieved from.

	
ConvertRelativeHistNum(histtype, histnum)

	Converts a histogram type and relative histogram number to a
histogram name in the current project

	
ConvertRelativePhaseNum(phasenum)

	Converts relative phase number to a phase name in
the current project

	
GetImageLoc(TreeId)

	Get Image data from the Tree. Handles cases where the
image name is specified, as well as where the image file name is
a tuple containing the image file and an image number

	
GetItemPyData(treeId)

	GetItemData(item) -> TreeItemData

Returns the tree item data associated with the item.

	
GetRelativeHistNum(histname)

	Returns list with a histogram type and a relative number for that
histogram, or the original string if not a histogram

	
GetRelativePhaseNum(phasename)

	Returns a phase number if the string matches a phase name
or else returns the original string

	
RestoreExposedItems()

	Traverse the top level tree items and restore exposed (expanded) tree items
back to their previous state (done after a reload of the tree after a refinement)

	
SaveExposedItems()

	Traverse the top level tree items and save names of exposed (expanded) tree items.
Done before a refinement.

	
SetItemPyData(treeId, data)

	SetItemData(item, data)

Sets the item client data.

	
UpdateImageLoc(TreeId, imagefile)

	Saves a new imagefile name in the Tree. Handles cases where the
image name is specified, as well as where the image file name is
a tuple containing the image file and an image number

	
class GSASIIctrlGUI.GSGrid(parent, name='')

	Basic wx.Grid implementation

	
InstallGridToolTip(rowcolhintcallback, colLblCallback=None, rowLblCallback=None)

	code to display a tooltip for each item on a grid
from http://wiki.wxpython.org/wxGrid%20ToolTips (buggy!), expanded to
column and row labels using hints from
https://groups.google.com/forum/#!topic/wxPython-users/bm8OARRVDCs

	Parameters:

	
	rowcolhintcallback (function) – a routine that returns a text
string depending on the selected row and column, to be used in
explaining grid entries.

	colLblCallback (function) – a routine that returns a text
string depending on the selected column, to be used in
explaining grid columns (if None, the default), column labels
do not get a tooltip.

	rowLblCallback (function) – a routine that returns a text
string depending on the selected row, to be used in
explaining grid rows (if None, the default), row labels
do not get a tooltip.

	
SetTable(table, *args, **kwargs)

	Overrides the standard SetTable method with one that uses
GridFractionEditor for all numeric columns (unless useFracEdit
is false)

	
completeEdits()

	complete any outstanding edits

	
setupPopup(lblList, callList)

	define a callback that creates a popup menu. The rows associated
with the items selected items are selected in the table and if
an item is called from the menu, the corresponding function
is called to perform an action on the

	Parameters:

	
	lblList (list) – list of str items that will be placed in the
popup menu

	callList (list) – list of functions to be called when a

	Returns:

	a callback that can be used to create the menu

Sample usage:

lblList = ('Delete','Set atom style','Set atom label',
 'Set atom color','Set view point','Generate copy',
 'Generate surrounding sphere','Transform atoms',
 'Generate bonded')
callList = (DrawAtomsDelete,DrawAtomStyle, DrawAtomLabel,
 DrawAtomColor,SetViewPoint,AddSymEquiv,
 AddSphere,TransformSymEquiv,
 FillCoordSphere)
onRightClick = drawAtoms.setupPopup(lblList,callList)
drawAtoms.Bind(wg.EVT_GRID_CELL_RIGHT_CLICK, onRightClick)
drawAtoms.Bind(wg.EVT_GRID_LABEL_RIGHT_CLICK, onRightClick)

	
class GSASIIctrlGUI.GSNoteBook(parent, name='', size=None, style=257)

	Notebook used in various locations; implemented with wx.aui extension

	
ChangeSelection(n) → int

	Changes the selection for the given page, returning the previous
selection.

	
FindPage(page) → int

	Returns the index of the specified tab window or wxNOT_FOUND if not
found.

	
GSASIIctrlGUI.GetConfigValsDocs()

	Reads the module referenced in fname (often <module>.__file__) and
return a dict with names of global variables as keys.
For each global variable, the value contains four items:

	Returns:

	a dict where keys are names defined in module config_example.py
where the value is a list of four items, as follows:

	item 0: the default value

	item 1: the current value

	item 2: the initial value (starts same as item 1)

	item 3: the “docstring” that follows variable definition

	
GSASIIctrlGUI.GetExportPath(G2frame)

	Determines the default location to use for writing files. Tries sequentially
G2frame.LastExportDir and G2frame.LastGPXdir.

	Returns:

	a string containing the path to be used when writing files or ‘.’
if none of the above are specified.

	
GSASIIctrlGUI.GetImportFile(G2frame, message, defaultDir='', defaultFile='', style=1, parent=None, *args, **kwargs)

	Uses a customized dialog that gets files from the appropriate import directory.
Arguments are used the same as in wx.FileDialog(). Selection of
multiple files is allowed if argument style includes wx.FD_MULTIPLE.

The default initial directory (unless overridden with argument defaultDir)
is found in G2frame.TutorialImportDir, config setting Import_directory or
G2frame.LastImportDir, see GetImportPath().

The path of the first file entered is used to set G2frame.LastImportDir
and optionally config setting Import_directory.

	Returns:

	a list of files or an empty list

	
GSASIIctrlGUI.GetImportPath(G2frame)

	Determines the default location to use for importing files. Tries sequentially
G2frame.TutorialImportDir, config var Import_directory, G2frame.LastImportDir
and G2frame.LastGPXdir

	Returns:

	a string containing the path to be used when reading files or ‘.’
if none of the above are specified.

	
GSASIIctrlGUI.GetItemOrder(parent, keylist, vallookup, posdict)

	Creates a dialog where items can be ordered into columns

	Parameters:

	
	keylist (list) – is a list of keys for column assignments

	vallookup (dict) – is a dict keyed by names in keylist where each item is a dict.
Each inner dict contains variable names as keys and their associated values

	posdict (dict) – is a dict keyed by names in keylist where each item is a dict.
Each inner dict contains column numbers as keys and their associated
variable name as a value. This is used for both input and output.

	
class GSASIIctrlGUI.GridFractionEditor(grid)

	A grid cell editor class that allows entry of values as fractions as well
as sine and cosine values [as s() and c(), sin() or sind(), etc]. Any valid
Python expression will be evaluated.

The current value can be incremented, multiplied or divided by prefixing
an expression by +, * or / respectively.

	
ApplyEdit(row, col, grid)

	Called only in wx >= 2.9
Save the value of the control into the grid if EndEdit() returns as True

	
BeginEdit(row, col, grid)

	Fetch the value from the table and prepare the edit control to begin
editing.

	
Clone() → GridCellEditor

	Create a new object which is the copy of this one.

	
Create(parent, id, evtHandler)

	Creates the actual edit control.

	
EndEdit(row, col, grid, oldval)

	End editing the cell.

This function must check if the current value of the editing cell
is valid and different from the original value in its string
form. If not then simply return None. If it has changed then
this method should save the new value so that ApplyEdit can
apply it later and the string representation of the new value
should be returned.

Notice that this method shoiuld not modify the grid as the
change could still be vetoed.

	
Reset()

	Reset the value in the control back to its starting value.

	
SetSize(rect)

	Size and position the edit control.

	
StartingKey(event)

	If the editor is enabled by pressing keys on the grid, this will be
called to let the editor do something about that first key if desired.

	
class GSASIIctrlGUI.HelpButton(parent, msg='', helpIndex='', wrap=None)

	Create a help button that displays help information.
The text can be displayed in a modal message window or it can be
a reference to a location in the gsasII.html (etc.) help web page, in which
case that page is opened in a web browser.

TODO: it might be nice if it were non-modal: e.g. it stays around until
the parent is deleted or the user closes it, but this did not work for
me.

	Parameters:

	
	parent – the panel/frame where the button will be placed

	msg (str) – the help text to be displayed. Indentation on
multiline help text is stripped (see StripIndents()). If wrap
is set as non-zero, all new lines are

	helpIndex (str) – location of the help information in the gsasII.html
help file in the form of an anchor string. The URL will be
constructed from: location + gsasII.html + “#” + helpIndex

	wrap (int) – if specified, the text displayed is reformatted by
wrapping it to fit in wrap pixels. Default is None which prevents
wrapping.

	
GSASIIctrlGUI.HorizontalLine(sizer, parent)

	Draws a horizontal line as wide as the window.

	
GSASIIctrlGUI.ItemSelector(ChoiceList, ParentFrame=None, title='Select an item', size=None, header='Item Selector', useCancel=True, multiple=False)

	Provide a wx dialog to select a single item or multiple items from list of choices

	Parameters:

	
	ChoiceList (list) – a list of choices where one will be selected

	ParentFrame (wx.Frame) – Name of parent frame (default None)

	title (str) – heading above list of choices (default ‘Select an item’)

	size (wx.Size) – Size for dialog to be created (default None – size as needed)

	header (str) – Title to place on window frame (default ‘Item Selector’)

	useCancel (bool) – If True (default) both the OK and Cancel buttons are offered

	multiple (bool) – If True then multiple items can be selected (default False)

	Returns:

	the selection index or None or a selection list if multiple is true

Called by GSASIIdataGUI.OnReOrgSelSeq() Which is not fully implemented.

	
GSASIIctrlGUI.Load2Cells(G2frame, phase)

	Accept two unit cells and use NIST*LATTICE to search for a relationship
that relates them.

The first unit cell is initialized as the currently selected phase and
the second unit cell is set to the first different phase from the tree.
The user can initialize the cell parameters to select a different phase
for either cell or can type in the values themselves.

	Parameters:

	
	G2frame (wx.Frame) – The main GSAS-II window

	phase (dict) – the currently selected frame

	
class GSASIIctrlGUI.MultiColumnSelection(parent, title, colLabels, choices, colWidths, checkLbl='', height=400, centerCols=False, *args, **kw)

	Defines a Dialog widget that can be used to select an item from a multicolumn list.
The first column should be short, but remaining columns are word-wrapped if the
length of the information extends beyond the column.

When created, the dialog will be shown and <dlg>.Selection will be set to the index
of the selected row, or -1. Be sure to use <dlg>.Destroy() to remove the window
after reading the selection. If the dialog cannot be shown because a very old
version of wxPython is in use, <dlg>.Selection will be None.

If checkLbl is provided with a value, then a set of check buttons starts the table
and <dlg>.Selections has the checked rows.

	Parameters:

	
	parent (wx.Frame) – the parent frame (or None)

	title (str) – A title for the dialog window

	colLabels (list) – labels for each column

	choices (list) – a nested list with a value for each row in the table. Within each value
should be a list of values for each column. There must be at least one value, but it is
OK to have more or fewer values than there are column labels (colLabels). Extra are ignored
and unspecified columns are left blank.

	colWidths (list) – a list of int values specifying the column width for each
column in the table (pixels). There must be a value for every column label (colLabels).

	checkLbl (str) – A label for a row of checkboxes added at the beginning of the table

	height (int) – an optional height (pixels) for the table (defaults to 400)

	centerCols (bool) – if True, items in each column are centered. Default is False

Example use:

lbls = ('col 1','col 2','col 3')
choices=(['test1','explanation of test 1'],
 ['b', 'a really really long line that will be word-wrapped'],
 ['test3','more explanation text','optional 3rd column text'])
colWidths=[200,400,100]
dlg = MultiColumnSelection(frm,'select tutorial',lbls,choices,colWidths)
value = choices[dlg.Selection][0]
dlg.Destroy()

	
class GSASIIctrlGUI.MultiDataDialog(parent, title, prompts, values, limits=[[0.0, 1.0]], formats=['%.5g'], header=None)

	Dialog to obtain multiple values from user

	Parameters:

	
	parent (wx.Frame) – parent frame for dialog to be created

	title (str) – title to place on top of window

	prompts (list) – a string to describe each item

	values (list) – a set of initial values for each item

	limits (list) – A nested list with an upper and lower value
for each item

	format (list) – an “old-style” format string used to display
each item value

	header (str) – a string to be placed at the top of the
window, if specified

example:

dlg = G2G.MultiDataDialog(G2frame,title='ISOCIF search',
 prompts=['lattice constants tolerance',
 'coordinate tolerance',
 'occupancy tolerance'],
 values=[0.001,0.01,0.1],
 limits=3*[[0.,2.]],formats=3*['%.5g'],
 header=isoCite)
dlg.ShowModal()
latTol,coordTol,occTol = dlg.GetValues()
dlg.Destroy()

	
class GSASIIctrlGUI.MultiIntegerDialog(parent, title, prompts, values)

	Input a series of integers based on prompts

	
class GSASIIctrlGUI.MultiStringDialog(parent, title, prompts, values=[], size=-1, addRows=False, hlp=None, lbl=None)

	Dialog to obtain a multi string values from user

	Parameters:

	
	parent (wx.Frame) – name of parent frame

	title (str) – title string for dialog

	prompts (list) – list of strings to tell user what they are inputting

	values (list) – list of str default input values, if any

	size (int) – length of the input box in pixels

	addRows (bool) – if True, users can add rows to the table
(default is False)

	hlp (str) – if supplied, a help button is added to the dialog that
can be used to display the supplied help text in this variable.

	lbl (str) – label placed at top of dialog

	Returns:

	a wx.Dialog instance

	
GetValues()

	Use this method to get the value(s) entered by the user

	Returns:

	a list of strings entered by user

	
Show()

	Use this method after creating the dialog to post it

	Returns:

	True if the user pressed OK; False if the User pressed Cancel

	
GSASIIctrlGUI.MultipleBlockSelector(ChoiceList, ParentFrame=None, title='Select a block', size=None, header='Block Selector')

	Provide a wx dialog to select a block of data if the
file contains more than one set of data and one must be
selected. Used in G2pwd_CIF only.

	Returns:

	a list of the selected blocks

	
class GSASIIctrlGUI.MultipleChoicesDialog(choicelist, headinglist, head='Select options', title='Please select from options below', parent=None)

	A dialog that offers a series of choices, each with a
title and a wx.Choice widget. Intended to be used Modally.
typical input:

	choicelist=[(‘a’,’b’,’c’), (‘test1’,’test2’),(‘no choice’,)]

	headinglist = [‘select a, b or c’, ‘select 1 of 2’, ‘No option here’]

selections are placed in self.chosen when OK is pressed

Also see GSASIIctrlGUI

	
GSASIIctrlGUI.MultipleChoicesSelector(choicelist, headinglist, ParentFrame=None, **kwargs)

	A modal dialog that offers a series of choices, each with a title and a wx.Choice
widget. Used in G2pwd_CIF only.

Typical input:

	choicelist=[(‘a’,’b’,’c’), (‘test1’,’test2’),(‘no choice’,)]

	headinglist = [‘select a, b or c’, ‘select 1 of 2’, ‘No option here’]

optional keyword parameters are: head (window title) and title
returns a list of selected indicies for each choice (or None)

	
class GSASIIctrlGUI.MyHelp(frame, includeTree=False, morehelpitems=[])

	A class that creates the contents of a help menu.
The menu will start with two entries:

	‘Help on <helpType>’: where helpType is a reference to an HTML page to
be opened

	About: opens an About dialog using OnHelpAbout. N.B. on the Mac this
gets moved to the App menu to be consistent with Apple style.

NOTE: for this to work properly with respect to system menus, the title
for the menu must be &Help, or it will not be processed properly:

menu.Append(menu=MyHelp(self,...),title="&Help")

	
OnCheckUpdates(event)

	Check if the GSAS-II repository has an update for the current source files
and perform that update if requested.

	
OnHelpAbout(event)

	Display an ‘About GSAS-II’ box

	
OnHelpById(event)

	Called when Help on… is pressed in a menu. Brings up a web page
for documentation. Uses the helpKey value from the dataWindow window
unless a special help key value has been defined for this menu id in
self.HelpById

Note that self should now (2frame) be child of the main window (G2frame)

	
OnSelectVersion(event)

	Allow the user to select a specific version of GSAS-II

	
class GSASIIctrlGUI.MyHtmlPanel(frame, newId)

	Defines a panel to display HTML help information, as an alternative to
displaying help information in a web browser.

	
class GSASIIctrlGUI.NumberValidator(typ, positiveonly=False, xmin=None, xmax=None, exclLim=[False, False], result=None, key=None, OKcontrol=None, CIFinput=False)

	A validator to be used with a TextCtrl to prevent
entering characters other than digits, signs, and for float
input, a period and exponents.

	The value is checked for validity after every keystroke
	If an invalid number is entered, the box is highlighted.
If the number is valid, it is saved in result[key]

	Parameters:

	
	typ (type) – the base data type. Must be int or float.

	positiveonly (bool) – If True, negative integers are not allowed
(default False). This prevents the + or - keys from being pressed.
Used with typ=int; ignored for typ=float.

	xmin (number) – Minimum allowed value. If None (default) the
lower limit is unbounded

	xmax (number) – Maximum allowed value. If None (default) the
upper limit is unbounded

	exclLim (list) – if True exclude xmin/xmax value ([exclMin,exclMax]);
(Default=[False,False])

	result (dict/list) – List or dict where value should be placed when valid

	key (any) – key to use for result (int for list)

	OKcontrol (function) – function or class method to control
an OK button for a window.
Ignored if None (default)

	CIFinput (bool) – allows use of a single ‘?’ or ‘.’ character
as valid input.

	
CheckInput(previousInvalid)

	called to test every change to the TextCtrl for validity and
to change the appearance of the TextCtrl

Anytime the input is invalid, call self.OKcontrol
(if defined) because it is fast.
If valid, check for any other invalid entries only when
changing from invalid to valid, since that is slower.

	Parameters:

	previousInvalid (bool) – True if the TextCtrl contents were
invalid prior to the current change.

	
Clone()

	Create a copy of the validator, a strange, but required component

	
OnChar(event)

	Called each type a key is pressed
ignores keys that are not allowed for int and float types

	
ShowValidity(tc)

	Set the control colors to show invalid input

	Parameters:

	tc (wx.TextCtrl) – A reference to the TextCtrl that the validator
is associated with.

	
TestValid(tc)

	Check if the value is valid by casting the input string
into the current type.

Set the invalid variable in the TextCtrl object accordingly.

If the value is valid, save it in the dict/list where
the initial value was stored, if appropriate.

	Parameters:

	tc (wx.TextCtrl) – A reference to the TextCtrl that the validator
is associated with.

	
TransferFromWindow()

	Needed by validator, strange, but required component

	
TransferToWindow()

	Needed by validator, strange, but required component

	
class GSASIIctrlGUI.OpenGitTutorial(parent)

	Open a tutorial web page from the git repository,
optionally copying the tutorial’s exercise data file(s) to
the local disk.

	
ChooseTutorial2(choices)

	Select tutorials from a two-column table, when possible

	
SelectAndDownload(event)

	Shows a list of all tutorials so user can select one to view.
The data files associated with that directory are then downloaded.

	
SelectDownloadLoc(event)

	Select a download location,
Cancel resets to the default

	
SetTutorialPath()

	Get the tutorial location if set; if not pick a default
directory in a logical place

	
onWebBrowse(event)

	Shows a list of all tutorials so user can select one to view.

	Returns:

	the name of the directory where the tutorial is located,
which is used if called from SelectAndDownload().

	
class GSASIIctrlGUI.OpenSvnTutorial(parent)

	Open a tutorial web page, optionally copying the web page, screen images and
data file(s) to the local disk.

	
ChooseTutorial(choices)

	choose a tutorial from a list
(will eventually only be used with very old wxPython

	
ChooseTutorial2(choices)

	Select tutorials from a two-column table, when possible

	
DownloadAll(event)

	Download or update all tutorials

	
SelectAndDownload(event)

	Make a list of all tutorials on web and allow user to choose one to
download and then view

	
SelectDownloadLoc(event)

	Select a download location,
Cancel resets to the default

	
SetTutorialPath()

	Get the tutorial location if set; if not pick a default
directory in a logical place

	
UpdateDownloaded(event)

	Find the downloaded tutorials and run an svn update on them

	
onSelectDownloaded(event)

	Select a previously downloaded tutorial

	
onWebBrowse(event)

	Make a list of all tutorials on web and allow user to view one.

	
class GSASIIctrlGUI.OrderBox(parent, keylist, vallookup, posdict, *arg, **kw)

	Creates a panel with scrollbars where items can be ordered into columns

	Parameters:

	
	keylist (list) – is a list of keys for column assignments

	vallookup (dict) – is a dict keyed by names in keylist where each item is a dict.
Each inner dict contains variable names as keys and their associated values

	posdict (dict) – is a dict keyed by names in keylist where each item is a dict.
Each inner dict contains column numbers as keys and their associated
variable name as a value. This is used for both input and output.

	
OnChoice(event)

	Called when a column is assigned to a variable

	
GSASIIctrlGUI.PhaseSelector(ChoiceList, ParentFrame=None, title='Select a phase', size=None, header='Phase Selector')

	Provide a wx dialog to select a phase, used in importers if a file
contains more than one phase

	
class GSASIIctrlGUI.PickTwoDialog(parent, title, prompt, names, choices)

	This does not seem to be in use

	
GSASIIctrlGUI.ReadOnlyTextCtrl(*args, **kwargs)

	Create a read-only TextCtrl for display of constants
This is probably not ideal as it mixes visual cues, but it does look nice.
Addresses 4.2 bug where TextCtrl has no default size

	
class GSASIIctrlGUI.RefinementProgress(title='Residual', message='All data Rw =', maximum=101, parent=None, trialMode=False, seqLen=0, style=None)

	Defines a wrapper to place around wx.ProgressDialog to be used for
showing refinement progress. At some point a better progress window should be
created that keeps useful info on the screen such as some starting and
current fit metrics, but for now all this adds is window defaults
and a wx.Yield call during progress update calls.

	
Update(value, newmsg=EmptyString)

	Updates the dialog, setting the progress bar to the new value and
updating the message if new one is specified.

	
class GSASIIctrlGUI.SGMagSpinBox(parent, title, text, table, Cents, names, spins, ifGray)

	Special version of MessageBox that displays magnetic spin text

	
Show()

	Use this method after creating the dialog to post it

	
class GSASIIctrlGUI.SGMessageBox(parent, title, text, table, spins=[])

	Special version of MessageBox that displays space group & super space group text
in two blocks

	
Show()

	Use this method after creating the dialog to post it

	
GSASIIctrlGUI.SaveConfigVars(vars, parent=None)

	Write the current config variable values to config.py

	Params dict vars:

	a dictionary of variable settings and meanings as
created in GetConfigValsDocs().

	Parameters:

	parent – wx.Frame object or None (default) for parent
of error message if no file can be written.

	Returns:

	True if unable to write the file, None otherwise

	
class GSASIIctrlGUI.ScrolledMultiEditor(parent, dictlst, elemlst, prelbl=[], postlbl=[], title='Edit items', header='', size=(300, 250), CopyButton=False, ASCIIonly=False, minvals=[], maxvals=[], sizevals=[], checkdictlst=[], checkelemlst=[], checklabel='')

	Define a window for editing a potentially large number of dict- or
list-contained values with validation for each item. Edited values are
automatically placed in their source location. If invalid entries
are provided, the TextCtrl is turned yellow and the OK button is disabled.

The type for each TextCtrl validation is determined by the
initial value of the entry (int, float or string).
Float values can be entered in the TextCtrl as numbers or also
as algebraic expressions using operators + - / * () and **,
in addition pi, sind(), cosd(), tand(), and sqrt() can be used,
as well as appreviations s(), sin(), c(), cos(), t(), tan() and sq().

	Parameters:

	
	parent (wx.Frame) – name of parent window, or may be None

	dictlst (tuple) – a list of dicts or lists containing values to edit

	elemlst (tuple) – a list of keys/indices for items in dictlst.
Note that elemlst must have the same length as dictlst, where each
item in elemlst will will match an entry for an entry for successive
dicts/lists in dictlst.

	prelbl (tuple) – a list of labels placed before the TextCtrl for each
item (optional)

	postlbl (tuple) – a list of labels placed after the TextCtrl for each
item (optional)

	title (str) – a title to place in the frame of the dialog

	header (str) – text to place at the top of the window. May contain
new line characters.

	size (wx.Size) – a size parameter that dictates the
size for the scrolled region of the dialog. The default is
(300,250).

	CopyButton (bool) – if True adds a small button that copies the
value for the current row to all fields below (default is False)

	ASCIIonly (bool) – if set as True will remove unicode characters from
strings

	minvals (list) – optional list of minimum values for validation
of float or int values. Ignored if value is None.

	maxvals (list) – optional list of maximum values for validation
of float or int values. Ignored if value is None.

	sizevals (list) – optional list of wx.Size values for each input
widget. Ignored if value is None.

	checkdictlst (tuple) – an optional list of dicts or lists containing bool
values (similar to dictlst).

	checkelemlst (tuple) – an optional list of dicts or lists containing bool
key values (similar to elemlst). Must be used with checkdictlst.

	checklabel (string) – a string to use for each checkbutton

	Returns:

	the wx.Dialog created here. Use method .ShowModal() to display it.

Example for use of ScrolledMultiEditor:

dlg = <pkg>.ScrolledMultiEditor(frame,dictlst,elemlst,prelbl,postlbl,
 header=header)
if dlg.ShowModal() == wx.ID_OK:
 for d,k in zip(dictlst,elemlst):
 print d[k]

Example definitions for dictlst and elemlst:

 dictlst = (dict1,list1,dict1,list1)
 elemlst = ('a', 1, 2, 3)

This causes items dict1['a'], list1[1], dict1[2] and list1[3] to be edited.

Note that these items must have int, float or str values assigned to
them. The dialog will force these types to be retained. String values
that are blank are marked as invalid.

	
ControlOKButton(setvalue)

	Enable or Disable the OK button for the dialog. Note that this is
passed into the ValidatedTxtCtrl for use by validators.

	Parameters:

	setvalue (bool) – if True, all entries in the dialog are
checked for validity. if False then the OK button is disabled.

	
class GSASIIctrlGUI.ScrolledStaticText(parent, label='', delay=100, lbllen=15, dots=True, **kwargs)

	Fits a long string into a small space by scrolling it. Inspired by
ActiveText.py from J Healey <rolfofsaxony@gmx.com>
https://discuss.wxpython.org/t/activetext-rather-than-statictext/36370

Use examples:

frm = wx.Frame(None) # create a frame
ms = wx.BoxSizer(wx.VERTICAL)
text = 'this is a long string that will be scrolled'
ms.Add(G2G.ScrolledStaticText(frm,label=text))
txt = G2G.ScrolledStaticText(frm,label=text, lbllen=20)
smallfont = wx.SystemSettings.GetFont(wx.SYS_SYSTEM_FONT)
smallfont.SetPointSize(10)
txt.SetFont(smallfont)
ms.Add(txt)
ms.Add(G2G.ScrolledStaticText(frm,label=text,dots=False,delay=250,lbllen=20))
frm.SetSizer(ms)

	Parameters:

	
	parent (w.Frame) – Frame or Panel where widget will be placed

	label (str) – string to be displayed

	delay (int) – time between updates in ms (default is 100)

	lbllen (int) – number of characters to show (default is 15)

	dots (bool) – If True (default) ellipsis (…) are placed
at the beginning and end of the string when any characters
in the string are not shown. The displayed string length
will thus be lbllen+6 most of the time

	(other) – other optional keyword parameters for the
wx.StaticText widget such as size or style may be specified.

	
class GSASIIctrlGUI.SelectConfigSetting(parent=None)

	Dialog to select configuration variables and set associated values.

	
OnApplyChanges(event=None)

	Set config variables to match the current settings

	
OnBoolSelect(event)

	Respond to a change in a True/False variable

	
OnChange(event=None)

	Check if anything been changed. Turn the save button on/off.

	
OnSave(event)

	Write the config variables to config.py and then set them
as the current settings

	
OnSelection()

	show a selected variable and allow it to be changed

	
onSelDir(event)

	Select a directory from a menu

	
onSelExec(event)

	Select an executable file from a menu

	
GSASIIctrlGUI.SelectEdit1Var(G2frame, array, labelLst, elemKeysLst, dspLst, refFlgElem)

	Select a variable from a list, then edit it and select histograms
to copy it to.

	Parameters:

	
	G2frame (wx.Frame) – main GSAS-II frame

	array (dict) – the array (dict or list) where values to be edited are kept

	labelLst (list) – labels for each data item

	elemKeysLst (list) – a list of lists of keys needed to be applied (see below)
to obtain the value of each parameter

	dspLst (list) – list list of digits to be displayed (10,4) is 10 digits
with 4 decimal places. Can be None.

	refFlgElem (list) – a list of lists of keys needed to be applied (see below)
to obtain the refine flag for each parameter or None if the parameter
does not have refine flag.

	Example::
	
array = data
labelLst = [‘v1’,’v2’]
elemKeysLst = [[‘v1’], [‘v2’,0]]
refFlgElem = [None, [‘v2’,1]]

	The value for v1 will be in data[‘v1’] and this cannot be refined while,

	The value for v2 will be in data[‘v2’][0] and its refinement flag is data[‘v2’][1]

	
GSASIIctrlGUI.ShowHelp(helpType, frame)

	Called to bring up a web page for documentation.

	
class GSASIIctrlGUI.ShowLSParms(G2frame, title, parmDict, varyList, fullVaryList, Controls, size=(650, 430))

	Create frame to show least-squares parameters

	
DrawPanel()

	Draws the contents of the entire dialog. Called initially & when radio buttons are pressed

	
repaintScrollTbl()

	Shows the selected variables in a ListCtrl

	
GSASIIctrlGUI.ShowScrolledColText(parent, txt, width=600, height=400, header='Warning info', col1len=999)

	Simple code to display tabular information in a scrolled wx.Dialog
window.

Lines ending with a colon (:) are centered across all columns
and have a grey background.
Lines beginning and ending with ‘**’ are also are centered
across all columns and are given a yellow background
All other lines have columns split by tab (t) characters.

	Parameters:

	
	parent (wx.Frame) – parent window

	txt (str) – text to be displayed

	width (int) – lateral of window in pixels (defaults to 600)

	height (int) – vertical dimension of window in pixels (defaults to 400)

	header (str) – title to be placed on window

	
GSASIIctrlGUI.ShowScrolledInfo(parent, txt, width=600, height=400, header='Warning info', buttonlist=None)

	Simple code to display possibly extensive error or warning text
in a scrolled window.

	Parameters:

	
	parent (wx.Frame) – parent window for

	txt (str) – text to be displayed

	width (int) – lateral of window in pixels (defaults to 600)

	height (int) – vertical dimension of window in pixels (defaults to 400)

	header (str) – title to be placed on window

	buttonlist (list) – list of button Ids to show. The default is None
which places a single “Close” button and returns wx.ID_CANCEL

	Returns:

	the wx Id for the selected button

	
GSASIIctrlGUI.ShowWebPage(URL, frame)

	Called to show a tutorial web page.

	
class GSASIIctrlGUI.SingleFloatDialog(parent, title, prompt, value, limits=[0.0, 1.0], fmt='%.5g')

	Dialog to obtain a single float value from user

	Parameters:

	
	parent (wx.Frame) – name of parent frame

	title (str) – title string for dialog

	prompt (str) – string to tell user what they are inputing

	value (str) – default input value, if any

	limits (list) – upper and lower value used to set bounds for entry, use [None,None]
for no bounds checking, [None,val] for only upper bounds, etc. Default is [0,1].
Values outside of limits will be ignored.

	format (str) – string to format numbers. Defaults to ‘%.5g’. Use ‘%d’ to have
integer input (but dlg.GetValue will still return a float).

Typical usage:

limits = (0,1)
dlg = G2G.SingleFloatDialog(G2frame,'New value','Enter new value for...',default,limits)
if dlg.ShowModal() == wx.ID_OK:
 parm = dlg.GetValue()
dlg.Destroy()

	
ControlOKButton(setvalue)

	Enable or Disable the OK button for the dialog. Note that this is
passed into the ValidatedTxtCtrl for use by validators.

	Parameters:

	setvalue (bool) – if True, all entries in the dialog are
checked for validity. if False then the OK button is disabled.

	
class GSASIIctrlGUI.SingleIntDialog(parent, title, prompt, value, limits=[None, None])

	Dialog to obtain a single int value from user

	Parameters:

	
	parent (wx.Frame) – name of parent frame

	title (str) – title string for dialog

	prompt (str) – string to tell user what they are inputing

	value (str) – default input value, if any

	limits (list) – upper and lower value used to set bounds for entries. Default
is [None,None] – for no bounds checking; use [None,val] for only upper bounds, etc.
Default is [0,1]. Values outside of limits will be ignored.

Typical usage:

limits = (0,None) # allows zero or positive values only
dlg = G2G.SingleIntDialog(G2frame,'New value','Enter new value for...',default,limits)
if dlg.ShowModal() == wx.ID_OK:
 parm = dlg.GetValue()
dlg.Destroy()

	
class GSASIIctrlGUI.SingleStringDialog(parent, title, prompt, value='', size=(200, -1), help='', choices=None)

	Dialog to obtain a single string value from user

	Parameters:

	
	parent (wx.Frame) – name of parent frame

	title (str) – title string for dialog

	prompt (str) – string to tell use what they are inputting

	value (str) – default input value, if any

	size (tuple) – specifies default size and width for dialog
[default (200,-1)]

	help (str) – if supplied, a help button is added to the dialog that
can be used to display the supplied help text/URL for setting this
variable. (Default is ‘’, which is ignored.)

	choices (list) – a set of strings that provide optional values that
can be selected from; these can be edited if desired.

	
GetValue()

	Use this method to get the value entered by the user
:returns: string entered by user

	
Show()

	Use this method after creating the dialog to post it
:returns: True if the user pressed OK; False if the User pressed Cancel

	
class GSASIIctrlGUI.SortableLstCtrl(parent)

	Creates a read-only table with sortable columns. Sorting is done by
clicking on a column label. A triangle facing up or down is added to
indicate the column is sorted.

To use, the header is labeled using
PopulateHeader(), then PopulateLine() is called for every
row in table and finally SetColWidth() is called to set the column
widths.

	Parameters:

	parent (wx.Frame) – parent object for control

	
PopulateHeader(header, justify)

	Defines the column labels

	Parameters:

	
	header (list) – a list of strings with header labels

	justify (list) – a list of int values where 0 causes left justification,
1 causes right justification, and -1 causes centering

	
PopulateLine(key, data)

	Enters each row into the table

	Parameters:

	
	key (int) – a unique int value for each line, probably should
be sequential

	data (list) – a list of strings for each column in that row

	
SetColWidth(col, width=None, auto=True, minwidth=0, maxwidth=None)

	Sets the column width.

	Parameters:

	
	width (int) – the column width in pixels

	auto (bool) – if True (default) and width is None (default) the
width is set by the maximum width entry in the column

	minwidth (int) – used when auto is True, sets a minimum
column width

	maxwidth (int) – used when auto is True, sets a maximum
column width. Do not use with minwidth

	
GSASIIctrlGUI.StripIndents(msg, singleLine=False)

	Strip unintended indentation from multiline strings.
When singleLine is True, all newline are removed, but inserting “%%”
into the string will cause a blank line to be inserted at that point
and %t% will generate a new line and tab (to indent a line)

	Parameters:

	
	msg (str) – a string containing one or more lines of text.
spaces or tabs following a newline are removed.

	singleLine (bool) – removes all newlines from the msg so that
the text may be wrapped.

	Returns:

	the string but reformatted

	
GSASIIctrlGUI.StripUnicode(string, subs='.')

	Strip non-ASCII characters from strings

	Parameters:

	
	string (str) – string to strip Unicode characters from

	subs (str) – character(s) to place into string in place of each
Unicode character. Defaults to ‘.’

	Returns:

	a new string with only ASCII characters

	
class GSASIIctrlGUI.Table(data=[], rowLabels=None, colLabels=None, types=None)

	Basic data table for use with GSgrid

	
AppendRows(numRows=1) → bool

	Append additional rows at the end of the table.

	
CanGetValueAs(row, col, typeName) → bool

	Returns true if the value of the given cell can be accessed as if it
were of the specified type.

	
CanSetValueAs(row, col, typeName) → bool

	Returns true if the value of the given cell can be set as if it were
of the specified type.

	
GetColLabelValue(col) → String

	Return the label of the specified column.

	
GetNumberCols() → int

	Must be overridden to return the number of columns in the table.

	
GetNumberRows() → int

	Must be overridden to return the number of rows in the table.

	
GetRowLabelValue(row) → String

	Return the label of the specified row.

	
GetTypeName(row, col) → String

	Returns the type of the value in the given cell.

	
GetValue(row, col) → PyObject

	Must be overridden to implement accessing the table values as text.

	
InsertRows(pos=0, numRows=1) → bool

	Insert additional rows into the table.

	
IsEmptyCell(row, col) → bool

	May be overridden to implement testing for empty cells.

	
SetColLabelValue(col, label)

	Exactly the same as SetRowLabelValue() but for columns.

	
SetRowLabelValue(row, label)

	Set the given label for the specified row.

	
SetValue(row, col, value)

	Must be overridden to implement setting the table values as text.

	
class GSASIIctrlGUI.ValidatedTxtCtrl(parent, loc, key, nDig=None, notBlank=True, xmin=None, xmax=None, OKcontrol=None, OnLeave=None, typeHint=None, CIFinput=False, exclLim=[False, False], OnLeaveArgs={}, ASCIIonly=False, min=None, max=None, **kw)

	Create a TextCtrl widget that uses a validator to prevent the
entry of inappropriate characters and changes color to highlight
when invalid input is supplied. As valid values are typed,
they are placed into the dict or list where the initial value
came from. The type of the initial value must be int,
float or str or None (see key and typeHint);
this type (or the one in typeHint) is preserved.

Float values can be entered in the TextCtrl as numbers or also
as algebraic expressions using operators + - / * () and **,
in addition pi, sind(), cosd(), tand(), and sqrt() can be used,
as well as appreviations s, sin, c, cos, t, tan and sq.

	Parameters:

	
	parent (wx.Panel) – name of panel or frame that will be
the parent to the TextCtrl. Can be None.

	loc (dict/list) – the dict or list with the initial value to be
placed in the TextCtrl.

	key (int/str) – the dict key or the list index for the value to be
edited by the TextCtrl. The loc[key] element must exist, but may
have value None. If None, the type for the element is taken from
typeHint and the value for the control is set initially
blank (and thus invalid.) This is a way to specify a field without a
default value: a user must set a valid value.

If the value is not None, it must have a base
type of int, float, str or unicode; the TextCrtl will be initialized
from this value.

	nDig (list) – number of digits, places and optionally the format
([nDig,nPlc,fmt]) after decimal to use for display of float. The format
is either ‘f’ (default) or ‘g’. Alternately, None can be specified which
causes numbers to be displayed with approximately 5 significant figures
for floats. If this is specified, then typeHint = float becomes the
default.
(Default=None).

	notBlank (bool) – if True (default) blank values are invalid
for str inputs.

	xmin (number) – minimum allowed valid value. If None (default) the
lower limit is unbounded.
NB: test in NumberValidator is val >= xmin not val > xmin

	xmax (number) – maximum allowed valid value. If None (default) the
upper limit is unbounded
NB: test in NumberValidator is val <= xmax not val < xmax

	exclLim (list) – if True exclude min/max value ([exclMin,exclMax]);
(Default=[False,False])

	OKcontrol (function) – specifies a function or method that will be
called when the input is validated. The called function is supplied
with one argument which is False if the TextCtrl contains an invalid
value and True if the value is valid.
Note that this function should check all values
in the dialog when True, since other entries might be invalid.
The default for this is None, which indicates no function should
be called.

	OnLeave (function) – specifies a function or method that will be
called when the focus for the control is lost.
The called function is supplied with (at present) three keyword arguments:

	invalid: (bool) True if the value for the TextCtrl is invalid

	value: (int/float/str) the value contained in the TextCtrl

	tc: (wx.TextCtrl) the TextCtrl object

The number of keyword arguments may be increased in the future should needs arise,
so it is best to code these functions with a **kwargs argument so they will
continue to run without errors

The default for OnLeave is None, which indicates no function should
be called.

	typeHint (type) – the value of typeHint should be int, float or str (or None).
The value for this will override the initial type taken from value
for the dict/list element loc[key] if not None and thus specifies the
type for input to the TextCtrl.
Defaults as None, which is ignored, unless nDig is specified in which
case the default is float.

	CIFinput (bool) – for str input, indicates that only printable
ASCII characters may be entered into the TextCtrl. Forces output
to be ASCII rather than Unicode. For float and int input, allows
use of a single ‘?’ or ‘.’ character as valid input.

	OnLeaveArgs (dict) – a dict with keyword args that are passed to
the OnLeave function. Defaults to {}

	ASCIIonly (bool) – if set as True will remove unicode characters from
strings

	(other) – other optional keyword parameters for the
wx.TextCtrl widget such as size or style may be specified.

	
OnKeyDown(event)

	Special callback for wx 2.9+ on Mac where backspace is not processed by validator

	
SetValue(value)

	Sets the new text control value.

	
ShowStringValidity(previousInvalid=True)

	Check if input is valid. Anytime the input is
invalid, call self.OKcontrol (if defined) because it is fast.
If valid, check for any other invalid entries only when
changing from invalid to valid, since that is slower.

	Parameters:

	previousInvalid (bool) – True if the TextCtrl contents were
invalid prior to the current change.

	
class GSASIIctrlGUI.VirtualVarBox(parent)

	
	
OnGetItemAttr(item) → ItemAttr

	This function may be overridden in the derived class for a control
with wxLC_VIRTUAL style.

	
OnGetItemText(item, column) → String

	This function must be overridden in the derived class for a control
with wxLC_VIRTUAL style.

	
OnRowSelected(event, row=None)

	Creates an edit window when a parameter is selected

	
GSASIIctrlGUI.XformMatrix(panel, Trans, Uvec, Vvec, OnLeave=None, OnLeaveArgs={})

	Display a transformation matrix and two vectors

	
GSASIIctrlGUI.askSaveDirectory(G2frame)

	Ask the user to supply a directory name. Path name is used as the
starting point for the next export path search.

	Returns:

	a directory name (str) or None if Cancel is pressed

	
GSASIIctrlGUI.askSaveFile(G2frame, defnam, extension, longFormatName, parent=None)

	Ask the user to supply a file name; used for svn

	Parameters:

	
	G2frame (wx.Frame) – The main GSAS-II window

	defnam (str) – a default file name

	extension (str) – the default file extension beginning with a ‘.’

	longFormatName (str) – a description of the type of file

	parent (wx.Frame) – the parent window for the dialog. Defaults
to G2frame.

	Returns:

	a file name (str) or None if Cancel is pressed

	
class GSASIIctrlGUI.downdate(parent=None)

	Dialog to allow a user to select a version of GSAS-II to install
svn version

	
getVersion()

	Get the version number in the dialog

	
GSASIIctrlGUI.getTextSize(txt)

	Get the size of the text string txt in points, returns (x,y)

	
GSASIIctrlGUI.gitCheckUpdates(G2frame)

	Used to update to the latest GSAS-II version, but checks for a variety
of repository conditions that could make this process more complex. If
there are uncommitted local changes, these changes must be cached or
deleted first. If there are local changes that have been committed or a new
branch has been created, the user (how obstensibly must know use of git)
will probably need to do this manually. If GSAS-II has previously been
regressed (using gitSelectVersion()), then this is noted as well.

When all is done, function GSASIIpath.gitStartUpdate() is called to
actually perform the update.

	
GSASIIctrlGUI.gitSelectVersion(G2frame)

	Used to regress to a previous GSAS-II version, checking first
for a variety of repository conditions that could make this process
more complex. If there are uncommitted local changes, these changes
must be cached or deleted before a different version can be installed.
If there are local changes that have been committed or a new
branch has been created, the user (how obstensibly must know use of git)
will probably need to do this manually. If GSAS-II has previously been
regressed (using gitSelectVersion()), then this is noted as well.

When all is done, function GSASIIpath.gitStartUpdate() is called to
actually perform the update.

	
class GSASIIctrlGUI.gitVersionSelector(parent=None)

	Dialog to allow a user to select a version of GSAS-II to install
from a git repository

	
docCommit(commit)

	Provides a string with information about a specific git commit.

	Returns:

	a multi-line string

	
getVersion()

	Gets the selected version that should be installed

	Returns:

	returns one of three values:

	0: if the newest version is selected, so that the
installation should be updated rather than regressed

	None: if the currently installed version is selected,
so that nothing need be done

	A hexsha string: the regressed version that should be
selected.

	
class GSASIIctrlGUI.gpxFileSelector(parent, startdir='.', multiple=False, *args, **kwargs)

	Create a file selection widget for locating .gpx files as a modal
dialog. Displays status information on selected files. After creating
this use dlg.ShowModal() to wait for selection of a file.
If dlg.ShowModal() returns wx.ID_OK, use dlg.Selection (multiple=False)
to obtain the selected file or dlg.Selections (multiple=True) to
obtain a list of multiple files.

	Parameters:

	
	parent (wx.Frame) – name of panel or frame that will be
the parent to the dialog. Can be None.

	startdir (path) – Specifies the initial directory that is
opened when the window is initially opened. Default is ‘.’

	multiple (bool) – if True, checkboxes are used to allow
selection of multiple files. Default is False

	
DirSelected(event=None, *args, **kwargs)

	Respond to a directory being selected. List files found in fileBox and
clear any selections. Also clear any reference to a timer.

	
FileSelected(event)

	Respond to a file being selected (or checked in multiple mode)

	
displayGPXrtc(result, fwp)

	Show info about selected file in a RichText display

	
GSASIIctrlGUI.makeContourSliders(G2frame, Ymax, PlotPatterns, newPlot, plottype)

	Create a non-modal dialog for sliders to set contour plot
intensity thresholds.

	
GSASIIctrlGUI.openInNewTerm(project=None, g2script=None, pythonapp='/home/docs/checkouts/readthedocs.org/user_builds/gsas-ii/conda/latest/bin/python')

	Open a new and independent GSAS-II session in separate terminal
or console window and as a separate process that will continue
even if the calling process exits.
Intended to work on all platforms.

This could be used to run other scripts inside python other than GSAS-II

	Parameters:

	
	project (str) – the name of an optional parameter to be
passed to the script (usually a .gpx file to be opened in
a new GSAS-II session)

	g2script (str) – the script to be run. If None (default)
the GSASII.py file in the same directory as this file will
be used.

	pythonapp (str) – the Python interpreter to be used.
Defaults to sys.executable which is usually what is wanted.

	terminal (str) – a name for a preferred terminal emulator

	
GSASIIctrlGUI.setColorButton(parent, array, key, callback=None, callbackArgs=[])

	Define a button for setting colors
This bypasses the bug in wx4.1.x in ColourSelect

	
GSASIIctrlGUI.showUniqueCell(frame, cellSizer, row, cell, SGData=None, editAllowed=False, OnCellChange=None)

	function to put cell values into a GridBagSizer.
First column (#0) is reserved for labels etc.
if editAllowed is True, values are placed in a wx.TextCtrl and if needed
two rows are used in the table.

	
GSASIIctrlGUI.skimGPX(fl)

	pull out fit information from a .gpx file quickly

	Returns:

	dict with status info

	
GSASIIctrlGUI.svnCheckUpdates(G2frame)

	Check if the GSAS-II repository has an update for the current
source files and perform that update if requested.

	
GSASIIctrlGUI.svnSelectVersion(G2frame)

	Allow the user to select a specific version of GSAS-II from the
APS svn server

	
GSASIIctrlGUI.updateNoticeDict = {4919: True}

	A dict with versions that should be noted. The value associated with the
tag is if all older projects should show the warning, or only the first
to be opened.

	
GSASIIctrlGUI.updateNotifier(G2frame, fileVersion)

	Posts an update notice when a a specially tagged GSAS-II version
is seen for the first time. Versions to be tagged are set in global
updateNoticeDict; version info is found in file versioninfo.txt.

	Parameters:

	
	G2frame (wx.Frame) – GSAS-II main window

	fileVersion (int) – version of GSAS-II used to create the current
.gpx file

5.2. GSASIIIO: Misc I/O routines

Module with miscellaneous routines for input and output. Many
are GUI routines to interact with user.

Includes support for image reading.

Also includes base class for data export routines (TODO: should move)

5.2.1. GSASIIIO Classes & Routines

Misc routines for input and output, including image reading follow.

TODO: This module needs some work to separate wx from non-wx routines. GUI
routines should probably move to GSASIIctrlGUI.

	
class GSASIIIO.ExportBaseclass(G2frame, formatName, extension, longFormatName=None)

	Defines a base class for the exporting of GSAS-II results.

This class is subclassed in the various exports/G2export_*.py files. Those files
are imported in GSASIIdataGUI.GSASII._init_Exports() which defines the
appropriate menu items for each one and the .Exporter method is called
directly from the menu item.

Routines may also define a .Writer method, which is used to write a single
file without invoking any GUI objects.

	
CloseFile(fp=None)

	Close a file opened in OpenFile

	Parameters:

	fp (file) – the file object to be closed. If None (default)
file object self.fp is closed.

	
ExportSelect(AskFile='ask')

	Selects histograms or phases when needed. Sets a default file name when
requested into self.filename; always sets a default directory in self.dirname.

	Parameters:

	AskFile (bool) – Determines how this routine processes getting a
location to store the current export(s).

	if AskFile is ‘ask’ (default option), get the name of the file to be written;
self.filename and self.dirname are always set. In the case where
multiple files must be generated, the export routine should do this
based on self.filename as a template.

	if AskFile is ‘dir’, get the name of the directory to be used;
self.filename is not used, but self.dirname is always set. The export routine
will always generate the file name.

	if AskFile is ‘single’, get only the name of the directory to be used when
multiple items will be written (as multiple files) are used
or a complete file name is requested when a single file
name is selected. self.dirname is always set and self.filename used
only when a single file is selected.

	if AskFile is ‘default’, creates a name of the file to be used from
the name of the project (.gpx) file. If the project has not been saved,
then the name of file is requested.
self.filename and self.dirname are always set. In the case where
multiple file names must be generated, the export routine should do this
based on self.filename.

	if AskFile is ‘default-dir’, sets self.dirname from the project (.gpx)
file. If the project has not been saved, then a directory is requested.
self.filename is not used.

	Returns:

	True in case of an error

	
GetAtoms(phasenam)

	Gets the atoms associated with a phase. Can be used with standard
or macromolecular phases

	Parameters:

	phasenam (str) – the name for the selected phase

	Returns:

	a list of items for eac atom where each item is a list containing:
label, typ, mult, xyz, and td, where

	label and typ are the atom label and the scattering factor type (str)

	mult is the site multiplicity (int)

	xyz is contains a list with four pairs of numbers:
x, y, z and fractional occupancy and
their standard uncertainty (or a negative value)

	td is contains a list with either one or six pairs of numbers:
if one number it is Uiso and with six numbers it is
U11, U22, U33, U12, U13 & U23
paired with their standard uncertainty (or a negative value)

	
GetCell(phasenam, unique=False)

	Gets the unit cell parameters and their s.u.’s for a selected phase

	Parameters:

	
	phasenam (str) – the name for the selected phase

	unique (bool) – when True, only directly refined parameters
(a in cubic, a & alpha in rhombohedral cells) are assigned
positive s.u. values. Used as True for CIF generation.

	Returns:

	cellList,cellSig where each is a 7 element list corresponding
to a, b, c, alpha, beta, gamma, volume where cellList has the
cell values and cellSig has their uncertainties.

	
GetSeqCell(phasenam, data_name)

	Gets the unit cell parameters and their s.u.’s for a selected phase
and histogram in a sequential fit

	Parameters:

	
	phasenam (str) – the name for the selected phase

	data_name (dict) – the sequential refinement parameters for the selected histogram

	Returns:

	cellList,cellSig where each is a 7 element list corresponding
to a, b, c, alpha, beta, gamma, volume where cellList has the
cell values and cellSig has their uncertainties.

	
InitExport(event)

	Determines the type of menu that called the Exporter and
misc initialization.

	
MakePWDRfilename(hist)

	Make a filename root (no extension) from a PWDR histogram name

	Parameters:

	hist (str) – the histogram name in data tree (starts with “PWDR “)

	
OpenFile(fil=None, mode='w', delayOpen=False)

	Open the output file

	Parameters:

	
	fil (str) – The name of the file to open. If None (default)
the name defaults to self.dirname + self.filename.
If an extension is supplied, it is not overridded,
but if not, the default extension is used.

	mode (str) – The mode can ‘w’ to write a file, or ‘a’ to append to it. If
the mode is ‘d’ (for debug), output is displayed on the console.

	Returns:

	the file object opened by the routine which is also
saved as self.fp

	
SetSeqRef(data, hist)

	Set the exporter to retrieve results from a sequential refinement
rather than the main tree

	
Write(line)

	write a line of output, attaching a line-end character

	Parameters:

	line (str) – the text to be written.

	
askSaveDirectory()

	Ask the user to supply a directory name. Path name is used as the
starting point for the next export path search.

	Returns:

	a directory name (str) or None if Cancel is pressed

TODO: Can this be replaced with G2G.askSaveDirectory?

	
askSaveFile()

	Ask the user to supply a file name

	Returns:

	a file name (str) or None if Cancel is pressed

	
dumpTree(mode='type')

	Print out information on the data tree dicts loaded in loadTree.
Used for testing only.

	
loadParmDict()

	Load the GSAS-II refinable parameters from the tree into a dict (self.parmDict). Update
refined values to those from the last cycle and set the uncertainties for the
refined parameters in another dict (self.sigDict).

Expands the parm & sig dicts to include values derived from constraints.

This could be made faster for sequential fits by reducing the histogram list to only
the active histogram being exported.

	
loadTree()

	Load the contents of the data tree into a set of dicts
(self.OverallParms, self.Phases and self.Histogram as well as self.powderDict
& self.xtalDict)

	The childrenless data tree items are overall parameters/controls for the
entire project and are placed in self.OverallParms

	Phase items are placed in self.Phases

	Data items are placed in self.Histogram. The key for these data items
begin with a keyword, such as PWDR, IMG, HKLF,… that identifies the data type.

	
GSASIIIO.ExportPowder(G2frame, TreeName, fileroot, extension, hint='')

	Writes a single powder histogram using the Export routines.
This is used in GSASIIimgGUI.AutoIntFrame() only.

	Parameters:

	
	G2frame (wx.Frame) – the GSAS-II main data tree window

	TreeName (str) – the name of the histogram (PWDR …) in the data tree

	fileroot (str) – name for file to be written, extension ignored

	extension (str) – extension for file to be written (start with ‘.’). Must
match a powder export routine that has a Writer object.

	hint (str) – a string that must match the export’s format

	
GSASIIIO.ExportPowderList(G2frame)

	Returns a list of extensions supported by GSASIIIO:ExportPowder()
along with their descriptions (note that a extension may be repeated
but descriptions are unique).
This is used in GSASIIimgGUI.AutoIntFrame() only.

	Parameters:

	G2frame (wx.Frame) – the GSAS-II main data tree window

	
GSASIIIO.ExportSequential(G2frame, data, obj, exporttype)

	Used to export from every phase/dataset in a sequential refinement using
a .Writer method for either projects or phases. Prompts to select histograms
and for phase exports, which phase(s).

	Parameters:

	
	G2frame (wx.Frame) – the GSAS-II main data tree window

	data (dict) – the sequential refinement data object

	obj (exporter) – an exporter object

	exporttype (str) – indicates the type of export (‘project’ or ‘phase’)

	
GSASIIIO.ExportSequentialFullCIF(G2frame, seqData, Controls)

	Handles access to CIF exporter a bit differently for sequential fits, as this is
not accessed via the usual export menus

	
GSASIIIO.ExtractFileFromZip(filename, selection=None, confirmread=True, confirmoverwrite=True, parent=None, multipleselect=False)

	If the filename is a zip file, extract a file from that
archive.

	Parameters:

	
	Selection (list) – used to predefine the name of the file
to be extracted. Filename case and zip directory name are
ignored in selection; the first matching file is used.

	confirmread (bool) – if True asks the user to confirm before expanding
the only file in a zip

	confirmoverwrite (bool) – if True asks the user to confirm
before overwriting if the extracted file already exists

	multipleselect (bool) – if True allows more than one zip
file to be extracted, a list of file(s) is returned.
If only one file is present, do not ask which one, otherwise
offer a list of choices (unless selection is used).

	Returns:

	the name of the file that has been created or a
list of files (see multipleselect)

If the file is not a zipfile, return the name of the input file.
If the zipfile is empty or no file has been selected, return None

	
GSASIIIO.FileDlgFixExt(dlg, file)

	this is needed to fix a problem in linux wx.FileDialog

	
GSASIIIO.GetCheckImageFile(G2frame, treeId)

	Try to locate an image file if the project and image have been moved
together. If the image file cannot be found, request the location from
the user.

	Parameters:

	
	G2frame (wx.Frame) – main GSAS-II Frame and data object

	treeId (wx.Id) – Id for the main tree item for the image

	Returns:

	Npix,imagefile,imagetag with (Npix) number of pixels,
imagefile, if it exists, or the name of a file that does exist or False if the user presses Cancel
and (imagetag) an optional image number

	
GSASIIIO.GetImageData(G2frame, imagefile, imageOnly=False, ImageTag=None, FormatName='')

	Read a single image with an image importer. This is called to reread an image
after it has already been imported with GSASIIdataGUI.GSASII.OnImportGeneric()
(or ReadImages() in Auto Integration) so it is not necessary to reload metadata.

	Parameters:

	
	G2frame (wx.Frame) – main GSAS-II Frame and data object.

	imagefile (str) – name of image file

	imageOnly (bool) – If True return only the image,
otherwise (default) return more (see below)

	ImageTag (int/str) – specifies a particular image to be read from a file.
First image is read if None (default).

	formatName (str) – the image reader formatName

	Returns:

	an image as a numpy array or a list of four items:
Comments, Data, Npix and the Image, as selected by imageOnly

	
GSASIIIO.GetPowderPeaks(fileName)

	Read powder peaks from a file

	
GSASIIIO.IndexPeakListSave(G2frame, peaks)

	Save powder peaks from the indexing list

	
GSASIIIO.LoadImage2Tree(imagefile, G2frame, Comments, Data, Npix, Image)

	Load an image into the tree. Saves the location of the image, as well as the
ImageTag (where there is more than one image in the file), if defined.

	
GSASIIIO.PeakListSave(G2frame, file, peaks)

	Save powder peaks to a data file

	
GSASIIIO.ProjFileOpen(G2frame, showProvenance=True)

	Read a GSAS-II project file and load into the G2 data tree

	
GSASIIIO.ProjFileSave(G2frame)

	Save a GSAS-II project file

	
GSASIIIO.PutG2Image(filename, Comments, Data, Npix, image)

	Write an image as a python pickle - might be better as an .edf file?

	
GSASIIIO.ReadImages(G2frame, imagefile)

	Read one or more images from a file and put them into the Tree
using image importers. Called only in AutoIntFrame.OnTimerLoop().

ToDo: Images are most commonly read in GSASIIdataGUI.GSASII.OnImportGeneric()
which is called from GSASIIdataGUI.GSASII.OnImportImage()
it would be good if these routines used a common code core so that changes need to
be made in only one place.

	Parameters:

	
	G2frame (wx.Frame) – main GSAS-II Frame and data object.

	imagefile (str) – name of image file

	Returns:

	a list of the id’s of the IMG tree items created

	
GSASIIIO.SaveIntegration(G2frame, PickId, data, Overwrite=False)

	Save image integration results as powder pattern(s)

	
GSASIIIO.XYsave(G2frame, XY, labelX='X', labelY='Y', names=[])

	Save XY table data

	
GSASIIIO.objectScan(data, tag, indexStack=[])

	Recursively scan an object looking for unexpected data types.
This is used in debug mode to scan .gpx files for objects we did not
intend to be there.

	
GSASIIIO.postURL(URL, postdict, getcookie=None, usecookie=None, timeout=None, retry=2, mode='get')

	Posts a set of values as from a web form using the “get” or “post”
protocols.
If access fails to an https site, the access is retried with http.

	Parameters:

	
	URL (str) – the URL to post; typically something
like ‘http://www…/dir/page [http://www.../dir/page]?’

	postdict (dict) – contains keywords and values, such
as {‘centrosymmetry’: ‘0’, ‘crystalsystem’: ‘0’, …}

	getcookie (dict) – dict to save cookies created in call, or None
(default) if not needed.

	usecookie (dict) – dict containing cookies to be used in call,
or None (default) if not needed.

	timeout (int) – specifies a timeout period for the get or post (default
is None, which means the timeout period is set by the server). The value
when specified is the time in seconds to wait before giving up on the
request.

	retry (int) – the number of times to retry the request, if it times out.
This is only used if timeout is specified. The default is 2. Note that
if retry is left at the default value (2), The timeout is increased by
25% for the second try.

	mode (str) – either ‘get’ (default) or ‘post’. Determines how
the request will be submitted.

	Returns:

	a string with the response from the web server or None
if access fails.

	
GSASIIIO.sfloat(S)

	Convert a string to float. An empty field or a unconvertable value is treated as zero

	
GSASIIIO.sint(S)

	Convert a string to int. An empty field is treated as zero

	
GSASIIIO.striphist(var, insChar='')

	strip a histogram number from a var name

	
GSASIIIO.trim(val)

	Simplify a string containing leading and trailing spaces
as well as newlines, tabs, repeated spaces etc. into a shorter and
more simple string, by replacing all ranges of whitespace
characters with a single space.

	Parameters:

	val (str) – the string to be simplified

	Returns:

	the (usually) shortened version of the string

5.3. gltext: draw OpenGL text

Routines that render text on OpenGL without use of GLUT.

Code written by Christian Brugger & Stefan Hacker and
distributed under GNU General Public License.

	
class gltext.Text(text='Text', font=None, font_size=8, foreground=wx.Colour(-1, -1, -1, 255), centered=False)

	A simple class for using System Fonts to display text in
an OpenGL scene. The Text adds a global Cache of already
created text elements to TextElement’s base functionality
so you can save some memory and increase speed

	
property centered

	Display the text centered

	
draw_text(position=wx.RealPoint(0.0, 0.0), scale=1.0, rotation=0)

	position (wx.RealPoint) - x/y Position to draw in scene
scale (float) - Scale
rotation (int) - Rotation in degree

Draws the text to the scene

	
property font

	Font of the object

	
property font_size

	Font size

	
property foreground

	Color/Overlay bitmap of the text

	
getTextElement()

	Returns the text element bound to the Text class

	
getTexture()

	Returns the texture of the bound TextElement

	
getTexture_size()

	Returns a texture size tuple

	
setCentered(value, reinit=True)

	value (bool) - New centered value
reinit (bool) - Create a new texture

Sets a new value for ‘centered’

	
setFont(value, reinit=True)

	value (bool) - New Font
reinit (bool) - Create a new texture

Sets a new font

	
setFont_size(value, reinit=True)

	value (bool) - New font size
reinit (bool) - Create a new texture

Sets a new font size

	
setForeground(value, reinit=True)

	value (bool) - New centered value
reinit (bool) - Create a new texture

Sets a new value for ‘centered’

	
setText(value, reinit=True)

	value (bool) - New Text
reinit (bool) - Create a new texture

Sets a new text

	
property text

	Text of the object

	
property text_element

	TextElement bound to this class

	
property texture

	Texture of bound TextElement

	
property texture_size

	Size of the used texture

	
class gltext.TextElement(text='', font=None, foreground=wx.Colour(-1, -1, -1, 255), centered=False)

	A simple class for using system Fonts to display
text in an OpenGL scene

	
bind()

	Increase refcount

	
property centered

	Is text centered

	
createTexture()

	Creates a texture from the settings saved in TextElement, to be able to use normal
system fonts conviently a wx.MemoryDC is used to draw on a wx.Bitmap. As wxwidgets
device contexts don’t support alpha at all it is necessary to apply a little hack
to preserve antialiasing without sticking to a fixed background color:

We draw the bmp in b/w mode so we can use its data as a alpha channel for a solid
color bitmap which after GL_ALPHA_TEST and GL_BLEND will show a nicely antialiased
text on any surface.

To access the raw pixel data the bmp gets converted to a wx.Image. Now we just have
to merge our foreground color with the alpha data we just created and push it all
into a OpenGL texture and we are DONE inhalesdelpy

DRAWBACK of the whole conversion thing is a really long time for creating the
texture. If you see any optimizations that could save time PLEASE CREATE A PATCH!!!

	
deleteTexture()

	Deletes the OpenGL texture object

	
draw_text(position=wx.RealPoint(0.0, 0.0), scale=1.0, rotation=0)

	position (wx.RealPoint) - x/y Position to draw in scene
scale (float) - Scale
rotation (int) - Rotation in degree

Draws the text to the scene

	
property font

	Font of the object

	
property foreground

	Color of the text

	
isBound()

	Return refcount

	
property owner_cnt

	Owner count

	
release()

	Decrease refcount

	
property text

	Text of the object

	
property texture

	Used texture

	
property texture_size

	Size of the used texture

 \(\renewcommand\AA{\text{Å}}\)

6. GSAS-II GUI Components

These modules are used to create different parts of the GSAS-II
graphical user interface (GUI).

6.1. GSASIIdataGUI: Main GUI for GSAS-II

Module that defines GUI routines and classes for the main GUI Frame (window)
and the main routines that define the GSAS-II tree panel and much of the
data editing panel.

6.1.1. GSASIIdataGUI Classes & Routines

Routines for main GUI wx.Frame follow.

	
GSASIIdataGUI.FindPhaseItem(G2frame)

	Finds the Phase item in the tree. If not present it adds one
also adding ‘Hist/Phase’ if config var SeparateHistPhaseTreeItem
is set as True.

	
class GSASIIdataGUI.G2DataWindow(parent)

	Create the data item window as well as the menu. Note that
the same core menu items are used in all menus, but different items may be
added depending on what data tree item (and for phases, the phase tab).

Note that while the menus are created here,
the binding for the menus is done later in various GSASII*GUI modules,
where the functions to be called are defined.

Use of the dataWindow scrolled panel:

dataWindow has a “master” vertical BoxSizer: find it with
G2frame.dataWindow.GetSizer() and always use it. A call to
dataWindow.SetSizer() should not be needed.

When placing a widget in the sizer that has its own scrolling
(e.g. G2G.GSNoteBook, anything else?) that one widget should be placed
in the sizer as

G2frame.dataWindow.GetSizer().Add(G2frame.<obj>,1,wx.ALL|wx.EXPAND)

[is wx.ALL superfluous here?] so that it consumes the full size of the
panel and so that the NoteBook widget does the scrolling.

For other uses, one will likely place a bunch of widgets and (other
[sub-]sizers) into the master sizer. In this case, DO NOT use wx.EXPAND,
as this will result in the widget resizing/repositioning as the window
resizes. Possible exceptions might be for widgets going into a fixed-size
panel that is inside the dataWindow (probably not being done). A call to
Sizer.Fit(dataWindow) will do bad things, though a call to
SubSizer.Fit(dataWindow.subpanel) could make sense.

Initial GUI draws to dataWindow will go through
GSASIIdataGUI.SelectDataTreeItem(), which is called after any changes to
data tree selection. SelectDataTreeItem places items in dataWindow or
calls that do that. Before it calls those routines, it calls

G2frame.dataWindow.ClearData()

which deletes the contents of the master sizer. After the contents are
posted a call is made to

G2frame.dataWindow.SetDataSize()

which repaints the window. For routines [such as GSASIIpwdGUI.UpdatePeakGrid()]
that are called repeatedly to update the entire contents of dataWindow
themselves, it is important to add calls to

G2frame.dataWindow.ClearData()

and

G2frame.dataWindow.SetDataSize()

at the beginning and end respectively to clear and refresh. This is not
needed for GSNoteBook repaints, which seem to be working mostly
automatically. If there is a problem, a call like

wx.CallAfter(G2frame.phaseDisplay.SendSizeEvent)

might be needed. There are some calls to G2frame.dataWindow.SendSizeEvent()
that may be doing the same thing.

	
ClearData()

	Initializes the contents of the dataWindow panel

	
OnResize(event)

	Used for grids to match ScrolledWindow size

	
PostfillDataMenu(empty=False)

	Add the help menu to the menus associated with data tree items.

	
PrefillDataMenu(menu, empty=False)

	Create the “standard” part of data frame menus & add the dataWindow menu headings
This menu duplicates the tree menu, but adds an extra help command for the current
data item and a separator.

	
SetDataSize()

	Sizes the contents of the dataWindow panel

	
class GSASIIdataGUI.GSASII(parent)

	Define the main GSAS-II frame and its associated menu items.

	Parameters:

	parent – reference to parent application

	
AddSimulatedPowder(ttArr, intArr, HistName, Lam1, Lam2)

	Create a PWDR entry for a computed powder pattern

	
AddToNotebook(text)

	Add entry to Notebook tree item

	
CheckNotebook()

	Make sure the data tree has the minimally expected controls.

	
class CopyDialog(parent, title, text, data)

	Creates a dialog for copying control settings between
data tree items

	
DoSequentialProjExport(event)

	Export a sequential project

duplicates part of GSASIIseqGUI.DoSequentialExport

	
EditProxyInfo(event)

	Edit the proxy information used by subversion (svn only, not used with git)

	
EnableRefineCommand()

	Check that phases are connected to histograms - if so then Refine is enabled

	
ErrorDialog(title, message, parent=None, wtype=4)

	Display an error message

	
ExitMain(event)

	Called if exit selected or the main window is closed
rescord last position of data & plot windows; saved to config.py file
NB: not called if console window closed

	
ExpandAll(event)

	Expand all tree items or those of a single type

	
FillMainMenu(menubar, addhelp=True)

	Define contents of the main GSAS-II menu for the (main) data tree window.
For the mac, this is also called for the data item windows as well so that
the main menu items are data menu as well.

	
GetFileList(fileType, skip=None)

	Get list of file names containing a particular string; can skip one of known GSAS-II id
param: fileType str: any string within a file name
param: skip int:default=None, a GSAS-II assigned id of a data item to skip in collecting the names
returns: list of file names from GSAS-II tree
returns: str name of file optionally skipped
Appears unused, but potentially useful.
Note routine of same name in GSASIIpwdGUI; it does not have the skip option

	
GetHKLFdatafromTree(HKLFname)

	Returns single crystal data from GSASII tree

	Parameters:

	HKLFname (str) – a single crystal histogram name as obtained
from
GSASIIstruct.GetHistogramNames()

	Returns:

	HKLFdata = single crystal data list of reflections

	
GetHistogramNames(hType)

	Returns a list of histogram names found in the GSASII data tree
Note routine GSASIIstrIO.GetHistogramNames() also exists to
get same info from GPX file.

	Parameters:

	hType (str) – list of histogram types

	Returns:

	list of histogram names

	
GetHistogramNamesID(hType)

	Returns a list of histogram names found in the GSASII data tree
and a lookup table of their Id values. Should replace GetHistogramNames
since that will not be much faster (and there may be real speed gains from
caching the Ids rather than keep searching for them).

N.B routine GSASIIstrIO.GetHistogramNames() also exists to
get same info, but from GPX file.

	Parameters:

	hType (str) – list of histogram types

	Returns:

	list of histogram names and a dict of histogram Ids
keyed by histogram name.

	
GetHistogramTypes()

	Returns a list of histogram types found in the GSASII data tree

	Returns:

	list of histogram types

	
GetPWDRdatafromTree(PWDRname)

	Returns powder data from GSASII tree

	Parameters:

	PWDRname (str) – a powder histogram name as obtained from
GSASIIstruct.GetHistogramNames()

	Returns:

	PWDRdata = powder data dictionary with
Powder data arrays, Limits, Instrument Parameters,
Sample Parameters

	
GetPhaseData()

	Returns a dict with defined phases.
Note routine GSASIIstrIO.GetPhaseData() also exists to
get same kind of info from GPX file & put in a list of 9 items.

	
GetPhaseInfofromTree(Used=False)

	Get the phase names and their rId values,
also the histograms referenced in each phase.

	Parameters:

	Used (bool) – if Used is True, only histograms that are
referenced in the histogram are returned

	Returns:

	(phaseRIdList, usedHistograms) where

	phaseRIdList is a list of random Id values for each phase

	usedHistograms is a dict where the keys are the phase names
and the values for each key are a list of the histogram names
used in each phase.

	
GetPhaseNames()

	Returns a list of defined phases.
Note routine GSASIIstrIO.GetPhaseNames() also exists to
get same info from GPX file.

	
GetPowderIparm(rd, prevIparm, lastIparmfile, lastdatafile)

	Open and read an instrument parameter file for a data file
Returns the list of parameters used in the data tree

	Parameters:

	
	rd (obj) – the raw data (histogram) data object.

	prevIparm (str) – not used

	lastIparmfile (str) – Name of last instrument parameter
file that was read, or a empty string.

	lastdatafile (str) – Name of last data file that was read.

	Returns:

	a list of two dicts, the first containing instrument parameters
and the second used for TOF lookup tables for profile coeff.

	
GetTreeItemsList(item)

	returns a list of all GSAS-II tree items

	
GetUsedHistogramsAndPhasesfromTree()

	Returns all histograms that are found in any phase
and any phase that uses a histogram.
This also assigns numbers to used phases and histograms by the
order they appear in the file.
Note routine GSASIIstrIO.GetUsedHistogramsAndPhases() also exists to
get same info from GPX file.

	Returns:

	(Histograms,Phases)

	Histograms = dictionary of histograms as {name:data,…}

	Phases = dictionary of phases that use histograms

	
MakeLSParmDict(seqHist=None)

	Load all parameters used for computation from the tree into a
dict of paired values [value, refine flag]. Note that this is
different than the parmDict used in the refinement, which only has
values.

Note that similar things are done in
GSASIIIO.ExportBaseclass.loadParmDict() (from the tree) and
GSASIIstrMain.Refine() and GSASIIstrMain.SeqRefine() (from
a GPX file).

	Parameters:

	seqHist (dict) – defines a specific histogram to be loaded for a sequential
refinement, if None (default) all are loaded.
Note: at present this parameter is not used anywhere.

	Returns:

	(parmDict,varyList) where:

	parmDict is a dict with values and refinement flags
for each parameter and

	varyList is a list of variables (refined parameters).

	
MenuBinding(event)

	Called when a menu is clicked upon; looks up the binding in table

	
MoveTreeItems(event)

	Move tree items of a single type to the end of the tree

	
OnAddPhase(event)

	Add a new, empty phase to the tree. Called by Data/Add Phase menu

	
OnClusterAnalysis(event)

	Setsup cluster analysis & make tree entry

	
OnColMetaTest(event)

	Test the .par/.*lbls pair for contents

	
OnDataDelete(event)

	Delete one or more histograms from data tree. Called by the
Data/DeleteData menu

	
OnDataTreeSelChanged(event)

	Called when a data tree item is selected. May be called on item deletion as well.

	
OnDeletePhase(event)

	Delete one or more phases from the tree. Called by Data/Delete Phase menu.
Also delete this phase from Reflection Lists for each PWDR histogram;
removes the phase from restraints and deletes any constraints
with variables from the phase.
If any deleted phase is marked as Used in a histogram, a more rigorous
“deep clean” is done and histogram refinement results are cleared, as well as
the covariance information and all plots are deleted

	
OnDeleteSequential(event)

	Delete any sequential results table. Called by the Data/Delete sequential results menu

	
OnDummyPowder(event)

	Called in response to Import/Powder Data/Simulate menu item
to create a Dummy powder diffraction data set.

Reads an instrument parameter file and then gets input from the user

	
OnExportHKL(event)

	Exports a PWDR reflection list as a text file

	
OnExportMTZ(event)

	exports MTZ file from macromoleculat Reflection Lists in multiple histograms

	
OnExportPDF(event)

	Save S(Q), G(R),… as selected by user

	
OnExportPeakList(event)

	Exports a PWDR peak list as a text file

	
OnFileBrowse(event)

	Gets a GSAS-II .gpx project using the GPX browser, in response
to the File/”Open Project browser” menu button

	
OnFileClose(event)

	Clears the data tree in response to the
File/New Project menu button. User is given option to save
the project.

	
OnFileOpen(event, filename=None, askSave=True)

	Gets a GSAS-II .gpx project file in response to the
File/Open Project menu button

	
OnFileReopen(event)

	Creates a dialog box showing previously opened GSAS-II projects & offers to open one
called by File/Reopen recent… menu item

	
OnFileReread(event)

	reread the current GPX file; no questions asked – no save
for development purposes.

	
OnFileSave(event)

	Save the current project in response to the
File/Save Project menu button

	
OnFileSaveas(event)

	Save the current project with a new name in response to the
File/Save as menu button. The current project then has this new name

	
OnGPXtreeItemActivated(event)

	Called when a tree item is activated

	
OnGPXtreeItemCollapsed(event)

	Called when a tree item is collapsed - all children will be collapsed

	
OnGPXtreeItemDelete(event)

	Called when a tree item is deleted, inhibit the next tree item selection action

	
OnGPXtreeItemExpanded(event)

	Called when a tree item is expanded

	
OnGPXtreeKeyDown(event)

	Allows stepping through the tree with the up/down arrow keys

	
OnImageSum(event)

	Sum together image data

	
OnImportGeneric(reader, readerlist, label, multiple=False, usedRanIdList=[], Preview=True, load2Tree=False)

	Used for all imports, including Phases, datasets, images…

Called from GSASII.OnImportPhase(), GSASII.OnImportImage(),
GSASII.OnImportSfact(), GSASII.OnImportPowder(),
GSASII.OnImportSmallAngle() and :meth:’GSASII.OnImportReflectometry`

Uses reader_objects subclassed from GSASIIobj.ImportPhase,
GSASIIobj.ImportStructFactor,
GSASIIobj.ImportPowderData,
GSASIIobj.ImportSmallAngleData
GSASIIobj.ImportReflectometryData or
GSASIIobj.ImportImage.
If a specific reader is specified, only that method will be called,
but if no reader is specified, every one that is potentially
compatible (by file extension) will be tried on the file(s)
selected in the Open File dialog.

	Parameters:

	
	reader (reader_object) – This will be a reference to
a particular object to be used to read a file or None,
if every appropriate reader should be used.

	readerlist (list) – a list of reader objects appropriate for
the current read attempt. At present, this will be either
self.ImportPhaseReaderlist, self.ImportSfactReaderlist
self.ImportPowderReaderlist or self.ImportImageReaderlist
(defined in _init_Imports from the files found in the path),
but in theory this list could be tailored.
Used only when reader is None.

	label (str) – string to place on the open file dialog:
Open label input file

	multiple (bool) – True if multiple files can be selected
in the file dialog. False is default. At present True is used
only for reading of powder data.

	usedRanIdList (list) – an optional list of random Ids that
have been used and should not be reused

	Preview (bool) – indicates if a preview of the file should
be shown. Default is True, but set to False for image files
which are all binary.

	load2Tree (bool) – indicates if the file should be loaded
into the data tree immediately (used for images only). True
only when called from OnImportImage(); causes return
value to change to a list of True values rather than
reader objects.

	Returns:

	a list of reader objects (rd_list) that were able
to read the specified file(s). This list may be empty.

	
OnImportImage(event)

	Called in response to an Import/Image/… menu item
to read an image from a file. Like all the other imports,
dict self.ImportMenuId is used to look up the specific
reader item associated with the menu item, which will be
None for the last menu item, which is the “guess” option
where all appropriate formats will be tried.

A reader object is filled each time an image is read.

	
OnImportPDF(event)

	Called in response to an Import/PDF G(R) Data/… menu item
to read a PDF G(R) data set.
dict self.ImportMenuId is used to look up the specific
reader item associated with the menu item, which will be
None for the last menu item, which is the “guess” option
where all appropriate formats will be tried.

	
OnImportPhase(event)

	Called in response to an Import/Phase/… menu item
to read phase information.
dict self.ImportMenuId is used to look up the specific
reader item associated with the menu item, which will be
None for the last menu item, which is the “guess” option
where all appropriate formats will be tried.

	
OnImportPowder(event)

	Called in response to an Import/Powder Data/… menu item
to read a powder diffraction data set.
dict self.ImportMenuId is used to look up the specific
reader item associated with the menu item, which will be
None for the last menu item, which is the “guess” option
where all appropriate formats will be tried.

Also reads an instrument parameter file for each dataset.

	
OnImportReflectometry(event)

	Called in response to an Import/Reflectometry Data/… menu item
to read a reflectometry data set.
dict self.ImportMenuId is used to look up the specific
reader item associated with the menu item, which will be
None for the last menu item, which is the “guess” option
where all appropriate formats will be tried.
Reflectometry data is presumed to be in QIE form for x-rays of neutrons

	
OnImportSfact(event)

	Called in response to an Import/Structure Factor/… menu item
to read single crystal datasets.
dict self.ImportMenuId is used to look up the specific
reader item associated with the menu item, which will be
None for the last menu item, which is the “guess” option
where all appropriate formats will be tried.

	
OnImportSmallAngle(event)

	Called in response to an Import/Small Angle Data/… menu item
to read a small angle diffraction data set.
dict self.ImportMenuId is used to look up the specific
reader item associated with the menu item, which will be
None for the last menu item, which is the “guess” option
where all appropriate formats will be tried.
Small angle data is presumed to be as QIE form for either x-rays or neutrons

	
OnLeBail(event)

	Do a 1 cycle LeBail refinement with no other variables; usually done upon initialization of a LeBail refinement
either single or sequentially

	
OnMacroRecordStatus(event, setvalue=None)

	Called when the record macro menu item is used which toggles the
value. Alternately a value to be set can be provided. Note that this
routine is made more complex because on the Mac there are lots of menu
items (listed in self.MacroStatusList) and this loops over all of them.

	
OnMakePDFs(event)

	Sets up PDF data structure filled with defaults; if found chemical formula is inserted
so a default PDF can be made.

	
OnNewGSASII(event)

	Gets a GSAS-II .gpx project file in response to the
File/Open new window menu button. Runs only on Mac.

	
OnPlotDelete(event)

	Delete one or more plots from plot window. Called by the
Data/DeletePlots menu

	
OnPowderFPA(event)

	Perform FPA simulation/peak fitting

	
OnPreferences(event)

	Edit the GSAS-II configuration variables

	
OnPwdrSum(event)

	Sum or Average together powder data(?)

	
OnReadPowderPeaks(event)

	Bound to menu Data/Read Powder Peaks

	
OnRefine(event)

	Perform a single refinement or a sequential refinement (depending on controls setting)
Called from the Calculate/Refine menu.

	
OnRefinePartials(event)

	Computes and saves the intensities from each phase for each powder
histogram. Do a 0 cycle fit with no variables to pickle intensities for each
phase into a file. Not for sequential fits.
Sets Controls[‘PhasePartials’] to a file name to trigger save of
info in GSASIIstrMath.getPowderProfile() and then clear that.

	
OnRenameData(event)

	Renames an existing histogram. Called by Data/Rename Phase menu.
Must be used before a histogram is used in a phase.

	
OnRunAbsorb(event)

	Run Absorb

	
OnRunFprime(event)

	Run Fprime

	
OnRunPlotXNFF(evnt)

	Run PlotXNFF

	
OnSaveMultipleImg(event)

	Select and save multiple image parameter and mask files

	
OnSavePartials(event)

	Saves partials as a csv file

	
OnSeqRefine(event)

	Perform a sequential refinement.
Called from self.OnRefine (Which is called from the Calculate/Refine menu)

	
OnShowLSParms(event)

	Displays a window showing all parameters in the refinement.
Called from the Calculate/View LS Parms menu.

This could potentially be sped up by loading only the histogram that is needed
for a sequential fit.

	
OpenPowderInstprm(instfile)

	Read a GSAS-II (new) instrument parameter file

	Parameters:

	instfile (str) – name of instrument parameter file

	
PreviewFile(filename)

	utility to confirm we have the right file

	
ReadPowderInstprm(instLines, bank, databanks, rd)

	Read lines from a GSAS-II (new) instrument parameter file
similar to G2pwdGUI.OnLoad
If instprm file has multiple banks each with header #Bank n: …, this
finds matching bank no. to load - problem with nonmatches?

Note that this routine performs a similar role to GSASIIfiles.ReadPowderInstprm(),
but this will call a GUI routine for selection when needed. TODO: refactor to combine

	Parameters:

	
	instLines (list) – strings from GSAS-II parameter file; can be concatenated with ‘;’

	bank (int) – bank number to check when instprm file has ‘#BANK n:…’ strings
when bank = n then use parameters; otherwise skip that set. Ignored if BANK n:
not present. NB: this kind of instprm file made by a Save all profile command in Instrument Parameters

	Return dict:

	Inst instrument parameter dict if OK, or
str: Error message if failed

	
ReadPowderIparm(instfile, bank, databanks, rd)

	Read a GSAS (old) instrument parameter file

	Parameters:

	
	instfile (str) – name of instrument parameter file

	bank (int) – the bank number read in the raw data file

	databanks (int) – the number of banks in the raw data file.
If the number of banks in the data and instrument parameter files
agree, then the sets of banks are assumed to match up and bank
is used to select the instrument parameter file. If not and not TOF,
the user is asked to make a selection.

	rd (obj) – the raw data (histogram) data object. This
sets rd.instbank.

	
ResetPlots()

	This reloads the current tree item, often drawing a plot. It
also refreshes any plots that have registered a refresh routine
(see G2plotNB.RegisterRedrawRoutine) and deletes all plots that
have not been refreshed and require one (see G2plotNB.SetNoDelete).

	
SaveTreeSetting()

	Save the current selected tree item by name (since the id will change)

	
SetDataSize()

	this routine is a placeholder until all G2frame.SetDataSize calls are replaced
by G2frame.dataWindow.SetDataSize

	
SetTitleByGPX()

	Set the title for the two window frames

	
StartProject()

	Opens a GSAS-II project file & selects the 1st available data set to
display (PWDR, HKLF, REFD or SASD)

	
class SumDialog(parent, title, text, dataType, data, dataList, Limits=None)

	Allows user to supply scale factor(s) when summing data

	
OnFilter(event)

	Read text from filter control and select entries that match.

	
onChar(event)

	Respond to keyboard events in the Filter box

	
init_vars()

	initialize default values for GSAS-II “global” variables (saved in main Frame)

	
reloadFromGPX(rtext=None)

	Deletes current data tree & reloads it from GPX file (after a
refinemnt.) Done after events are completed to avoid crashes.
:param rtext str: string info from caller to be put in Notebook after reload

	
testSeqRefineMode()

	Returns the list of histograms included in a sequential refinement or
an empty list if a standard (non-sequential) refinement.
Also sets Menu item status depending on mode

	
GSASIIdataGUI.GSASIImain(application)

	Start up the GSAS-II GUI

	
GSASIIdataGUI.GUIpatches()

	Misc fixes that only needs to be done when running a GUI

	
GSASIIdataGUI.GetDisplay(pos)

	Gets display number (0=main display) for window position (pos). If pos outside all displays
returns None

	
GSASIIdataGUI.GetGPXtreeDataNames(G2frame, dataTypes)

	Finds all items in tree that match a 4 character prefix

	Parameters:

	
	G2frame (wx.Frame) – Data tree frame object

	dataTypes (list) – Contains one or more data tree item types to be matched
such as [‘IMG ‘] or [‘PWDR’,’HKLF’]

	Returns:

	a list of tree item names for the matching items

	
GSASIIdataGUI.GetGPXtreeItemId(G2frame, parentId, itemText)

	Find the tree item that matches the text in itemText starting with parentId

	Parameters:

	
	G2frame (wx.Frame) – Data tree frame object

	parentId (wx.TreeItemId) – tree item to start search with

	itemText (str) – text for tree item

	
class GSASIIdataGUI.MergeDialog(parent, data)

	HKL transformation & merge dialog

	Parameters:

	
	parent (wx.Frame) – reference to parent frame (or None)

	data – HKLF data

	
GSASIIdataGUI.SelectDataTreeItem(G2frame, item, oldFocus=None)

	Called from GSASIIdataGUI.GSASII.OnDataTreeSelChanged() when a item is selected on the tree.
Also called from GSASII.OnGPXtreeEndDrag, OnAddPhase – might be better to select item, triggering
the the bind to SelectDataTreeItem

Also Called in GSASIIphsGUI.UpdatePhaseData by OnTransform callback.

	
GSASIIdataGUI.SetDataMenuBar(G2frame, menu=None)

	Set the menu for the data frame.

Note that data frame items do not have menus, for these (menu=None)
display the standard main menu for the data tree window.

	
GSASIIdataGUI.SetDefaultDData(dType, histoName, NShkl=0, NDij=0)

	Sets default values for various histogram parameters
param: str dType: 3 letter histogram type, e.g. ‘PNT’
param: str histoName: histogram name as it aoears in tree
param: NShkl int: number of generalized mustrain coefficients - depends on symmetry
param: NDij int: number of hydrostatic strain coefficients - depends on symmetry

returns dict: default data for histogram - found in data tab for phase/histogram

	
GSASIIdataGUI.ShowVersions()

	Show the versions all of required Python packages, etc.

	
GSASIIdataGUI.TestOldVersions()

	Test the versions of required Python packages, etc.
Returns a non-empty text string if there are problems.

	
GSASIIdataGUI.UpdateComments(G2frame, data)

	Place comments into the data window

	
GSASIIdataGUI.UpdateControls(G2frame, data)

	Edit overall GSAS-II controls in main Controls data tree entry

	
GSASIIdataGUI.UpdateNotebook(G2frame, data)

	Called when the data tree notebook entry is selected. Allows for
editing of the text in that tree entry

	
GSASIIdataGUI.UpdatePWHKPlot(G2frame, kind, item)

	Called when the histogram main tree entry is called. Displays the
histogram weight factor, refinement statistics for the histogram
and the range of data for a simulation.

Also invokes a plot of the histogram.

	
GSASIIdataGUI.compareVersions(version1, version2)

	Compare two version strings (“x”, “x.y”, “x.y.z”)
Note that ‘3.’ matches ‘3.1’, and ‘3.0’ matches ‘3.0.1’
but ‘3.0.0’ does not match ‘3.0.1’

	Returns:

	0 if the versions match, -1 if version1 < version2,
or 1 if version1 > version2

	
GSASIIdataGUI.convVersion(version)

	Convert a version string (“x”, “x.y”, “x.y.z”) into a series of ints.

	Returns:

	[i0, i1, i2] where None is used if a value is not specified
and 0 is used if a field cannot be parsed.

	
GSASIIdataGUI.versionDict = {'badVersionWarn': {'matplotlib': ['3.1', '3.2'], 'numpy': ['1.16.0'], 'wx': ['4.1']}, 'tooNewUntested': {'Python': '3.12', 'wx': '4.2.2'}, 'tooNewWarn': {}, 'tooOld': {'Python': '2.7', 'matplotlib': '2.'}, 'tooOldWarn': {'Python': '3.6', 'matplotlib': '3.2.99', 'wx': '3.99'}}

	Variable versionDict is used to designate versions of packages that
should generate warnings or error messages.

	versionDict['tooOld'] is a dict with module versions that are too old and are
known to cause serious errors

	versionDict['tooOldWarn'] is a dict with module versions that are
significantly out of date and should be updated, but will probably function OK.

	versionDict['badVersionWarn'] is a dict of with lists of package
versions that are known to have bugs. One should select an older or
newer version of the package.

	versionDict['tooNewUntested'] is a dict with module versions that have
not been tested but there is no reason to expect problems

	versionDict['tooNewWarn'] is a dict with module versions that have not
been tested but there are concerns that problems may occur.

Packages/versions to be avoided

	Python:

	We are no longer supporting Python <=2.7 and <=3.6. Jan. 2023: We will soon start
removing code that is specific to Python 2.7.

	A problem has been noted with wx4.0.7.post2 with Python 3.10 that we can’t
yet duplicate (2/4/22).

	We anticipate that Python 3.10+ will flag code that previously worked fine,
because it reports errors where we pass a floating point number to a
wxpython routine that expects a int value. We are fixing these as we learn about them.

	wxPython:

	<=2.x.x: while most of GSAS-II has been written to be
compatible with older versions of wxpython, we are now testing with
version 4.0+ only.

	wxpython 3.0 is pretty similar to 4.0, but we did see
some issues with Python 3.x.

	wxpython 4.1 has some serious internal bugs with Python 3.10+ so we recommend
4.2+ for compatibility with newer Python versions.

	4.2.0 has a problem on MacOS where buttons w/default size are not displayed properly.
(see https://github.com/wxWidgets/Phoenix/issues/2319). Worked around (mostly?) in our code.

	Matplotlib:

	1.x: there have been significant API changes since these versions and
significant graphics errors will occur.

	3.1.x and 3.2.x: these versions have a known bug for plotting
3-D surfaces, such as microstrain vs crystal axes. The plots may appear
distorted as the lengths of x, y & z will not be constrained as equal.
Preferably use 3.0.x as 3.3.x is not fully tested.

	between 3.3.x vs 3.6.x there seems to be a change in how 3d graphics
are handled; we seem to have this fixed, but not sure how <3.3 will work.
Since 3.1 & 3.2 have problems; warn w/mpl <3.3.0

	numpy:

	1.16.0: produces .gpx files that are not compatible with older
version numpy versions. This is a pretty outmoded version; upgrade.

6.2. GSASIIseqGUI: Sequential Results GUI

Module that defines GUI routines and classes for the various
sequential result GUI Frames (window).
Also defines GUI routines for Cluster Analysis results.

Note that there are seven types of sequential results that GSAS-II can produce
and all are displayed/analyzed with the code in this module. They vary by title so that
a project can hold one result of each type without a naming collision:

	Rietveld (Title: Sequential results)

	PDF (Title: Sequential PDFfit2 results)

	Peak fit (Title: Sequential peak fit results)

	Small angle (Title: Sequential SASD fit results)

	Reflectometry (Title: Sequential REFD results)

	Image (strain) (Title: Sequential strain fit results)

	Image (calibration) (Title: Sequential image calibration results)

6.2.1. GSASIIseqGUI Classes & Routines

Routines for Sequential Results & Cluster Analysis dataframes follow.

	
GSASIIseqGUI.UpdateSeqResults(G2frame, data, prevSize=None)

	Called when any data tree entry is selected that has ‘Sequential’ in the name
to show results from any sequential analysis.

	Parameters:

	
	G2frame (wx.Frame) – main GSAS-II data tree windows

	data (dict) – a dictionary containing the following items:

	’histNames’ - list of histogram names in order as processed by Sequential Refinement

	’varyList’ - list of variables - identical over all refinements in sequence
note that this is the original list of variables, prior to processing
constraints.

	’variableLabels’ – a dict of labels to be applied to each parameter
(this is created as an empty dict if not present in data).

	keyed by histName - dictionaries for all data sets processed, which contains:

	’variables’- result[0] from leastsq call

	’varyList’ - list of variables passed to leastsq call (not same as above)

	’sig’ - esds for variables

	’covMatrix’ - covariance matrix from individual refinement

	’title’ - histogram name; same as dict item name

	’newAtomDict’ - new atom parameters after shifts applied

	’newCellDict’ - refined cell parameters after shifts to A0-A5 from Dij terms applied’

6.3. GSASIIphsGUI: Phase GUI

Module to create the GUI for display of phase information
in the data display window when a phase is selected.
Phase information is stored in one or more
Phase Tree Item objects.
Note that there are functions
that respond to some tabs in the phase GUI in other modules
(such as GSASIIddata).

6.3.1. GSASIIphsGUI Classes & Routines

Main routine here is UpdatePhaseData(), which displays the phase information
(called from GSASIIdataGUI:SelectDataTreeItem()).

Other top-level routines are:
GetSpGrpfromUser() (called locally only);
FindBondsDraw() and FindBondsDrawCell() (called locally and in GSASIIplot);
SetPhaseWindow() (called locally and in GSASIIddataGUI and GSASIIrestrGUI, multiple locations)
to control scrolling.

Routines for Phase dataframes follow.

	
class GSASIIphsGUI.AddHatomDialog(parent, Neigh, phase)

	H atom addition dialog. After ShowModal() returns, the results
are found in dict self.data, which is accessed using GetData().

	Parameters:

	
	parent (wx.Frame) – reference to parent frame (or None)

	Neigh (dict) – a dict of atom names with list of atom name, dist pairs for neighboring atoms

	phase (dict) – a dict containing the phase as defined by
Phase Tree Item

	
Draw(Neigh, phase)

	Creates the contents of the dialog. Normally called
by __init__().

	
GetData()

	Returns the values from the dialog

	
OnOk(event)

	Called when the OK button is pressed

	
class GSASIIphsGUI.DIFFaXcontrols(parent, ctrls, parms=None)

	Solicit items needed to prepare DIFFaX control.dif file

	
GSASIIphsGUI.FindBondsDraw(data)

	Generally used routine where cell is from data

	
GSASIIphsGUI.FindBondsDrawCell(data, cell)

	uses numpy & masks - very fast even for proteins!
allows different cell as input from seq. refinements

	
GSASIIphsGUI.FindCoordination(ind, data, neighborArray, coordsArray, cmx=0, targets=None)

	Find atoms coordinating atom ind, speed-up version.
This only searches to atoms already added to the Draw Array, though we might want
to search to all atoms in the asymmetric unity (which would mean searching against
atomsAll, but would also require a reformat of atom entry to match difference in
format between atoms and drawatoms.

	
GSASIIphsGUI.FindCoordinationByLabel(data)

	Map out molecular connectivity by determining the atoms bonded
to each atom, by label. The atoms bonded to each atom in the asymmetric
unit is determined and returned in a dict. Works best

	
class GSASIIphsGUI.RotationDialog(parent)

	Get Rotate & translate matrix & vector - currently not used
needs rethinking - possible use to rotate a group of atoms about some
vector/origin + translation

	
GSASIIphsGUI.SetDrawingDefaults(drawingData)

	Add required items into data[‘drawing’] array if not present. This does not add
all the items in SetupDrawingData, but it seems that this is not a problem. Perhaps the
two routines could be combined?

	
class GSASIIphsGUI.SphereEnclosure(parent, general, drawing, indx)

	Add atoms within sphere of enclosure to drawing

	Parameters:

	
	parent (wx.Frame) – reference to parent frame (or None)

	general – general data (includes drawing data)

	atoms – drawing atoms data

	indx – list of selected atoms (may be empty)

	
class GSASIIphsGUI.SymOpDialog(parent, SGData, New=True, ForceUnit=False)

	Class to select a symmetry operator

	
class GSASIIphsGUI.TransformDialog(parent, phase, Trans=array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]), Uvec=array([0., 0., 0.]), Vvec=array([0., 0., 0.]), ifMag=False, BNSlatt='')

	Phase transformation X’ = M*(X-U)+V

	Parameters:

	
	parent (wx.Frame) – reference to parent frame (or None)

	phase – parent phase data

#NB: commonNames & commonTrans defined in GSASIIdataGUI = G2gd

	
GSASIIphsGUI.UpdatePhaseData(G2frame, Item, data)

	Create the data display window contents when a phase is clicked on
in the main (data tree) window.
Called only from GSASIIdataGUI.SelectDataTreeItem(),
which in turn is called from GSASIIdataGUI.GSASII.OnDataTreeSelChanged()
when a Phase tree item is selected. This creates all tabs on the page and fills
their contents. Routine OnPageChanged is called each time a tab is pressed
and updates the contents of the tab’s page.

	Parameters:

	
	G2frame (wx.frame) – the main GSAS-II frame object

	Item (wx.TreeItemId) – the tree item that was selected

	data (dict) – all the information on the phase in a dictionary

	
class GSASIIphsGUI.UseMagAtomDialog(parent, Name, Atoms, atCodes, atMxyz, ifMag=True, ifOK=False, ifDelete=False)

	Get user selected magnetic atoms after cell transformation

	
GSASIIphsGUI.VoidMap(data, aMax=1, bMax=1, cMax=1, gridspacing=0.25, probeRadius=0.5, aMin=0, bMin=0, cMin=0)

	Compute points where there are no atoms within probeRadius A.
All atoms in the Atoms list are considered, provided their
occupancy is non-zero.

	Parameters:

	
	data (dict) – Phase data array

	aMax (float) – Maximum along the a direction (fractional units).
Defaults to 1.

	bMax (float) – Maximum along the b direction (fractional units).
Defaults to 1.

	cMax (float) – Maximum along the c direction (fractional units).
Defaults to 1.

	gridspacing=.25 (float) – Approximate spacing of points (fractional units).
Defaults to 1.

	,probeRadius=.5 (float) –

	aMin (float) – Minimum along the a direction (fractional units).
Defaults to 0.

	bMin (float) – Minimum along the b direction (fractional units).
Defaults to 0.

	cMin (float) – Minimum along the c direction (fractional units).
Defaults to 0.

	
GSASIIphsGUI.checkPDFfit(G2frame)

	Checks to see if PDFfit2 is available and can be imported. PDFfit2 can be installed
in a separate Python interpreter (saved in the pdffit2_exec config variable). If this is
defined, no attempt is made to check that it actually runs.
Otherwise, if diffpy.PDFfit has been installed with conda/pip, it is checked if the
install command. The fallback is to check if a .so/.pyd file has been supplied with
GSAS-II. This requires that GSL (GNU Scientific Library) be installed. If the current
Python is being run from conda, this will be loaded.

	Returns:

	False if PDFfit2 cannot be run/accessed. True if it appears it can be run.

	
GSASIIphsGUI.getAtomRadii(data)

	Get radii for atoms, using generalData[‘DisAglCtls’][‘BondRadii’]
to override generalData[‘BondRadii’] when present. Fix to make sure
that all elements in generalData are present in DisAglCtls.

	
GSASIIphsGUI.getAtomSelections(AtmTbl, cn=0, action='action', includeView=False, ask=True)

	get selected atoms from table or ask user if none are selected

	Parameters:

	
	AtmTbl (list) – atom or draw atom table

	cn (int) – atom name position

	action (str) – description for prompt, when needed

	includeView (bool) – if True, the viewpoint is included
as an option in the selection dialog

	Returns:

	indx (list) selected atoms from indices in table.
If includeView is True, indx can contain index n (where there
are n atoms in table). This is indicates the viewpoint.

	
GSASIIphsGUI.getPawleydRange(G2frame, data)

	find d-space range in used histograms

	
GSASIIphsGUI.makeIsoNewPhase(phData, cell, atomList, sglbl, sgnum)

	create a new phase from a supergroup structure generated by ISOCIF

	
GSASIIphsGUI.saveIsoNewPhase(G2frame, phData, newPhase, orgFilName)

	save the new phase generated by ISOCIF created in makeIsoNewPhase()
into a GSAS-II project (.gpx) file

	
GSASIIphsGUI.updateAddRBorientText(G2frame, testRBObj, Bmat)

	Update all orientation text on the Add RB panel

6.4. GSASIIddataGUI: Phase Diffraction Data GUI

Module to create the GUI for display of HAP items (where there is
an entry for each histogram & phase). This is shown when the
Phase “Data” tab is selected or may appear as if in a separate
data tree item (see SeparateHistPhaseTreeItem in config.py).

6.4.1. GSASIIddataGUI Classes & Routines

Routines for Data tab in Phase dataframe follows.

	
GSASIIddataGUI.MakeHistPhaseWin(G2frame)

	Display Phase/Data info from Hist/Phase tree item (not used with Phase/Data tab)

	
GSASIIddataGUI.UpdateDData(G2frame, DData, data, hist='', Scroll=0)

	Display the Diffraction Data associated with a phase
(items where there is a value for each histogram and phase)
Used in the Phase/Data tab or the Hist/Phase tree entry

	Parameters:

	
	G2frame (wx.frame) – the main GSAS-II frame object

	DData (wx.ScrolledWindow) – notebook page to be used for the display

	data (dict) – all the information on the phase in a dictionary

	hist (str) – histogram name

	Scroll (int) – previous scroll position

6.5. GSASIIElemGUI: GUI to select and delete element lists

Module to select elements from a periodic table and
to delete an element from a list of selected elements.

6.5.1. GSASIIElemGUI Classes & Routines

Routines for Periodic table wx.Frame follow.

	
class GSASIIElemGUI.DeleteElement(parent, choice)

	Delete element from selected set widget

	
ElButton(name, pos)

	Needs a doc string

	
class GSASIIElemGUI.PickElement(parent, oneOnly=False, ifNone=False, ifMag=False, ifOrbs=False, multiple=False)

	Makes periodic table widget for picking element. Modes:
oneOnly if True element symbols are provided, otherwise select valence
ifNone if True show None button
ifMag if True present magnetic scatters only
ifOrbs if True present orbital form actors only
multiple if True multiple elements can be selected

	
ElButton(name, pos, tip, color)

	Creates an element button widget

	
class GSASIIElemGUI.PickElements(parent, list)

	Makes periodic table widget for picking elements - caller maintains element list

6.6. GSASIIconstrGUI: Constraint GUI routines

GUI routines to define constraints and rigid bodies.

6.6.1. GSASIIconstrGUI Classes & Routines

Constraints and rigid bodies GUI routines follow.

	
GSASIIconstrGUI.CheckAllScalePhaseFractions(G2frame, refine=True)

	Check if scale factor and all phase fractions are refined without a constraint
for all used histograms, if so, offer the user a chance to create a constraint
on the sum of phase fractions

	Returns:

	False if refinement should be continued

	
GSASIIconstrGUI.CheckConstraints(G2frame, Phases, Histograms, data, newcons=[], reqVaryList=None, seqhst=None, seqmode='use-all')

	Load constraints & check them for errors.

N.B. Equivalences based on symmetry (etc.)
are generated by running GSASIIstrIO.GetPhaseData().

When reqVaryList is included (see WarnConstraintLimit) then
parameters with limits are checked against constraints and a
warning is shown.

	
GSASIIconstrGUI.CheckScalePhaseFractions(G2frame, hist, histograms, phases, Constraints)

	Check if scale factor and all phase fractions are refined without a constraint
for histogram hist, if so, offer the user a chance to create a constraint
on the sum of phase fractions

	
class GSASIIconstrGUI.ConstraintDialog(parent, title, text, data, separator='*', varname='', varyflag=False)

	Window to edit Constraint values

	
class GSASIIconstrGUI.DragableRBGrid(parent, rb, onChange=None)

	Simple grid implentation for display of rigid body positions.

	Parameters:

	
	parent – frame or panel where grid will be placed

	rb (dict) – dict with atom labels, types and positions

	onChange (function) – a callback used every time a value in
rb is changed.

	
OnRowMove(evt)

	called when a row move needs to take place

	
completeEdits()

	complete any outstanding edits

	
class GSASIIconstrGUI.G2BoolEditor

	Substitute for wx.grid.GridCellBoolEditor except toggles
grid items immediately when opened, updates grid & table contents after every
item change

	
ApplyEdit(row, col, grid)

	Save the value into the table, and create event.
Called after EndEdit(), BeginEdit and onCheckSet.

	
BeginEdit(row, col, grid)

	Prepares the edit control by loading the initial
value from the table (toggles it since you would not
click on it if you were not planning to change it),
buts saves the original, pre-change value.
Makes change to table immediately.
Saves the info needed to make updates in self.saveVals.
Sets the focus.

	
Clone()

	required

	
Create(parent, id, evtHandler)

	Create the editing control (wx.CheckBox) when cell is opened
for edit

	
Destroy()

	final cleanup

	
EndEdit(row, col, grid, oldVal=None)

	End editing the cell. This is supposed to
return None if the value has not changed, but I am not
sure that actually works.

	
Reset()

	Reset the value in the control back to its starting value.

	
SetSize(rect)

	Set position/size the edit control within the cell’s rectangle.

	
StartingClick()

	This seems to be needed for BeginEdit to work properly

	
onCheckSet(event)

	Callback used when checkbox is toggled.
Makes change to table immediately (creating event)

	
class GSASIIconstrGUI.RBDataTable(rb, onChange)

	A Table to support DragableRBGrid

	
GetColLabelValue(col) → String

	Return the label of the specified column.

	
GetNumberCols() → int

	Must be overridden to return the number of columns in the table.

	
GetNumberRows() → int

	Must be overridden to return the number of rows in the table.

	
GetRowLabelValue(row) → String

	Return the label of the specified row.

	
GetValue(row, col) → PyObject

	Must be overridden to implement accessing the table values as text.

	
IsEmptyCell(row, col) → bool

	May be overridden to implement testing for empty cells.

	
SetValue(row, col, value)

	Must be overridden to implement setting the table values as text.

	
GSASIIconstrGUI.ShowIsoDistortCalc(G2frame, phase=None)

	Compute the ISODISTORT mode values from the current coordinates.
Called in response to the (Phase/Atoms tab) AtomCompute or
Constraints/Edit Constr. “Show ISODISTORT modes” menu item, which
should be enabled only when Phase[‘ISODISTORT’] is defined.

	
GSASIIconstrGUI.ShowIsoModes(G2frame, phase)

	Show details about the ISODISTORT mode and the displacements they
translate to.

	
GSASIIconstrGUI.TransConstraints(G2frame, oldPhase, newPhase, Trans, Vec, atCodes)

	Add constraints for new magnetic phase created via transformation of old
nuclear one
NB: A = [G11,G22,G33,2*G12,2*G13,2*G23]

	
GSASIIconstrGUI.UpdateConstraints(G2frame, data, selectTab=None, Clear=False)

	Called when Constraints tree item is selected.
Displays the constraints in the data window

	
GSASIIconstrGUI.UpdateRigidBodies(G2frame, data)

	Called when Rigid bodies tree item is selected.
Displays the rigid bodies in the data window

6.7. GSASIIrestrGUI: Restraint GUI routines

GUI Routines used to define restraints.

6.7.1. GSASIIrestrGUI Classes & Routines

Restraint GUI routines follow.

	
GSASIIrestrGUI.GetSelectedRows(widget, lbl='edit', G2frame=None)

	Returns a list of selected rows. Rows can be selected, blocks of cells
or individual cells can be selected. The column for selected cells is ignored.

	
GSASIIrestrGUI.UpdateRestraints(G2frame, data, phaseName)

	Respond to selection of the Restraints item on the
data tree

6.8. GSASIIimgGUI: Image GUI

GUI Routines used to control image display and processing

6.8.1. GSASIIimgGUI Classes & Routines

Image GUI routines follow.

	
class GSASIIimgGUI.AutoIntFrame(G2frame, PollTime=30.0)

	Creates a wx.Frame window for the Image AutoIntegration.
The intent is that this will be used as a non-modal dialog window.

Implements a Start button that morphs into a pause and resume button.
This button starts a processing loop that is repeated every
PollTime() seconds.

	Parameters:

	
	G2frame (wx.Frame) – main GSAS-II frame

	PollTime (float) – frequency in seconds to repeat calling the
processing loop. (Default is 30.0 seconds.)

	
EnableButtons(flag)

	Relabels and enable/disables the buttons at window bottom when auto-integration is running

	
IntegrateImage(img, useTA=None, useMask=None)

	Integrates a single image. Ids for created PWDR entries (more than one is possible)
are placed in G2frame.IntgOutList

	
OnPause()

	Respond to Pause, changes text on button/Status line, if needed
Stops timer
self.Pause should already be True

	
OnTimerLoop(event)

	A method that is called every PollTime() seconds that is
used to check for new files and process them. Integrates new images.
Also optionally sets up and computes PDF.
This is called only after the “Start” button is pressed (then its label reads “Pause”).

	
ResetFromTable(dist)

	Sets integration parameters based on values from
the lookup table

	
SetSourceDir(event)

	Use a dialog to get a directory for image files

	
ShowMatchingFiles(value, invalid=False, **kwargs)

	Find and show images in the tree and the image files matching the image
file directory (self.params[‘readdir’]) and the image file filter
(self.params[‘filter’]) and add this information to the GUI list box

	
StartLoop()

	Prepare to start autointegration timer loop.
Save current Image params for use in future integrations
also label the window so users understand what is being used

	
checkPDFprm(ShowContents=False)

	Read in the PDF (.pdfprm) parameter file and check for problems.
If ShowContents is True, a formatted text version of some of the file
contents is returned. If errors are found, the return string will contain
the string “Error:” at least once.

	
GSASIIimgGUI.CleanupMasks(data)

	If a mask creation is not completed, an empty mask entry is created in the
masks array. This cleans them out. It is called when the masks page is first loaded
and before saving them or after reading them in. This should also probably be done
before they are used for integration.

	
GSASIIimgGUI.DefineEvaluator(dlg)

	Creates a function that provides interpolated values for a given distance value

	
GSASIIimgGUI.GetImageZ(G2frame, data, newRange=False)

	Gets image & applies dark, background & flat background corrections.

	Parameters:

	
	G2frame (wx.Frame) – main GSAS-II frame

	data (dict) – Image Controls dictionary

	Returns:

	array sumImg: corrected image for background/dark/flat back

	
class GSASIIimgGUI.ImgIntLstCtrl(parent, ID, pos=wx.Point(-1, -1), size=(1000, 200), style=0)

	Creates a custom ListCtrl for editing Image Integration parameters

	
FillList(parms)

	Places the current parms into the table

	
OnDouble(evt)

	respond to a double-click

	
class GSASIIimgGUI.IntegParmTable(parent, parms=None, IMfileList=None, readFileList=None)

	Creates a dialog window with a table of integration parameters.
ShowModal() will return wx.ID_OK if the process has been successful.
In this case, DefineEvaluator() should be called to obtain a function that
creates a dictionary with interpolated parameter values.

	
ReadFiles(files)

	Reads a list of .imctrl files or a single .imtbl file

	
ReadImageParmTable()

	Reads possibly edited values from the ListCtrl table and returns a list
of values for each column.

	
GSASIIimgGUI.ReadControls(filename)

	read an image controls (.imctrl) file

	
GSASIIimgGUI.ReadMask(filename)

	Read a mask (.immask) file

	
GSASIIimgGUI.Read_imctrl(imctrl_file)

	Read an image control file and record control parms into a dict, with some simple
type conversions

	
GSASIIimgGUI.UpdateImageControls(G2frame, data, masks, useTA=None, useMask=None, IntegrateOnly=False)

	Shows and handles the controls on the “Image Controls”
data tree entry

	
GSASIIimgGUI.UpdateMasks(G2frame, data)

	Shows and handles the controls on the “Masks” data tree entry

	
GSASIIimgGUI.UpdateStressStrain(G2frame, data)

	Shows and handles the controls on the “Stress/Strain”
data tree entry

	
GSASIIimgGUI.testColumnMetadata(G2frame)

	Test the column-oriented metadata parsing, as implemented at 1-ID, by showing results
when using a .par and .lbls pair.

	Select a .par file, if more than one in selected dir.

	Select the .*lbls file, if more than one matching .par file.

	Parse the .lbls file, showing errors if encountered; loop until errors are fixed.

	Search for an image or a line in the .par file and show the results when interpreted

See GSASIIfiles.readColMetadata() for more details.

6.9. GSASIIpwdGUI: Powder Pattern GUI routines

Used to define GUI controls for the routines that interact
with the powder histogram (PWDR) data tree items.

6.9.1. GSASIIpwdGUI Classes & Routines

GUI routines for PWDR datadree subitems follow.

	
GSASIIpwdGUI.CopyPlotCtrls(G2frame)

	Global copy: Copy plot controls from current histogram to others.

	
GSASIIpwdGUI.CopySelectedHistItems(G2frame)

	Global copy: Copy items from current histogram to others.

	
GSASIIpwdGUI.GetFileBackground(G2frame, xye, background, scale=True)

	Select a background file to subtract from PWDR pattern
param: xye list [npts,6] of PWDR pattern
param: background PWDR file to be used as background
param: scale bool:=True if scale mult included in background & apply it
returns: list background to subtract

	
GSASIIpwdGUI.GetFileList(G2frame, fileType)

	Get list of file names containing a particular string
param: fileType str: any string within a file name
returns: list of file names from GSAS-II tree
Note routine of same name in GSASIIdataGUI; it has a skip option

	
GSASIIpwdGUI.GetHistsLikeSelected(G2frame)

	Get the histograms that match the current selected one:
The histogram prefix and data type (PXC etc.), the number of
wavelengths and the instrument geometry (Debye-Scherrer etc.)
must all match. The current histogram is not included in the list.

	Parameters:

	G2frame (wx.Frame) – pointer to main GSAS-II data tree

	
GSASIIpwdGUI.GetPhasesforHistogram(G2frame, histoName)

	Returns phases (if any) associated with provided Histogram
Returns a list of phase dicts

	
GSASIIpwdGUI.IsHistogramInAnyPhase(G2frame, histoName)

	Tests a Histogram to see if it is linked to any phases.
Returns the name of the first phase where the histogram is used.

	
GSASIIpwdGUI.OptimizePDF(G2frame, data, showFit=True, maxCycles=5)

	Optimize the PDF to minimize the difference between G(r) and the expected value for
low r (-4 pi r #density).

	
class GSASIIpwdGUI.RDFDialog(parent)

	Display controls for generating RDF plot in Background

	
GSASIIpwdGUI.SetCopyNames(histName, dataType, addNames=[])

	Determine the items in the sample parameters that should be copied,
depending on the histogram type and the instrument type.

	
GSASIIpwdGUI.SetDefaultREFDModel()

	Fills in default items for the REFD Models dictionary which are
defined as follows for each layer:

	Name: name of substance

	Thick: thickness of layer in Angstroms (not present for top & bottom layers)

	Rough: upper surface roughness for layer (not present for toplayer)

	Penetration: mixing of layer substance into layer above-is this needed?

	DenMul: multiplier for layer scattering density (default = 1.0)

Top layer defaults to vacuum (or air/any gas); can be substituted for some other substance.

Bottom layer default: infinitely thisck Silicon; can be substituted for some other substance.

	
GSASIIpwdGUI.SetDefaultSASDModel()

	Fills in default items for the SASD Models dictionary

	
GSASIIpwdGUI.SetDefaultSubstances()

	Fills in default items for the SASD Substances dictionary

	
GSASIIpwdGUI.SetupSampleLabels(histName, dataType, histType)

	Setup a list of labels and number formatting for use in
labeling sample parameters.
:param str histName: Name of histogram, (“PWDR …”)
:param str dataType:

	
class GSASIIpwdGUI.SubCellsDialog(parent, title, controls, SGData, items, phaseDict)

	Display magnetic subcell space group information from selection in Unit Cells table of results from k-SUBGROUPSMAG

	
GSASIIpwdGUI.TestAtoms(phase, magAtms, SGData, Uvec, Trans, maxequiv=100, maximal=False)

	Tests atoms for substructure equivalents
param: phase GSAS-II phase object
param: magAtms list: atom objects
param: SGData dict: GSAS-II space group object
param: Uvec array: Translation U vector
param: Trans array: Transformation matrix
params: maxequiv int:maximum number of atoms with moments to consider
param: maximal bool:=True if maximal subgroups only are allowed
returns: unique atoms (if any)

	
GSASIIpwdGUI.TestMagAtoms(phase, magAtms, SGData, Uvec, Trans, allmom, maxequiv=100, maximal=False)

	Tests substructure magnetic atoms for magnetic site symmetry
param: phase GSAS-II phase object
param: magAtms list:magnetic atom objects
param: SGData dict: GSAS-II space group object
param: Uvec array: Translation U vector
param: Trans array: Transformation matrix
param: allmom bool: =True if all atoms must have moments allowed
params: maxequiv int:maximum number of atoms with moments to consider
param: maximal bool:=True if maximal subgroups only are allowed
returns: unique magnetic atoms (if any)

	
GSASIIpwdGUI.UpdateBackground(G2frame, data)

	respond to selection of PWDR background data tree item.

	
GSASIIpwdGUI.UpdateIndexPeaksGrid(G2frame, data)

	respond to selection of PWDR Index Peak List data
tree item.

	
GSASIIpwdGUI.UpdateInstrumentGrid(G2frame, data)

	respond to selection of PWDR/SASD/REFD Instrument Parameters
data tree item.

	
GSASIIpwdGUI.UpdateLimitsGrid(G2frame, data, datatype)

	respond to selection of PWDR Limits data tree item.
Allows setting of limits and excluded regions in a PWDR data set

	
GSASIIpwdGUI.UpdateModelsGrid(G2frame, data)

	respond to selection of SASD Models data tree item.

	
GSASIIpwdGUI.UpdatePDFGrid(G2frame, data)

	respond to selection of PWDR PDF data tree item.

	
GSASIIpwdGUI.UpdatePeakGrid(G2frame, data)

	respond to selection of PWDR powder peaks data tree item.

	
GSASIIpwdGUI.UpdateREFDModelsGrid(G2frame, data)

	respond to selection of REFD Models data tree item.

	
GSASIIpwdGUI.UpdateReflectionGrid(G2frame, data, HKLF=False, Name='')

	respond to selection of PWDR Reflections data tree item by displaying
a table of reflections in the data window.

	
GSASIIpwdGUI.UpdateSampleGrid(G2frame, data)

	respond to selection of PWDR/SASD Sample Parameters
data tree item.

	
GSASIIpwdGUI.UpdateSubstanceGrid(G2frame, data)

	respond to selection of SASD/REFD Substance data tree item.

	
GSASIIpwdGUI.UpdateUnitCellsGrid(G2frame, data)

	respond to selection of PWDR Unit Cells data tree item.

	
GSASIIpwdGUI.addAutoBack(G2frame, data, xydata)

	Create a new histogram for the computed auto background and place
as the fixed background histogram

	
class GSASIIpwdGUI.autoBackground(G2frame, *args, **kwargs)

	Create a file selection widget for setting background with
pybaselines, as requested by James Feng.

	Parameters:

	G2frame (wx.Frame) – reference to the main GSAS-II frame.

	
GSASIIpwdGUI.computePDF(G2frame, data)

	Calls GSASIIpwd.CalcPDF() to compute the PDF and put into the data tree array.
Called from OnComputePDF and OnComputeAllPDF and OnComputeAllPDF in
GSASIIimgGUI.py

6.10. GSASIIexprGUI: Expression Handling

This module defines a class for defining an expression in terms of values
in a parameter dictionary via a wx.Dialog. The dialog creates a
GSASIIexprGUI.GSASII.ExpressionObj
which is used to evaluate the expression against a supplied parameter dictionary.

The expression is parsed to find variables used in the expression and then
the user is asked to assign parameters from the dictionary to each variable.

Default expressions are read from file DefaultExpressions.txt using
GSASIIpath.LoadConfigFile().

6.10.1. GSASIIexprGUI Classes & Routines

Routines for users to input Python expressions used within
GSAS-II computations follow.

	
class GSASIIexprGUI.AngleDialog(parent, Phases, parmDict, exprObj=None, header='Select an angle for table', wintitle='Select angle', VarLabel=None, depVarDict=None, ExtraButton=None, usedVars=[])

	A wx.Dialog that allows a user to select a bond angle to be evaluated.
What needs to be done here? Need phase info for atom
0. Select phase
1. Select 1st atom from dialog
2. Find neighbors & select two from dialog
3. Set up angle equation & save it - has to look like result from Show in above ExpressionDialog
Use existing angle & esd calculate routines

	
Draw()

	paints the angle dialog window

	
class GSASIIexprGUI.BondDialog(parent, Phases, parmDict, exprObj=None, header='Select a bond for table', wintitle='Select bond', VarLabel=None, depVarDict=None, ExtraButton=None, usedVars=[])

	A wx.Dialog that allows a user to select a bond length to be evaluated.
What needs to be done here? Need phase info for atoms
0. Select phase
1. Select 1st atom from dialog
2. Find neighbors & select one from dialog
3. Set up distance equation & save it - has to look like result from Show in above ExpressionDialog
Use existing bond & esd calculate routines

	
Draw()

	paints the distance dialog window

	
class GSASIIexprGUI.ExpressionDialog(parent, parmDict, exprObj=None, header='Enter restraint expression here', wintitle='Expression Editor', fit=True, VarLabel=None, depVarDict=None, ExtraButton=None, usedVars=[], wildCard=True)

	A wx.Dialog that allows a user to input an arbitrary expression
to be evaluated and possibly minimized.

To do this, the user assigns a new (free) or existing
GSAS-II parameter to each parameter label used in the expression.
The free parameters can optionally be designated to be refined.
For example, is an expression is used such as:

'A*np.exp(-B/C)'

then A, B and C can each be assigned as Free parameter with a user-selected
value or to any existing GSAS-II variable in the parameter dictionary.
As the expression is entered it is checked for validity.

After the ExpressionDialog object is created, use Show() to
run it and obtain a GSASIIobj.ExpressionObj object with the user
input.

	Parameters:

	
	parent (wx.Frame) – The parent of the Dialog. Can be None,
but better is to provide the name of the Frame where the dialog
is called.

	parmDict (dict) – a dict with defined parameters and their values. Each value
may be a list with parameter values and a refine flag or may just contain
the parameter value (non-float/int values in dict are ignored)

	exprObj – a GSASIIobj.ExpressionObj object with an expression and
label assignments or None (default)

	wintitle (str) – String placed on title bar of dialog;
defaults to “Expression Editor”

	header (str) – String placed at top of dialog to tell the user
what they will do here; default is “Enter restraint expression here”

	fit (bool) – determines if the expression will be used in fitting (default=True).
If set to False, refinement flags are not shown
and Free parameters are not offered as an assignment option.

	VarLabel (str) – an optional variable label to include before the expression
input. Ignored if None (default)

	depVarDict (list) – a dict of choices for the dependent variable to be
fitted to the expression and their values. Ignored if None (default).

	ExtraButton (list) – a list with two terms that define [0]: the label
for an extra button and [1] the callback routine to be used when the
button is pressed. The button will only be enabled when the OK button can be
used (meaning the equation/expression is valid). The default is None, meaning this
will not be used.

	usedVars (list) – defines a list of previously used variable names. These names
will not be reused as defaults for new free variables.
(The default is an empty list).

	wildCard (bool) – If True (default), histogram names are converted to wildcard
values, as is appropriate for the sequential refinement table

	
CheckVars()

	Check that appropriate variables are defined for each
symbol used in self.expr

	Returns:

	a text error message or None if all needed input is present

	
GetDepVar()

	Returns the name of the dependent variable, when depVarDict is used.

	
OnChar(event)

	Called as each character is entered. Cancels any running timer
and starts a new one. The timer causes a check of syntax after 2 seconds
without input.
Disables the OK button until a validity check is complete.

	
OnChoice(event)

	Respond to a selection of a variable type for a label in
an expression

	
OnDepChoice(event)

	Respond to a selection of a variable type for a label in
an expression

	
OnValidate(event)

	Respond to a press of the Validate button or when a variable
is associated with a label (in OnChoice())

	
Repaint(exprObj)

	Redisplay the variables and continue the validation

	
RestartTimer()

	Cancels any running timer and starts a new one.
The timer causes a check of syntax after 2 seconds unless there is further input.
Disables the OK button until a validity check is complete.

	
SelectG2var(sel, var, parmList)

	Offer a selection of a GSAS-II variable.

	Parameters:

	sel (int) – Determines the type of variable to be selected.
where 1 is used for Phase variables, and 2 for Histogram/Phase vars,
3 for Histogram vars and 4 for Global vars.

	Returns:

	a variable name or None (if Cancel is pressed)

	
Show(mode=True)

	Call to use the dialog after it is created.

	Returns:

	None (On Cancel) or a new ExpressionObj

	
depVarDict

	dict for dependent variables

	
dependentVar

	name for dependent variable selection, when depVarDict is specified

	
expr

	Expression as a text string

	
exprVarLst

	A list containing the variables utilized in the current expression.
Placed into a GSASIIobj.ExpressionObj object when the dialog is closed
with “OK”, saving any changes.

	
parmDict

	A copy of the G2 parameter dict (parmDict) except only numerical
values are included and only the value (not the vary flag, if present)
is included.

	
setEvalResult(msg)

	Show a string in the expression result area

	
showError(msg1, msg2='', msg3='')

	Show an error message of 1 to 3 sections. The second
section is shown in an equally-spaced font.

	Parameters:

	
	msg1 (str) – msg1 is shown in a the standard font

	msg2 (str) – msg2 is shown in a equally-spaced (wx.MODERN) font

	msg3 (str) – msg3 is shown in a the standard font

	
usedVars

	variable names that have been used and should not be reused by default

	
varName

	Name assigned to each variable

	
varRefflag

	Refinement flag for a variable (Free parameters only)

	
varSelect

	A dict that shows the variable type for each label
found in the expression.

	If the value is None or is not defined, the value is not assigned.

	If the value is 0, then the varible is “free” – a new refineable
parameter.

	Values above 1 determine what variables will be shown
when the option is selected.

	
varValue

	Value for a variable (Free parameters only)

	
GSASIIexprGUI.IndexParmDict(parmDict, wildcard)

	Separate the parameters in parmDict into list of keys by parameter
type.

	Parameters:

	
	parmDict (dict) – a dict with GSAS-II parameters

	wildcard (bool) – True if wildcard versions of parameters should
be generated and added to the lists

	Returns:

	a dict of lists where key 1 is a list of phase parameters,
2 is histogram/phase parms, 3 is histogram parms and 4 are global parameters

	
GSASIIexprGUI.LoadDefaultExpressions()

	Read a configuration file with default expressions from all files named
DefaultExpressions.txt found in the path. Duplicates are removed and
expressions are sorted alphabetically

6.11. GSASIIfpaGUI: Fundamental Parameters Routines

This module contains GUI routines to accept Fundamental Parameters
Approach (FPA) input used to run the NIST XRD Fundamental
Parameters Code, computes a set of peaks with that code and fits
profile terms to the peaks.
Also allows for plotting the convolutors generated by that code.

6.11.1. GSASIIfpaGUI Classes & Routines

NIST XRD Fundamental Parameters interface routines follow:

	
GSASIIfpaGUI.BBPSDDetector = [('SiPSD_th2_angular_range', 3.0, 'Angular range observed by PSD (degrees 2Theta)')]

	Additional FPA dict entries used in FillParmSizer()
needed for Bragg Brentano instruments with linear (1-D) Si PSD detectors.

	
GSASIIfpaGUI.BBPointDetector = [('receiving_slit_width', 0.2, 'Width of receiving slit (mm)')]

	Additional FPA dict entries used in FillParmSizer()
needed for Bragg Brentano instruments with point detectors.

	
GSASIIfpaGUI.BraggBrentanoParms = [('divergence', 0.5, 'Bragg-Brentano divergence angle (degrees)'), ('soller_angle', 2.0, 'Soller slit axial divergence (degrees)'), ('Rs', 220, 'Diffractometer radius (mm)'), ('filament_length', 12.0, 'X-ray tube line focus length (mm)'), ('sample_length', 12.0, 'Illuminated sample length in axial direction (mm)'), ('receiving_slit_length', 12.0, 'Length of receiving slit in axial direction (mm)'), ('LAC_cm', 0.0, 'Linear absorption coef. adjusted for packing density (cm-1)'), ('sample_thickness', 1.0, 'Depth of sample (mm)'), ('convolution_steps', 8, 'Number of Fourier-space bins per two-theta step'), ('source_width', 0.04, 'Tube filament width, in projection at takeoff angle (mm)'), ('tube-tails_L-tail', -1.0, 'Left-side tube tails width, in projection (mm)'), ('tube-tails_R-tail', 1.0, 'Right-side tube tails width, in projection (mm)'), ('tube-tails_rel-I', 0.001, 'Tube tails fractional intensity (no units)')]

	FPA dict entries used in FillParmSizer(). Tuple contains
a dict key, a default value and a description. These are the parameters
needed for all Bragg Brentano instruments

	
GSASIIfpaGUI.DetMode = 'BBpoint'

	The type of detector, either ‘BBpoint’ for Bragg-Brentano point detector or
or ‘BBPSD’ (linear) position sensitive detector

	
GSASIIfpaGUI.FillParmSizer()

	Create a list of input items for the parameter section of the
input window, sets default values when not set and displays them
in the scrolledpanel prmPnl.

	
GSASIIfpaGUI.IBmono = False

	set to True if an incident beam monochromator is in use

	
GSASIIfpaGUI.IBmonoParms = [('src_mono_mm', 119, 'Distance from xray line source to monochromator crystal (mm)'), ('focus_mono_mm', 217, 'Distance from monochromator crystal to focus slit (mm)'), ('passband_mistune', -0.145, 'Offset from the tuning of the IBM to the center of the reference line of the spectrum, in units of its bandwidth'), ('mono_src_proj_mn', 51, 'Projection width of line-focus xray source on the monochromator along beam direction (microns), sets bandwidth'), ('passband_shoulder', 0.087, 'Width of transition region from flat top to tails, in units of the bandwidth'), ('two_theta_mono', 27.27, 'The full diffraction angle of the IBM crystal, e.g. double 2theta-Bragg for the mono (deg)'), ('mono_slit_attenuation', 0.03, 'Attenuation of Cu K alpha2 lines due to focal slit')]

	Additional FPA dict entries used in FillParmSizer(), needed for Incident Beam Monochromator

	
GSASIIfpaGUI.MakeSimSizer(G2frame, dlg)

	Create a GUI to get simulation with parameters for Fundamental
Parameters fitting.

	Parameters:

	dlg (wx.Window) – Frame or Dialog where GUI will appear

	Returns:

	a sizer with the GUI controls

	
GSASIIfpaGUI.MakeTopasFPASizer(G2frame, FPdlg, SetButtonStatus)

	Create a GUI with parameters for the NIST XRD Fundamental Parameters Code.
Parameter input is modeled after Topas input parameters.

	Parameters:

	
	G2frame (wx.Frame) – main GSAS-II window

	FPdlg (wx.Window) – Frame or Dialog where GUI will appear

	SetButtonStatus – a callback function to call to see what buttons in
this windows can be enabled. Called with done=True to trigger closing
the parent window as well.

	Returns:

	a sizer with the GUI controls

	
GSASIIfpaGUI.NISTparms = {}

	Parameters in a nested dict, with an entry for each concolutor. Entries in
those dicts have values in SI units (of course). NISTparms can be
can be input directly or can be from created from parmDict
by XferFPAsettings()

	
GSASIIfpaGUI.SetCu2Wave()

	Set the parameters to the two-line Cu K alpha 1+2 spectrum

	
GSASIIfpaGUI.SetCu6wave()

	Set the emission parameters to the NIST six-line Cu K alpha spectrum

	
GSASIIfpaGUI.SetMonoWave()

	Eliminates the short-wavelength line from the six-line Cu K
alpha spectrum when incident beam mono; resets it to 6 if no mono

	
GSASIIfpaGUI.XferFPAsettings(InpParms)

	convert Topas-type parameters to SI units for NIST and place in a dict sorted
according to use in each convoluter

	Parameters:

	InpParms (dict) – a dict with Topas-like parameters, as set in
MakeTopasFPASizer()

	Returns:

	a nested dict with global parameters and those for each convolution

	
GSASIIfpaGUI.doFPAcalc(NISTpk, ttArr, twotheta, calcwid, step)

	Compute a single peak using a NIST profile object

	Parameters:

	
	NISTpk (object) – a peak profile computational object from the
NIST XRD Fundamental Parameters Code, typically established from
a call to SetupFPAcalc()

	ttArr (np.Array) – an evenly-spaced grid of two-theta points (degrees)

	twotheta (float) – nominal center of peak (degrees)

	calcwid (float) – width to perform convolution (degrees)

	step (float) – step size

	
GSASIIfpaGUI.parmDict = {'int': {0: 0.58384351, 1: 0.2284605, 2: 0.11258773, 3: 0.07077796, 4: 0.0043303, 5: 0.00208613}, 'lwidth': {0: 0.436, 1: 0.487, 2: 0.63, 3: 0.558, 4: 2.93, 5: 2.93}, 'wave': {0: 1.5405925, 1: 1.5443873, 2: 1.5446782, 3: 1.5410769, 4: 1.53471, 5: 1.53382}}

	Parameter dict used for reading Topas-style values. These are
converted to SI units and placed into NISTparms

	
GSASIIfpaGUI.setupFPAcalc()

	Create a peak profile object using the NIST XRD Fundamental
Parameters Code.

	Returns:

	a profile object that can provide information on
each convolution or compute the composite peak shape.

	
GSASIIfpaGUI.simParms = {}

	Parameters to set range for pattern simulation

	
GSASIIfpaGUI.writeNIST(filename)

	Write the NIST FPA terms into a JSON-like file that can be reloaded
in _onReadFPA

6.12. fprime: compute f’ & f”

This module contains GUI routines to calculate and plot real and resonant X-ray
scattering factors to 250keV, based on Fortran program of Cromer &
Liberman corrected for Kissel & Pratt energy term; Jensen term not included
(D. T. Cromer and D. A. Liberman, Acta Cryst. (1981). A37, 267-268.)

6.12.1. fprime Classes & Routines

main Fprime routines
Copyright: 2008, Robert B. Von Dreele (Argonne National Laboratory)

	
class fprime.Fprime(parent)

	Creates a frame where input for absorption calculation is supplied

	
CalcFPPS()

	generate set of f’ & f” curves for selected elements
does constant delta-lambda/lambda steps over defined range

	
OnABOUTItems0Menu(event)

	Displays the About window

	
UpDateFPlot(Wave, rePlot=True)

	Plot f’ & f” vs wavelength 0.05-3.0A

6.13. Absorb: Compute X-ray Absorption

This module contains GUI routines to calculate X-ray absorption
factors to 250keV for cylindrical powder samples with a specified
chemical composition and density. Uses same approach
as in fprime
(D. T. Cromer and D. A. Liberman, Acta Cryst. (1981). A37, 267-268.)

6.13.1. Absorb Classes & Routines

main Absorb routines
Copyright: 2009, Robert B. Von Dreele (Argonne National Laboratory)

	
class Absorb.Absorb(parent)

	Creates a frame where input for absorption calculation is supplied

	
CalcFPPS()

	generate f” curves for selected elements
does constant delta-lambda/lambda steps over defined range

	
OnABOUTItems0Menu(event)

	Displays the About window

	
SetSize(x, y, width, height, sizeFlags=SIZE_AUTO)

	
SetSize(rect) → None

	
SetSize(size) → None

	
SetSize(width, height) → None

	Sets the size of the window in pixels.

	
UpDateAbsPlot(Wave, rePlot=True)

	Plot mu vs wavelength 0.05-3.0A

 \(\renewcommand\AA{\text{Å}}\)

7. GSAS-II Data Storage Modules

These modules are used to provide a place to find constants that are
used in various locations.

7.1. GSASIIdata: Ramachandran Parameters

At present this module defines one dict, ramachandranDist,
which contains arrays for All and specific amino acids.

7.2. ElementTable: Periodic Table Data

Element table data for building periodic table with valences & JMOL colors.
Need these in case we go back to this periodic table coloring scheme.

Defines list ElTable which contains all defined oxidation states for each
element, the location in the table, an element name, a color, a size and a
second color.

7.3. FormFactors: Scattering Data

Contains atomic scattering factors from
“New Analytical Scattering Factor Functions for Free Atoms
and Ions for Free Atoms and Ions”,
D. Waasmaier & A. Kirfel,
Acta Cryst. (1995). A51, 416-413.

Also, tabulated coefficients for calculation of Compton Cross Section as a function of sin(theta)/lambda from
“Analytic Approximations to Incoherently Scattered X-Ray Intensities”,
H. H. M. Balyuzi, Acta Cryst. (1975). A31, 600.

7.4. ImageCalibrants: Calibration Standards

GSASII powder calibrants in dictionary ImageCalibrants.Calibrants
containing substances commonly used for powder calibrations for image data.

Each entry in ImageCalibrants consists of:

 'key':([Bravais num,],[space group,],[(a,b,c,alpha,beta,gamma),],no. lines skipped,(dmin,pixLimit,cutOff),(absent list))

* See below for Bravais num assignments.
* The space group may be an empty string.
* The absent list is optional; it gives indices of lines that have no intensity despite being allowed - see the Si example below; counting begins at zero

As an example:

'LaB6 SRM660a':([2,],['',][(4.1569162,4.1569162,4.1569162,90,90,90),],0,(1.0,10,10.)),

For calibrants that are mixtures, the “Bravais num” and “(a,b,…)” values are repeated, as in this case:

'LaB6 & CeO2':([2,0],['',''] [(4.1569,4.1569,4.1569,90,90,90),(5.4117,5.4117,5.4117,90,90,90)], 0, (1.0,2,1.)),

Note that Si has reflections (the 4th, 11th,…) that are not extinct by
symmetry but still have zero intensity. These are supplied in the final list:

'Si':([0,],['F d 3 m'],[(5.4311946,5.4311946,5.4311946,90,90,90),],0,(1.,10,10.),(3,10,13,20,23,26,33,35,40,43)),

	Note, the Bravais numbers are:
	
	0 F cubic

	1 I cubic

	2 P cubic

	3 R hexagonal (trigonal not rhombohedral)

	4 P hexagonal

	5 I tetragonal

	6 P tetragonal

	7 F orthorhombic

	8 I orthorhombic

	9 C orthorhombic

	10 P orthorhombic

	11 C monoclinic

	12 P monoclinic

	13 P triclinic

7.4.1. User-Defined Calibrants

To expand this list with locally needed additions, do not modify this
ImageCalibrants.py file,
because you may lose these changes during a software update. Instead
duplicate the format of this file in a file named UserCalibrants.py
and there define the material(s) you want:

Calibrants={
 'LaB6 skip 2 lines':([2,],['',],[(4.1569162,4.1569162,4.1569162,90,90,90),],2,(1.0,10,10),()),
}

New key values will be added to the list of options.
If a key is duplicated, the information in UserCalibrants.py will
override the entry in this (the ImageCalibrants.py file).

7.5. atmdata: Table of atomic data

The entries here are:

XrayFF: a dict of form factor coefficients

AtmSize: atom Sizes, bond radii, angle radii, H-bond radii

AtmBlens: atom masses & neutron scattering length (b,b’), sig(incoh) @ 1A

MagFF: neutron magnetic form factor coeff: M for j<0> & N for j<2>

Sources:

Exponential scattering factor curve coeficients, Cromer and
Waber(1971) Int. Tables Vol. IV. Delta f’ and delta f” terms calcd via
D.T. Cromer & D.A. Liberman (1981), Acta Cryst. A37, 267-268.
Atomic weights from CRC 56th Edition

Electron scattering factor curve coefficients from International Tables for Crystallography, Vol. C,
Ch 4. Sect. 4.3.2.

Neutron scattering lengths & abs. cross sections from
H. Rauch & W. Waschowski, Neutron Data Booklet, 2003. X-ray
<j0> & <j2> coeff. from Intl. Tables for Cryst, Vol. C
5-d <j0> & <j2> from Kobayashi K, Nagao T, Ito M.
Acta Crystallogr A67, 473-480 (2011)

Neutron anomalous coeff (LS) from fitting Lynn & Seeger, At. Data & Nuc. Data Tables, 44, 191-207(1990)

O2- x-ray scattering factor from Tokonami (1965) Acta Cryst 19, 486

At wts from 14th ed Nuclides & Isotopes, 1989 GE Co.

Orbital form factors from fitting Table 2.2D in International Tables for x-ray Crystallography Vol IV
by Cromer & Waber (1974)

7.6. defaultIparms: Table of instrument parameters

Defines some default instrument parameters.
Format for each is a list of strings finished with a ‘
‘.
Begin with ‘#GSAS-II…’ as the reader routine checks this.
Each line can be comprised of a block of ‘;’ delimited name:value pairs.
All instrument parameters must be included; even those = 0.
Use a GSAS-II instprm file as a source for the entries.

For a new entry:

Append a useful name to defaultIparms_lbl.

Append the list of lines to defaultIparms.

defaultIparm_lbl: defines a list of labels.

defaultIparms: defines a list of multiple strings with values for each set of defaults.

 \(\renewcommand\AA{\text{Å}}\)

8. GSAS-II Structure Submodules

These modules are used to perform structure-related (mostly intensity)
computations that are needed for refinement and related computations.

8.1. GSASIIstrMain: main structure routine

8.1.1. GSASIIstrMain Classes & Routines

GSASIIstrMain routines, used for refinement are found below.

	
GSASIIstrMain.AllPrmDerivs(Controls, Histograms, Phases, restraintDict, rigidbodyDict, parmDict, varyList, calcControls, pawleyLookup, symHold, dlg=None)

	Computes the derivative of the fitting function (total Chi**2) with
respect to every parameter in the parameter dictionary (parmDict)
by applying shift below the parameter value as well as above.

	Returns:

	a dict with the derivatives keyed by variable number.
Derivatives are a list with three values: evaluated over
v-d to v; v-d to v+d; v to v+d where v is the current value for the
variable and d is a small delta value chosen for that variable type.

	
GSASIIstrMain.BestPlane(PlaneData)

	Needs a doc string

	
GSASIIstrMain.CheckLeBail(Phases)

	Check if there is a LeBail extraction in any histogram

	Returns:

	True if there is at least one LeBail flag turned on, False otherwise

	
GSASIIstrMain.DisAglTor(DATData)

	Needs a doc string

	
GSASIIstrMain.DoLeBail(GPXfile, dlg=None, cycles=10, refPlotUpdate=None, seqList=None)

	Fit LeBail intensities without changes to any other refined parameters.
This is a stripped-down version of Refine() that does not perform
any refinement cycles

	Parameters:

	
	GPXfile (str) – G2 .gpx file name

	dlg (wx.ProgressDialog) – optional progress window to update.
Default is None, which means no calls are made to this.

	cycles (int) – Number of LeBail cycles to perform

	refPlotUpdate (function) – Optional routine used to plot results.
Default is None, which means no calls are made to this.

	seqList (list) – List of histograms to be processed. Default
is None which means that all used histograms in .gpx file are processed.

	
GSASIIstrMain.DoNoFit(GPXfile, key)

	Compute the diffraction pattern with no refinement of parameters.

TODO: At present, this will compute intensities all diffraction patterns
in the project, but this likely can be made faster by dropping
all the histograms except key from Histograms.

	Parameters:

	
	GPXfile (str) – G2 .gpx file name

	key (str) – name of histogram to be computed

	Returns:

	the computed diffraction pattern for the selected histogram

	
GSASIIstrMain.PrintDistAngle(DisAglCtls, DisAglData, out=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>)

	Print distances and angles

	Parameters:

	
	DisAglCtls (dict) – contains distance/angle radii usually defined using
GSASIIctrlGUI.DisAglDialog()

	DisAglData (dict) – contains phase data:
Items ‘OrigAtoms’ and ‘TargAtoms’ contain the atoms to be used
for distance/angle origins and atoms to be used as targets.
Item ‘SGData’ has the space group information (see Space Group object)

	out (file) – file object for output. Defaults to sys.stdout.

	
GSASIIstrMain.Refine(GPXfile, dlg=None, makeBack=True, refPlotUpdate=None, newLeBail=False, allDerivs=False)

	Global refinement – refines to minimize against all histograms.
This can be called in one of three ways, from GSASIIdataGUI.GSASII.OnRefine() in an
interactive refinement, where dlg will be a wx.ProgressDialog, or non-interactively from
GSASIIscriptable.G2Project.refine() or from do_refine(), where dlg will be None.

	
GSASIIstrMain.RefineCore(Controls, Histograms, Phases, restraintDict, rigidbodyDict, parmDict, varyList, calcControls, pawleyLookup, ifSeq, printFile, dlg, refPlotUpdate=None)

	Core optimization routines, shared between SeqRefine and Refine

	Returns:

	5-tuple of ifOk (bool), Rvals (dict), result, covMatrix, sig

	
GSASIIstrMain.ReportProblems(result, Rvals, varyList)

	Create a message based results from the refinement

	
GSASIIstrMain.RetDistAngle(DisAglCtls, DisAglData, dlg=None)

	Compute and return distances and angles

	Parameters:

	
	DisAglCtls (dict) – contains distance/angle radii usually defined using
GSASIIctrlGUI.DisAglDialog()

	DisAglData (dict) – contains phase data:
Items ‘OrigAtoms’ and ‘TargAtoms’ contain the atoms to be used
for distance/angle origins and atoms to be used as targets.
Item ‘SGData’ has the space group information (see Space Group object)

	Returns:

	AtomLabels,DistArray,AngArray where:

AtomLabels is a dict of atom labels, keys are the atom number

DistArray is a dict keyed by the origin atom number where the value is a list
of distance entries. The value for each distance is a list containing:

	the target atom number (int);

	the unit cell offsets added to x,y & z (tuple of int values)

	the symmetry operator number (which may be modified to indicate centering and center of symmetry)

	an interatomic distance in A (float)

	an uncertainty on the distance in A or 0.0 (float)

AngArray is a dict keyed by the origin (central) atom number where
the value is a list of
angle entries. The value for each angle entry consists of three values:

	a distance item reference for one neighbor (int)

	a distance item reference for a second neighbor (int)

	a angle, uncertainty pair; the s.u. may be zero (tuple of two floats)

The AngArray distance reference items refer directly to the index of the items in the
DistArray item for the list of distances for the central atom.

	
GSASIIstrMain.SeqRefine(GPXfile, dlg, refPlotUpdate=None)

	Perform a sequential refinement – cycles through all selected histgrams,
one at a time

	
GSASIIstrMain.do_refine(*args)

	Called to run a refinement when this module is executed

	
GSASIIstrMain.dropOOBvars(varyList, parmDict, sigDict, Controls, parmFrozenList)

	Find variables in the parameters dict that are outside the ranges
(in parmMinDict and parmMaxDict) and set them to the limits values.
Add any such variables into the list of frozen variable
(parmFrozenList). Returns a list of newly frozen variables, if any.

	
GSASIIstrMain.phaseCheck(phaseVary, Phases, histogram)

	Removes unused parameters from phase varylist if phase not in histogram
for seq refinement removes vars in “Fix FXU” and “FixedSeqVars” here

8.2. GSASIIstrMath - structure math routines

8.2.1. GSASIIstrMath Classes & Routines

GSASIIstrMath routines, used for refinement computations
are found below.

	
GSASIIstrMath.ApplyRBModelDervs(dFdvDict, parmDict, rigidbodyDict, Phase)

	Computes rigid body derivatives; there are none for Spin RBs

	
GSASIIstrMath.ApplyRBModels(parmDict, Phases, rigidbodyDict, Update=False)

	Takes RB info from RBModels in Phase and RB data in rigidbodyDict along with
current RB values in parmDict & modifies atom contents (fxyz & Uij) of parmDict

	
GSASIIstrMath.ApplyXYZshifts(parmDict, varyList)

	takes atom x,y,z shift and applies it to corresponding atom x,y,z value

	Parameters:

	
	parmDict (dict) – parameter dictionary

	varyList (list) – list of variables (not used!)

	Returns:

	newAtomDict - dictionary of new atomic coordinate names & values; key is parameter shift name

	
GSASIIstrMath.Dict2Values(parmdict, varylist)

	Use before call to leastsq to setup list of values for the parameters
in parmdict, as selected by key in varylist

	
GSASIIstrMath.GetAbsorb(refl, im, hfx, calcControls, parmDict)

	Needs a doc string

	
GSASIIstrMath.GetAbsorbDerv(refl, im, hfx, calcControls, parmDict)

	Needs a doc string

	
GSASIIstrMath.GetAtomFXU(pfx, calcControls, parmDict)

	Needs a doc string

	
GSASIIstrMath.GetAtomSSFXU(pfx, calcControls, parmDict)

	Needs a doc string

	
GSASIIstrMath.GetFobsSq(Histograms, Phases, parmDict, calcControls)

	Compute the observed structure factors for Powder histograms and store in reflection array
Multiprocessing support added

	
GSASIIstrMath.GetHStrainShift(refl, im, SGData, phfx, hfx, calcControls, parmDict)

	Computes the shifts in peak position due to the Hydrostatic strain
(HStrain, Dij terms).
This routine is not used anywhere

	
GSASIIstrMath.GetHStrainShiftDerv(refl, im, SGData, phfx, hfx, calcControls, parmDict)

	Computes the derivatives due to the shifts in peak position from Hydrostatic strain
(HStrain, Dij terms).

	
GSASIIstrMath.GetIntensityCorr(refl, im, uniq, G, g, pfx, phfx, hfx, SGData, calcControls, parmDict)

	Needs a doc string

	
GSASIIstrMath.GetIntensityDerv(refl, im, wave, uniq, G, g, pfx, phfx, hfx, SGData, calcControls, parmDict)

	Needs a doc string

	
GSASIIstrMath.GetNewCellParms(parmDict, varyList)

	Compute unit cell tensor terms from varied Aij and Dij values.
Terms are included in the dict only if Aij or Dij is varied.

	
GSASIIstrMath.GetPrefOri(uniq, G, g, phfx, hfx, SGData, calcControls, parmDict)

	March-Dollase preferred orientation correction

	
GSASIIstrMath.GetPrefOriDerv(refl, im, uniq, G, g, phfx, hfx, SGData, calcControls, parmDict)

	Needs a doc string

	
GSASIIstrMath.GetPwdrExt(refl, im, pfx, phfx, hfx, calcControls, parmDict)

	Needs a doc string

	
GSASIIstrMath.GetPwdrExtDerv(refl, im, pfx, phfx, hfx, calcControls, parmDict)

	Needs a doc string

	
GSASIIstrMath.GetReflPos(refl, im, wave, A, pfx, hfx, phfx, calcControls, parmDict)

	Needs a doc string

	
GSASIIstrMath.GetReflPosDerv(refl, im, wave, A, pfx, hfx, phfx, calcControls, parmDict)

	Needs a doc string

	
GSASIIstrMath.GetSampleSigGam(refl, im, wave, G, GB, SGData, hfx, phfx, calcControls, parmDict)

	Computes the sample-dependent Lorentzian & Gaussian peak width contributions from
size & microstrain parameters
:param float wave: wavelength for CW data, 2-theta for EDX data

	
GSASIIstrMath.GetSampleSigGamDerv(refl, im, wave, G, GB, SGData, hfx, phfx, calcControls, parmDict)

	Computes the derivatives on sample-dependent Lorentzian & Gaussian peak widths contributions
from size & microstrain parameters
:param float wave: wavelength for CW data, 2-theta for EDX data

	
GSASIIstrMath.HessRefine(values, HistoPhases, parmDict, varylist, calcControls, pawleyLookup, dlg)

	Loop over histograms and compute derivatives of the fitting
model (M) with respect to all parameters. For each histogram, the
Jacobian matrix, dMdv, with dimensions (n by m) where n is the
number of parameters and m is the number of data points in the
histogram. The (n by n) Hessian is computed from each Jacobian
and it is returned. This routine is used when refinement
derivatives are selected as “analtytic Hessian” in Controls.

	Returns:

	Vec,Hess where Vec is the least-squares vector and Hess is the Hessian

	
GSASIIstrMath.MagStructureFactor2(refDict, G, hfx, pfx, SGData, calcControls, parmDict)

	Compute neutron magnetic structure factors for all h,k,l for phase
puts the result, F^2, in each ref[8] in refList
operates on blocks of 100 reflections for speed
input:

	Parameters:

	
	refDict (dict) – where
‘RefList’ list where each ref = h,k,l,it,d,…
‘FF’ dict of form factors - filed in below

	G (np.array) – reciprocal metric tensor

	pfx (str) – phase id string

	SGData (dict) – space group info. dictionary output from SpcGroup

	calcControls (dict) –

	ParmDict (dict) –

	Returns:

	copy of new refList - used in calculating numerical derivatives

	
GSASIIstrMath.MagStructureFactorDerv(refDict, G, hfx, pfx, SGData, calcControls, parmDict)

	Compute nonmagnetic structure factor derivatives on blocks of reflections in magnetic structures - for powders/nontwins only
input:

	Parameters:

	
	refDict (dict) – where
‘RefList’ list where each ref = h,k,l,it,d,…
‘FF’ dict of form factors - filled in below

	G (np.array) – reciprocal metric tensor

	hfx (str) – histogram id string

	pfx (str) – phase id string

	SGData (dict) – space group info. dictionary output from SpcGroup

	calcControls (dict) –

	parmDict (dict) –

	Returns:

	dict dFdvDict: dictionary of derivatives

	
GSASIIstrMath.MagStructureFactorDerv2(refDict, G, hfx, pfx, SGData, calcControls, parmDict)

	Compute magnetic structure factor derivatives numerically - for powders/nontwins only
input:

	Parameters:

	
	refDict (dict) – where
‘RefList’ list where each ref = h,k,l,it,d,…
‘FF’ dict of form factors - filled in below

	G (np.array) – reciprocal metric tensor

	hfx (str) – histogram id string

	pfx (str) – phase id string

	SGData (dict) – space group info. dictionary output from SpcGroup

	calcControls (dict) –

	parmDict (dict) –

	Returns:

	dict dFdvDict: dictionary of magnetic derivatives

	
GSASIIstrMath.MakeSpHarmFF(HKL, Bmat, SHCdict, Tdata, hType, FFtables, ORBtables, BLtables, FF, SQ, ifDeriv=False)

	Computes hkl dependent form factors & derivatives from spinning rigid bodies
:param array HKL: reflection hkl set to be considered
:param array Bmat: inv crystal to Cartesian transfomation matrix
:param dict SHCdict: RB spin/deformation data
:param array Tdata: atom type info
:param str hType: histogram type
:param dict FFtables: x-ray form factor tables
:param dict ORBtables: x-ray orbital form factor tables
:param dict BLtables: neutron scattering lenghts
:param array FF: form factors - will be modified by adding the spin/deformation RB spherical harmonics terms
:param array SQ: 1/4d^2 for the HKL set
:param bool ifDeriv: True if dFF/dcoff to be returned

	Returns:

	dict dFFdS of derivatives if ifDeriv = True

	
GSASIIstrMath.SCExtinction(ref, im, phfx, hfx, pfx, calcControls, parmDict, varyList)

	Single crystal extinction function; returns extinction & derivative

	
GSASIIstrMath.SHPOcal(refl, im, g, phfx, hfx, SGData, calcControls, parmDict)

	spherical harmonics preferred orientation (cylindrical symmetry only)

	
GSASIIstrMath.SHPOcalDerv(refl, im, g, phfx, hfx, SGData, calcControls, parmDict)

	spherical harmonics preferred orientation derivatives (cylindrical symmetry only)

	
GSASIIstrMath.SHTXcal(refl, im, g, pfx, hfx, SGData, calcControls, parmDict)

	Spherical harmonics texture

	
GSASIIstrMath.SHTXcalDerv(refl, im, g, pfx, hfx, SGData, calcControls, parmDict)

	Spherical harmonics texture derivatives

	
GSASIIstrMath.SStructureFactor(refDict, G, hfx, pfx, SGData, SSGData, calcControls, parmDict)

	Compute super structure factors for all h,k,l,m for phase - no twins
puts the result, F^2, in each ref[9] in refList
works on blocks of 32 reflections for speed
input:

	Parameters:

	
	refDict (dict) – where
‘RefList’ list where each ref = h,k,l,m,it,d,…
‘FF’ dict of form factors - filed in below

	G (np.array) – reciprocal metric tensor

	pfx (str) – phase id string

	SGData (dict) – space group info. dictionary output from SpcGroup

	calcControls (dict) –

	ParmDict (dict) –

	
GSASIIstrMath.SStructureFactorDerv(refDict, im, G, hfx, pfx, SGData, SSGData, calcControls, parmDict)

	Compute super structure factor derivatives for all h,k,l,m for phase - no twins
Only Fourier component are done analytically here
input:

	Parameters:

	
	refDict (dict) – where
‘RefList’ list where each ref = h,k,l,m,it,d,…
‘FF’ dict of form factors - filled in below

	im (int) – = 1 (could be eliminated)

	G (np.array) – reciprocal metric tensor

	hfx (str) – histogram id string

	pfx (str) – phase id string

	SGData (dict) – space group info. dictionary output from SpcGroup

	SSGData (dict) – super space group info.

	calcControls (dict) –

	ParmDict (dict) –

	Returns:

	dict dFdvDict: dictionary of derivatives

	
GSASIIstrMath.SStructureFactorDerv2(refDict, im, G, hfx, pfx, SGData, SSGData, calcControls, parmDict)

	Compute super structure factor derivatives for all h,k,l,m for phase - no twins
input:

	Parameters:

	
	refDict (dict) – where
‘RefList’ list where each ref = h,k,l,m,it,d,…
‘FF’ dict of form factors - filled in below

	im (int) – = 1 (could be eliminated)

	G (np.array) – reciprocal metric tensor

	hfx (str) – histogram id string

	pfx (str) – phase id string

	SGData (dict) – space group info. dictionary output from SpcGroup

	SSGData (dict) – super space group info.

	calcControls (dict) –

	ParmDict (dict) –

	Returns:

	dict dFdvDict: dictionary of derivatives

	
GSASIIstrMath.SStructureFactorDervTw(refDict, im, G, hfx, pfx, SGData, SSGData, calcControls, parmDict)

	Needs a doc string

	
GSASIIstrMath.SStructureFactorTw(refDict, G, hfx, pfx, SGData, SSGData, calcControls, parmDict)

	Compute super structure factors for all h,k,l,m for phase - twins only
puts the result, F^2, in each ref[8+im] in refList
works on blocks of 32 reflections for speed
input:

	Parameters:

	
	refDict (dict) – where
‘RefList’ list where each ref = h,k,l,m,it,d,…
‘FF’ dict of form factors - filed in below

	G (np.array) – reciprocal metric tensor

	pfx (str) – phase id string

	SGData (dict) – space group info. dictionary output from SpcGroup

	calcControls (dict) –

	ParmDict (dict) –

	
GSASIIstrMath.StructureFactor2(refDict, G, hfx, pfx, SGData, calcControls, parmDict)

	Compute structure factors for all h,k,l for phase
puts the result, F^2, in each ref[8] in refList
operates on blocks of 100 reflections for speed
input:

	Parameters:

	
	refDict (dict) – where
‘RefList’ list where each ref = h,k,l,it,d,…
‘FF’ dict of form factors - filed in below

	G (np.array) – reciprocal metric tensor

	pfx (str) – phase id string

	SGData (dict) – space group info. dictionary output from SpcGroup

	calcControls (dict) –

	ParmDict (dict) –

	
GSASIIstrMath.StructureFactorDerv2(refDict, G, hfx, pfx, SGData, calcControls, parmDict)

	Compute structure factor derivatives on blocks of reflections - for powders/nontwins only
faster than StructureFactorDerv - correct for powders/nontwins!!
input:

	Parameters:

	
	refDict (dict) – where
‘RefList’ list where each ref = h,k,l,it,d,…
‘FF’ dict of form factors - filled in below

	G (np.array) – reciprocal metric tensor

	hfx (str) – histogram id string

	pfx (str) – phase id string

	SGData (dict) – space group info. dictionary output from SpcGroup

	calcControls (dict) –

	parmDict (dict) –

	Returns:

	dict dFdvDict: dictionary of derivatives

	
GSASIIstrMath.StructureFactorDervTw2(refDict, G, hfx, pfx, SGData, calcControls, parmDict)

	Compute structure factor derivatives on blocks of reflections - for twins only
faster than StructureFactorDervTw
input:

	Parameters:

	
	refDict (dict) – where
‘RefList’ list where each ref = h,k,l,it,d,…
‘FF’ dict of form factors - filled in below

	G (np.array) – reciprocal metric tensor

	hfx (str) – histogram id string

	pfx (str) – phase id string

	SGData (dict) – space group info. dictionary output from SpcGroup

	calcControls (dict) –

	parmDict (dict) –

	Returns:

	dict dFdvDict: dictionary of derivatives

	
GSASIIstrMath.Values2Dict(parmdict, varylist, values)

	Use after call to leastsq to update the parameter dictionary with
values corresponding to keys in varylist

	
GSASIIstrMath.calcMassFracs(varyList, covMatrix, Phases, hist, hId)

	Compute mass fractions and their uncertainties for all
phases in a histogram. Computed using the covariance matrix,
along with the derivatives for the mass fraction equations.

	Parameters:

	
	varyList (list) – list of varied parameters

	covMatrix (np.array) – covariance matrix, order of rows and columns
must match varyList

	Phases (dict) – data structure (from tree or .gpx) with all
phase information

	hist (str) – name of selected histogram

	hId (int) – number of current histogram

	Returns:

	valDict,sigDict which contain the mass fraction values and
sigmas, keyed by “ph:h:WgtFrac”

	
GSASIIstrMath.dervHKLF(Histogram, Phase, calcControls, varylist, parmDict, rigidbodyDict)

	Loop over reflections in a HKLF histogram and compute derivatives of the fitting
model (M) with respect to all parameters. Independent and dependant dM/dp arrays
are returned to either dervRefine or HessRefine.

	Returns:

	

	
GSASIIstrMath.dervRefine(values, HistoPhases, parmDict, varylist, calcControls, pawleyLookup, dlg)

	Loop over histograms and compute derivatives of the fitting
model (M) with respect to all parameters. Results are returned in
a Jacobian matrix (aka design matrix) of dimensions (n by m) where
n is the number of parameters and m is the number of data
points. This can exceed memory when m gets large. This routine is
used when refinement derivatives are selected as “analtytic
Jacobian” in Controls.

	Returns:

	Jacobian numpy.array dMdv for all histograms concatinated

	
GSASIIstrMath.errRefine(values, HistoPhases, parmDict, varylist, calcControls, pawleyLookup, dlg=None)

	Computes the point-by-point discrepancies between every data point in every histogram
and the observed value. Used in the Jacobian, Hessian & numeric least-squares to compute function

	Returns:

	an np array of differences between observed and computed diffraction values.

	
GSASIIstrMath.getPowderProfile(parmDict, x, varylist, Histogram, Phases, calcControls, pawleyLookup, histogram=None)

	Computes the powder pattern for a histogram based on contributions from all used phases

	
GSASIIstrMath.getPowderProfileDerv(args)

	Computes the derivatives of the computed powder pattern with respect to all
refined parameters.
Used for single processor & Multiprocessor versions

	
GSASIIstrMath.penaltyDeriv(pNames, pVal, HistoPhases, calcControls, parmDict, varyList)

	Compute derivatives on user-supplied and built-in restraint
(penalty) functions

where pNames is list of restraint labels

	Returns:

	array pDerv: partial derivatives by variable# in varList and
restraint# in pNames (pDerv[variable#][restraint#])

	
GSASIIstrMath.penaltyFxn(HistoPhases, calcControls, parmDict, varyList)

	Compute user-supplied and built-in restraint functions

8.3. GSASIIstrIO: structure I/O routines

8.3.1. GSASIIstrIO Classes & Routines

GSASIIstrIO routines, used for refinement to
read from GPX files and print to the .LST file.
Used for refinements and in G2scriptable.

This file should not contain any wxpython references as this
must be used in non-GUI settings.

	
GSASIIstrIO.GPXBackup(GPXfile, makeBack=True)

	makes a backup of the specified .gpx file

	Parameters:

	
	GPXfile (str) – full .gpx file name

	makeBack (bool) – if True (default), the backup is written to
a new file; if False, the last backup is overwritten

	Returns:

	the name of the backup file that was written

	
GSASIIstrIO.GetAllPhaseData(GPXfile, PhaseName)

	Returns the entire dictionary for PhaseName from GSASII gpx file

	Parameters:

	
	GPXfile (str) – full .gpx file name

	PhaseName (str) – phase name

	Returns:

	phase dictionary or None if PhaseName is not present

	
GSASIIstrIO.GetControls(GPXfile)

	Returns dictionary of control items found in GSASII gpx file

	Parameters:

	GPXfile (str) – full .gpx file name

	Returns:

	dictionary of control items

	
GSASIIstrIO.GetFprime(controlDict, Histograms)

	Needs a doc string

	
GSASIIstrIO.GetFullGPX(GPXfile)

	Returns complete contents of GSASII gpx file.
Used in GSASIIscriptable.LoadDictFromProjFile().

	Parameters:

	GPXfile (str) – full .gpx file name

	Returns:

	Project,nameList, where

	Project (dict) is a representation of gpx file following the GSAS-II
tree structure for each item: key = tree name (e.g. ‘Controls’,
‘Restraints’, etc.), data is dict

	nameList (list) has names of main tree entries & subentries used to reconstruct project file

	
GSASIIstrIO.GetHistogramData(Histograms, Print=True, pFile=None)

	needs a doc string

	
GSASIIstrIO.GetHistogramNames(GPXfile, hTypes)

	Returns a list of histogram names found in a GSAS-II .gpx file that
match specifed histogram types. Names are returned in the order they
appear in the file.

	Parameters:

	
	GPXfile (str) – full .gpx file name

	hTypes (str) – list of histogram types

	Returns:

	list of histogram names (types = PWDR & HKLF)

	
GSASIIstrIO.GetHistogramPhaseData(Phases, Histograms, Controls={}, Print=True, pFile=None, resetRefList=True)

	Loads the HAP histogram/phase information into dicts

	Parameters:

	
	Phases (dict) – phase information

	Histograms (dict) – Histogram information

	Print (bool) – prints information as it is read

	pFile (file) – file object to print to (the default, None causes printing to the console)

	resetRefList (bool) – Should the contents of the Reflection List be initialized
on loading. The default, True, initializes the Reflection List as it is loaded.

	Returns:

	(hapVary,hapDict,controlDict)
* hapVary: list of refined variables
* hapDict: dict with refined variables and their values
* controlDict: dict with fixed parameters

	
GSASIIstrIO.GetHistograms(GPXfile, hNames)

	Returns a dictionary of histograms found in GSASII gpx file

	Parameters:

	
	GPXfile (str) – full .gpx file name

	hNames (str) – list of histogram names

	Returns:

	dictionary of histograms (types = PWDR & HKLF)

	
GSASIIstrIO.GetPawleyConstr(SGLaue, PawleyRef, im, pawleyVary)

	needs a doc string

	
GSASIIstrIO.GetPhaseData(PhaseData, RestraintDict={}, rbIds={}, Print=True, pFile=None, seqHistName=None, symHold=None)

	Setup the phase information for a structural refinement, used for
regular and sequential refinements, optionally printing information
to the .lst file (if Print is True). Used as part of refinements but also
to generate information on refinement settings. Can be used with dicts from
data tree or read from the GPX file.
Note that this routine shares a name with routine G2frame.GetPhaseData()
(GSASIIdata.GSASII.GetPhaseData()) that instead returns the phase
dict(s) from the tree.

	Parameters:

	
	PhaseData (dict) – the contents of the Phase tree item (may be read from
.gpx file) with information on all phases

	RestraintDict (dict) – an optional dict with restraint information

	rbIds (dict) – an optional dict with rigid body information

	Print (bool) – a flag that determines if information will be formatted and
printed to the .lst file

	pFile (file) – a file object (created by open) where print information is sent
when Print is True

	seqHistName (str) – will be None, except for sequential fits. For sequential
fits, this can be the name of the current histogram or ‘All’. If a histogram
name is supplied, only the phases used in the current histogram are loaded.
If ‘All’ is specified, all phases are loaded (used for error checking).

	symHold (list) – if not None (None is the default) the names of parameters
held due to symmetry are placed in this list even if not varied. (Used
in G2constrGUI and for parameter impact estimates in AllPrmDerivs).

	Returns:

	lots of stuff: Natoms,atomIndx,phaseVary,phaseDict,pawleyLookup,
FFtables,EFtables,ORBtables,BLtables,MFtables,maxSSwave (see code for details).

	
GSASIIstrIO.GetPhaseNames(GPXfile)

	Returns a list of phase names found under ‘Phases’ in GSASII gpx file

	Parameters:

	GPXfile (str) – full .gpx file name

	Returns:

	list of phase names

	
GSASIIstrIO.GetRestraints(GPXfile)

	Read the restraints from the GPX file.
Throws an exception if not found in the .GPX file

	
GSASIIstrIO.GetRigidBodies(GPXfile)

	Read the rigid body models from the GPX file

	
GSASIIstrIO.GetRigidBodyModels(rigidbodyDict, Print=True, pFile=None)

	Get Rigid body info from tree entry and print it to .LST file
Adds variables and dict items for vector RBs, but for Residue bodies
this is done in GetPhaseData().

	
GSASIIstrIO.GetSeqResult(GPXfile)

	Returns the sequential results table information from a GPX file.
Called at the beginning of GSASIIstrMain.SeqRefine()

	Parameters:

	GPXfile (str) – full .gpx file name

	Returns:

	a dict containing the sequential results table

	
GSASIIstrIO.GetUsedHistogramsAndPhases(GPXfile)

	Returns all histograms that are found in any phase
and any phase that uses a histogram. This also
assigns numbers to used phases and histograms by the
order they appear in the file.

	Parameters:

	GPXfile (str) – full .gpx file name

	Returns:

	(Histograms,Phases)

	Histograms = dictionary of histograms as {name:data,…}

	Phases = dictionary of phases that use histograms

	
GSASIIstrIO.IndexGPX(GPXfile, read=False)

	Create an index to a GPX file, optionally the file into memory.
The byte size of the GPX file is saved. If this routine is called
again, and if this size does not change, indexing is not repeated
since it is assumed the file has not changed (this can be overriden
by setting read=True).

	Parameters:

	GPXfile (str) – full .gpx file name

	Returns:

	Project,nameList if read=, where

	Project (dict) is a representation of gpx file following the GSAS-II
tree structure for each item: key = tree name (e.g. ‘Controls’,
‘Restraints’, etc.), data is dict

	nameList (list) has names of main tree entries & subentries used to reconstruct project file

	
GSASIIstrIO.PrintISOmodes(pFile, Phases, parmDict, sigDict)

	Prints the values for the ISODISTORT modes into the project’s
.lst file after a refinement.

	
GSASIIstrIO.PrintIndependentVars(parmDict, varyList, sigDict, PrintAll=False, pFile=None)

	Print the values and uncertainties on the independent parameters

	
GSASIIstrIO.PrintRestraints(cell, SGData, AtPtrs, Atoms, AtLookup, textureData, phaseRest, pFile)

	needs a doc string

	
GSASIIstrIO.ReadCheckConstraints(GPXfile, seqHist=None, Histograms=None, Phases=None)

	Load constraints and related info and return any error or warning messages
This is done from the GPX file rather than the tree.

	Parameters:

	
	GPXfile (str) – specifies the path to a .gpx file.

	seqHist (str) – specifies a histogram to be loaded for
a sequential refinement. If None (default) all are loaded.

	Histograms (dict) – output from GetUsedHistogramsAndPhases(),
can optionally be supplied to save time for sequential refinements

	Phases (dict) – output from GetUsedHistogramsAndPhases(), can
optionally be supplied to save time for sequential refinements

	
GSASIIstrIO.ReadConstraints(GPXfile, seqHist=None)

	Read the constraints from the GPX file and interpret them

called in ReadCheckConstraints(), GSASIIstrMain.Refine()
and GSASIIstrMain.SeqRefine().

	
GSASIIstrIO.SaveUpdatedHistogramsAndPhases(GPXfile, Histograms, Phases, RigidBodies, CovData, parmFrozen)

	Save phase and histogram information into “pseudo-gpx” files. The phase
information is overwritten each time this is called, but histogram information is
appended after each sequential step.

	Parameters:

	
	GPXfile (str) – full .gpx file name

	Histograms (dict) – dictionary of histograms as {name:data,…}

	Phases (dict) – dictionary of phases that use histograms

	RigidBodies (dict) – dictionary of rigid bodies

	CovData (dict) – dictionary of refined variables, varyList, & covariance matrix

	parmFrozen (dict) – dict with frozen parameters for all phases
and histograms (specified as str values)

	
GSASIIstrIO.SetHistogramData(parmDict, sigDict, Histograms, calcControls, Print=True, pFile=None, seq=False)

	Shows histogram data after a refinement

	
GSASIIstrIO.SetHistogramPhaseData(parmDict, sigDict, Phases, Histograms, calcControls, Print=True, pFile=None, covMatrix=[], varyList=[])

	Updates parmDict with HAP results from refinement and prints a summary if Print is True

	
GSASIIstrIO.SetISOmodes(parmDict, sigDict, Phases, pFile=None)

	After a refinement, sets the values for the ISODISTORT modes into
the parameter and s.u. dicts.
Also, in the case of a non-sequential refinement, prints them into
the project’s .lst file.

	Parameters:

	
	parmDict (dict) – parameter dict

	sigDict (dict) – s.u. (uncertainty) dict

	Phases (dict) – Phase info from tree/.gpx

	pFile (file) – file for .lst info or None (None for sequential fits)

	
GSASIIstrIO.SetPhaseData(parmDict, sigDict, Phases, RBIds, covData, RestraintDict=None, pFile=None)

	Called after a refinement to transfer parameters from the parameter dict to
the phase(s) information read from a GPX file. Also prints values to the .lst file

	
GSASIIstrIO.SetRigidBodyModels(parmDict, sigDict, rigidbodyDict, pFile=None)

	needs a doc string

	
GSASIIstrIO.SetSeqResult(GPXfile, Histograms, SeqResult)

	Places the sequential results information into a GPX file
after a refinement has been completed.
Called at the end of GSASIIstrMain.SeqRefine()

	Parameters:

	GPXfile (str) – full .gpx file name

	
GSASIIstrIO.SetUsedHistogramsAndPhases(GPXfile, Histograms, Phases, RigidBodies, CovData, parmFrozenList, makeBack=True)

	Updates gpxfile from all histograms that are found in any phase
and any phase that used a histogram. Also updates rigid body definitions.
This is used for non-sequential fits, but not for sequential fitting.

	Parameters:

	
	GPXfile (str) – full .gpx file name

	Histograms (dict) – dictionary of histograms as {name:data,…}

	Phases (dict) – dictionary of phases that use histograms

	RigidBodies (dict) – dictionary of rigid bodies

	CovData (dict) – dictionary of refined variables, varyList, & covariance matrix

	parmFrozenList (list) – list of parameters (as str) that are frozen
due to limits; converted to GSASIIobj.G2VarObj objects.

	makeBack (bool) – True if new backup of .gpx file is to be made; else
use the last one made

	
GSASIIstrIO.SetupSeqSavePhases(GPXfile)

	Initialize the files used to save intermediate results from
sequential fits.

	
GSASIIstrIO.ShowBanner(pFile=None)

	Print authorship, copyright and citation notice

	
GSASIIstrIO.ShowControls(Controls, pFile=None, SeqRef=False, preFrozenCount=0)

	Print controls information

	
GSASIIstrIO.WriteRBObjPOAndSig(pfx, rbfx, rbsx, parmDict, sigDict)

	Cribbed version of PrintRBObjPOAndSig but returns lists of strings.
Moved so it can be used in ExportCIF

	
GSASIIstrIO.WriteRBObjSHCAndSig(pfx, rbfx, rbsx, parmDict, sigDict, SHC)

	Cribbed version of PrintRBObjTorAndSig but returns lists of strings.
Moved so it can be used in ExportCIF

	
GSASIIstrIO.WriteRBObjTLSAndSig(pfx, rbfx, rbsx, TLS, parmDict, sigDict)

	Cribbed version of PrintRBObjTLSAndSig but returns lists of strings.
Moved so it can be used in ExportCIF

	
GSASIIstrIO.WriteRBObjTorAndSig(pfx, rbsx, parmDict, sigDict, nTors)

	Cribbed version of PrintRBObjTorAndSig but returns lists of strings.
Moved so it can be used in ExportCIF

	
GSASIIstrIO.WriteResRBModel(RBModel)

	Write description of a residue rigid body. Code shifted from
PrintResRBModel to make usable from G2export_CIF

	
GSASIIstrIO.WriteVecRBModel(RBModel, sigDict={}, irb=None)

	Write description of a vector rigid body. Code shifted from
PrintVecRBModel to make usable from G2export_CIF

	
GSASIIstrIO.cellFill(pfx, SGData, parmDict, sigDict)

	Returns the filled-out reciprocal cell (A) terms and their uncertainties
from the parameter and sig dictionaries.

	Parameters:

	
	pfx (str) – parameter prefix (“n::”, where n is a phase number)

	SGdata (dict) – a symmetry object

	parmDict (dict) – a dictionary of parameters

	sigDict (dict) – a dictionary of uncertainties on parameters

	Returns:

	A,sigA where each is a list of six terms with the A terms

	
GSASIIstrIO.cellVary(pfx, SGData)

	Creates equivalences for a phase based on the Laue class.
Returns a list of A tensor terms that are non-zero.

	
GSASIIstrIO.fmtESD(varname, SigDict, fmtcode, ndig=None, ndec=None)

	Format an uncertainty value as requested, but surround the
number by () if the parameter is set by an equivalence
or by [] if the parameter is set by an constraint

	Parameters:

	fmtcode (str) – can be a single letter such as ‘g’ or ‘f’,
or a format string, such as ‘%10.5f’. For the latter, leave
ndig and ndec as None.

	
GSASIIstrIO.getBackupName(GPXfile, makeBack)

	Get the name for the backup .gpx file name

	Parameters:

	
	GPXfile (str) – full .gpx file name

	makeBack (bool) – if True the name of a new file is returned, if
False the name of the last file that exists is returned

	Returns:

	the name of a backup file

	
GSASIIstrIO.getCellEsd(pfx, SGData, A, covData, unique=False)

	Compute the standard uncertainty on cell parameters

	Parameters:

	
	pfx (str) – prefix of form p::

	SGdata – space group information

	A (list) – Reciprocal cell Ai terms

	covData (dict) – covariance tree item

	unique (bool) – when True, only directly refined parameters
(a in cubic, a & alpha in rhombohedral cells) are assigned
positive s.u. values. Used for CIF generation.

	
GSASIIstrIO.getCellSU(pId, hId, SGData, parmDict, covData)

	Compute the unit cell parameters and standard uncertainties
where lattice parameters and Hstrain (Dij) may be refined. This is
called only for generation of CIFs.

	Parameters:

	
	pId – phase index

	hId – histogram index

	SGdata – space group information

	parmDict (dict) – parameter dict, must have all non-zero Dij and Ai terms

	covData (dict) – covariance tree item

	
GSASIIstrIO.gpxSize = -1

	Global variables used in IndexGPX() to see if file has changed
(gpxSize) and to index where to find each 1st-level tree item in the file.

 \(\renewcommand\AA{\text{Å}}\)

9. GSASIImapvars: Param Constraints

9.1. Summary/Contents

Module to implements algebraic contraints, parameter redefinition
and parameter simplification contraints.

Section Contents

	GSASIImapvars: Param Constraints

	Summary/Contents

	Externally-Accessible Routines

	Types of constraints

	Alternate parameters (New Var)

	Constrained parameters (Const)

	Equivalenced parameters (Equiv)

	Hold parameters (Fixed)

	Constraint Processing

	Constraint Reorganization (ProcessConstraints())

	Constraint Checking and Grouping (GenerateConstraints())

	Equivalence Checking and Reorganization (CheckEquivalences())

	Global Variables

	GSASIImapvars Routines/variables

9.2. Externally-Accessible Routines

To define a set of constrained and unconstrained relations, one
defines a list of dictionary defining constraint parameters and their
values, a list of fixed values for each constraint and a list of
parameters to be varied. In addition, one uses
StoreEquivalence() to define parameters that are equivalent.
See the Constraints Processing section for details on how
processing of constraints is done.

	routine

	explanation

	InitVars()

	This is used to clear out all defined previously
defined constraint information

	StoreEquivalence()

	Implements parameter redefinition.
This should be called for every set of equivalence relationships.
Use StoreEquivalence() before calling
GenerateConstraints()

	ProcessConstraints()

	Initially constraints of all types are maintained in lists of
dict entries that are stored in the data tree,
with parameters are stored as
G2VarObj objects so that they can
be resolved if the phase/histogram order changes.
ProcessConstraints() processes this list of dict entries,
separating the “Equivalence”, “Hold”, “Const” and “New Var”
entries for subsequent use.
See the Constraint Reorganization
section for more details.

	EvaluateMultipliers()

	Convert any string-specified (formula-based) multipliers to
numbers. Call this before using GenerateConstraints().
At present only values in dict for phase (atom/cell) parameters
are used to evaluate multipliers containint formulae,
but this could be changed if needed.

	GenerateConstraints()

	Generates the internally-used tables from constraints and
equivalences. Checks for internal consistency and repairs
problems where possible. See the
Constraint Checking and Grouping
and Equivalence Checking
sections for more details.

	Map2Dict()

	To determine values for any parameters created in this module,
call Map2Dict. This will not apply contraints.

	Dict2Map()

	To apply the constraints and equivalences, call this.
It takes values from the new independent parameters and
constraints, and applies them to the parameter dict.

	Dict2Deriv()

	This determines derivatives on independent parameters
from those on dependent ones.

	ComputeDepESD()

	Use ComputeDepESD to compute uncertainties on dependent variables.

	VarRemapShow()

	Use this to show a summary of the parameter remapping.
Call after GenerateConstraints().

9.3. Types of constraints

There are four ways to specify constraints, as listed below.
Note that constraints are initially stored in the
main section of the GSAS-II data tree under heading Constraints.
This dict has four keys, ‘Hist’, ‘HAP’, ‘Global’, and ‘Phase’,
each containing a list of constraints. An additional set of constraints
are generated for each phase based on symmetry considerations by calling
GSASIIstrIO.GetPhaseData().

Note that in the constraints, as stored in the GSAS-II data tree, parameters
are stored as GSASIIobj.G2VarObj objects, as these objects allow for
changes in numbering of phases, histograms and atoms since GSASIIobj.G2VarObj objects
use random Id’s for references.
When constraints are interpreted (in ProcessConstraints()),
these references are resolved to the numbered objects by looking up random Id’s
so that the parameter object is converted to a string of form ph:hst:VARNAM:at.

Constraints are initially stored as described in the
constraint definitions, where the last value in the
list determines which type of constraint is defined.

9.3.1. Alternate parameters (New Var)

Parameter redefinition (“New Var” constraints)
is done by creating an expression that relates several
parameters:

Mx1 * Px + My1 * Py +... = ::newvar1
Mx2 * Px + Mz2 * Pz + ... = ::newvar2

where Pj is a GSAS-II parameter name and Mjk is a constant (float) multiplier.
Alternately, multipliers Mjk can contain a formula (str) that will be evaluated prior
to the start of the refinement. In a formula, GSAS-II parameters will be replaced by the
value of the parameter before the formula is evaluated, so 'np.cos(0::Ax:2)' is a valid
multiplier. At present, only phase (atom/cell) parameters are available for use in
a formula, from the GUI but this can be expanded if needed.

This type of constraint describes an alternate
degree of freedom where parameter Px and Py, etc. are varied to keep
their ratio
fixed according the expression. A new variable parameter is assigned to each degree of
freedom when refined. An example where this can be valuable is when
two parameters, P1 and P2, have similar values and are highly correlated. It is often better to create a new variable, Ps = P1 + P2, and refine Ps.
In the later stages of refinement, a second
variable, Pd = P1 - P2, can be defined and it can be seen if refining Pd is
supported by the data. Another use will be to define parameters that
express “irrep modes” in terms of the fundamental structural parameters.

The “New Var” constraints are stored as a type “f”
constraint (see definitions).

9.3.2. Constrained parameters (Const)

A constraint on a set of variables can be supplied in the form of a
linear algebraic equation:

Nx1 * Px + Ny1 * Py +... = C1

where Cn is a constant (float), where Pj is a GSAS-II parameter name,
and where Njk is a constant multiplier (float) or a formula (str) that will be evaluated prior
to the start of the refinement. In a formula, GSAS-II parameters will be replaced by the
value of the parameter before the formula is evaluated, so 'np.cos(0::Ax:2)' is a valid
multiplier. At present, only phase (atom/cell) parameters are available for use in
a formula, but this can be expanded if needed.

These equations set an interdependence between parameters.
Common uses of parameter constraints are to set rules that decrease the number of parameters,
such as restricting the sum of fractional occupancies for atoms that share
a site to sum to unity, thus reducing the effective number of variables by one.
Likewise, the Uiso value for a H atom “riding” on a C, N or O atom
can be related by a fixed offset (the so called B+1 “rule”).

The “Const” constraints are stored as a type “c”
constraint (see definitions).

9.3.3. Equivalenced parameters (Equiv)

A simplifed way to set up a constraint equation is to define an equivalence,
which can be of form:

C1 * P1 = C2 * Py

or:

C1 * P1 = C2 * P2 = C3 * P3 = ...

where Cn is a constant (float), where Pj is a GSAS-II parameter name. This
means that parameters Py (or P2 and P3) are determined from (or “slaved” to)
parameter P1. Alternately, equivalences can be created with StoreEquivalence()
where the multipliers can be a formula (str) that will be evaluated prior to the start of
the refinement. In a formula, GSAS-II parameters will be replaced by the value of the
parameter before the formula is evaluated, so a multiplier can be specifed as '2*np.cos(0::Ax:2)'.
At present, only phase (atom/cell) parameters are available for use in
such a formula, but this can be expanded if needed.

The first parameter (P1 above)
is considered the independent variable
and the remaining parameters are dependent variables. The dependent variables
are then set from the independent variable.

Note that a constraint expression is conceptually identical to
defining constraint equations.
The previous set of equalities could also be written as a set of constraint
equations in this way:

C1 * P1 - C2 * P2 = 0
C1 * P1 - C3 * P3 = 0
...

In practice, however,
equivalenced parameters are processed in a
different and more direct manner than constraint equations.

A parameter can be used in multiple
equivalences where it is an independent variable,
but if a parameter were used both as a dependent and independent variable then the order that
shifts are applied becomes potentially significant. As an example, in this case these two
equivalences are “chained”:

C1 * P1 = C2 * P2
C2 * P2 = C3 * P3

where P2 is both a dependent and independent variable. Likewise, if a parameter is used both in equivalences
and in “New Var” or “Const” constraints, it also becomes unclear how this should be processed. It is
possible to specify equivalences that conflict with constraints.
Should parameter be used as both a dependent and an independent variable or if a parameter is used both in
an the equivalence and in a “New Var” or “Const” constraints, the equivalence
is converted to a constraint (Const) to
avoid conflicts. The equivalences that require this are addressed in :GenerateConstraints() where
CheckEquivalences() is used to locate problematic variables in equivalences
and then change these equivalences to “Const” equations. Also, unneeded equivalences are removed.

For an example of how equivalences may be used, consider
a material that has N O atoms in the asymmetric unit, all in fairly similar bonding environments
and where the diffraction data are sparse. One may wish to reduce the complexity of the model fit to
these data by defining Uiso for all O atoms to be the same. This is done by selecting Uiso for any one O atom
as an independent variable in a equivalence and setting the remaining N-1 other O atom Uiso
variables as dependent parameters with multipliers of 1. This will require that all O atom Uiso values
be identical.
The results of this refinement will be simpler to understand than if a set of
constraint equations is used, because the refined parameter (named as ph::Uiso:n) will be the
independent variable, corresponding to the first O atom and all other variables would be
expressed in terms of that variable with a single Equivalence expression.
The alternate would require N-1 constraint equations, leaving one degree of freedom with a
variable would that is likely only indirectly related to the Uiso values.

Equivalenced parameters (“EQUIV” constraints), when defined by users,
or when created to relate phases, are stored as a type “e”
constraint (see definitions).
Symmetry-generated equivalences are generated prior
to display or refinement in GSASIIstrIO.GetPhaseData().
These are not stored in the data tree.

9.3.4. Hold parameters (Fixed)

When parameters are refined where a single refinement flag determines that several variables
are refined at the same time (examples are: cell parameters, atom positions, anisotropic
displacement parameters, magnetic moments,…) it can be useful to specify that a
specific parameter should not be varied. These will most commonly be generated due to symmetry,
but under specific conditions, there may be other good reasons to constrain a parameter.

The “Hold” constraints are stored as a type “h”
constraint (see definitions).

9.4. Constraint Processing

When constraints will be used or edited, they are processed using a series of
calls. This is done in GSAS-II from several locations:

	For error checking from the tree in GSASIIconstrGUI,
GSASIIconstrGUI.CheckConstraints() loads constraints from
the data tree.

	When the table of refined parameters is shown, constraints are also
processed in function GSASIIdataGUI.GSASII.OnShowLSParms() using
GSASIIconstrGUI.CheckConstraints()

	To write parameters in the Export sections of the program,
GSASIIIO.loadParmDict() loads results as well as constraints
from the tree. This works a bit differently from the above, so it
makes direct calls to the constraints routines.

	For error checking from a GPX file
GSASIIstrIO.ReadCheckConstraints() loads constraints
(called in GSASIIdataGUI and GSASIIscriptable),
which is similar to GSASIIconstrGUI.CheckConstraints().
ReadCheckConstraints() is called by
GSASIIdataGUI.GSASII.OnRefine() and
GSASIIdataGUI.GSASII.OnSeqRefine()
before constraints are generated for use in refinements so they can
be shown in the GUI. This is also called to check for errors in
GSASIIscriptable.G2Project.

	To create the constraints for use in a refinement, in
GSASIIstrMain, functions GSASIIstrMain.Refine() and
GSASIIstrMain.SeqRefine() load and process the constraints again.
This is repeated here because Refine() and
SeqRefine() are intended to operate as stand-alone
routines that may be called directly.

	After sequential fits have been completed, the previously processed
constraint info is read from the sequential results section of the
data tree. Function
GSASIIseqGUI.UpdateSeqResults() displays the sequential results
table also processes constraints.

TODO: Note that G2stIO.makeTwinFrConstr is called only in one place. It probably needs to be included in all of the above.

When constraints are processed, the following steps are used:

	Constraints are stored in separate lists in the data tree to
simplify their creation and their GUI display.
In the initial processing, all of the stored constraints are appended
into a single list.

	Then InitVars() is used to initialize the global variables in
this module (GSASIImapvars). This may be done before the previous
step.

	Then ProcessConstraints() is used to initially process the
constraints user-supplied constraints (from the data tree),
as described in Constraint Reorganization.
When constraints are read from a GPX file, rather than the data tree, use
GSASIIstrIO.ReadConstraints() (which calls ProcessConstraints()).

	Symmetry-generated equivalences are then created in
GSASIIstrIO.GetPhaseData(), which also calls
GSASIIstrIO.cellVary() and for Pawley refinements
GSASIIstrIO.GetPawleyConstr(). These are entered directly into this
module’s globals using StoreEquivalence().

	Constraints/equivalences are then checked for possible conflicts with
GenerateConstraints() which in turn calls CheckEquivalences().
These routines group the constraints
and possibly reorganize them, as discussed below for
GenerateConstraints() (discussed here)
and for CheckEquivalences() (discussed here).

	Note that for debugging, VarRemapShow() can be called at any point
after GenerateConstraints() has been called. This will display the
generated constraints.

9.4.1. Constraint Reorganization (ProcessConstraints())

ProcessConstraints() is used to initially process the
constraints from the list of dict entries. The “Const” and “New Var” are placed into two
lists (constrDict and fixedList) that are later used for parameter
grouping (in GenerateConstraints()). “Hold” and “Equivalence” constraints are
separated into separate storage.

	For “Const” entries,
	a dict with multiple entries is placed in constrDict where
each dict key is the parameter name and the value is the multiplier for the parameter,
while fixedList gets a string value corresponding to the constant value for
the expression.

	For “New Var” entries,
	a dict with multiple entries defined identically to
to that used in “Const” entries. The differences between “New Var” and “Const” entries is
that for “Const” entries, a constant value (as a string) is placed in fixedList while
for “New Var” entries corresponding entry in fixedList is None.
Also, one or two additional entries are created in the dict for “New Var” constraints:
an entry with key “_vary” is given the value of True or False
depending on the refinement flag setting;
an entry with key “_name” will be created if the “New Var” parameter has a supplied name.

	For “Hold” entries,
	User-supplied “Hold” constraints are stored in global variable holdParmList.
Initialized in InitVars(); set in StoreHold(). Type of hold is stored in
holdParmType.

	Equivalences are stored using StoreEquivalence() into this module’s globals
	(dependentParmList, arrayList, invarrayList, indParmList,
and symGenList).
For each equivalence:

	a list with one entry, the name of the independent parameter is placed in indParmList;

	a list with one or more parameter name is placed in dependentParmList;

	the value None is added to arrayList;

	a list of multipliers for each dependent variable is placed in invarrayList

	an entry of either True or False is placed in symGenList, where True indicates that the entry has been generated from symmetry.

The output from ProcessConstraints() will have the form as below,
where the first entry is a “Const” and the second is a “New Var”.

constrDict = [
 {'0:12:Scale': 2.0, '0:14:Scale': 4.0, '0:13:Scale': 3.0, '0:0:Scale': 0.5},
 {'2::C(10,6,1)': 1.0, '1::C(10,6,1)': 1.0, '_vary':True}]
fixedList = ['5.0', None]

9.4.2. Constraint Checking and Grouping (GenerateConstraints())

Function GenerateConstraints() is used to
process the parameter equivalences and constraint lists created in
ProcessConstraints() (constrDict and fixedList). GenerateConstraints()
is used to generate error/warning messages, to set up lists that are used to show this
information for the GUI (using getConstrError()) and to
generate the information stored in global arrays that are used later to
apply the constraints.

When a sequential refinement is in progress, the constraints are scanned for parameters
that have a wildcard (*) for the histogram number, such as 1::Scale which would refer
to the phase fraction for Phase ` in every histogram. The “” will be replaced with
the number of the current histogram.

Equivalences are checked with CheckEquivalences() (described in detail
below). This may result in the creation of additional “Hold”
and “Constr” constraints being added to the constrDict and fixedList lists.

The “Const” and “New Var” constraint expressions are then scanned for problems:

Constraints cannot be processed without changes if any of the terms within have the following:

	Undefined parameters or Multiplier of zero

If any parameters in a constraint are undefined or have a parameter multiplier of zero
the constraint group is not used.

If some, but not all, parameters in a constraint are undefined or have a parameter
multiplier of zero and remaining valid parameters will be set as “Hold”.
One exception: atom position constraints (p::dA[xyz]:#) will be assumed as zero.

	Hold (Fixed) parameters and Unvaried parameters: New Var constraints

If any parameters in a new var constraint are either not refined, or are marked as “Hold”
the constraint can not be varied. Any parameters in that group will be set as “Hold”

	Hold (Fixed) parameters and Unvaried parameters: Constraint Equations

If any parameters in a constraint equation are either not refined, or are marked as “Hold”
those parameters can be removed from the constraint, with an adjustment of the equation
sum.

Constraint expressions (“Const” and “New Var”) are sorted by routine GroupConstraints() into
groups so that each group contains the minimum number of entries that
ensures each parameter is referenced in only one group.
This is done by scanning the
list of dicts in constrDict one by one and making a list
of parameters used in that constraint expression. Any expression that contains
a parameter in that list is added to the current group and those
parameters are added to this list of parameters. The list of ungrouped
expressions is then scanned again until no more expressions are added to the
current group. This process is repeated until every expression has been
placed in a group. Function GroupConstraints() returns two lists of lists.
The first has, for each group, a list of the indices in constrDict
that comprise the group (there can be only one). The second list contains,
for each group, the unique parameter names in that group.

Each constraint group is then processed. First, wildcard parameters are
renamed (in a sequential refinement). Any held parameters that are used
in constraints are noted as errors. The number of refined parameters and
the number of parameters that are not defined in the current refinement are
also noted. It is fine if all parameters in a group are not defined or all are
not varied, but if some are defined and others not or some are varied and
others not, this constitutes an error.

The contents of each group is then examined. Groups with a single
parameter (holds) are ignored. Then for each group, the number
of parameters in the group (Np) and the number of expressions in the
group (Nc) are counted and for each expression. If Nc > Np, then the constraint
is overdetermined, which also constitutes an error.

The parameter multipliers for each expression are then assembled:

M1a * P1 + M2a * P2 +... Mka * Pk
M1b * P1 + M2b * P2 +... Mkb * Pk
...
M1j * P1 + M2j * P2 +... Mkj * Pk

From this it becomes possible to create a Nc x Np matrix, which is
called the constraint matrix:

\[\begin{split}\left(\begin{matrix}
M_{1a} & M_{2a} &... & M_{ka} \\
M_{1b} & M_{2b} &... & M_{kb} \\
... \\
M_{1j} & M_{2j} &... & M_{kj}
\end{matrix}\right)\end{split}\]

When Nc<Np, then additional rows need to be added to the matrix and to
the vector that contains the value for each row (fixedList) where
values are None for New Vars and a constant for fixed values.
This then can describe a system of Np simultaneous equations:

\[\begin{split}\left(\begin{matrix}
M_{1a} & M_{2a} &... & M_{ka} \\
M_{1b} & M_{2b} &... & M_{kb} \\
... \\
M_{1j} & M_{2j} &... & M_{kj}
\end{matrix}\right)
\left(\begin{matrix}
P_{1} \\
P_{2} \\
... \\
P_{k}
\end{matrix}\right)
=
\left(\begin{matrix}
C_{1} & C_{2} & ... & C_{k}
\end{matrix}\right)\end{split}\]

This is done by creating a square matrix from the group using
_FillArray(). The top Nc rows in the matrix are filled
as described above. Then _RowEchelon() is used to see if
those entries in the matrix can be coverted to row-echelon form. This
will raise an Exception there is linear dependence between the initial Nc rows
(which means that no matter what values are used for any remaining rows, that the matrix
will be singular). If that is not the case and Nc<Np then any remaining rows that
were not specified are filled in. For each of these rows, first only the
diagonal element in that row of the matrix is set to 1
and the upper portion of the matrix is again tested with _RowEchelon()
to check for linear independence. This is likely to be non-singular,
but should _RowEchelon() fail,
_FillArray() will then try setting each other element in that row to either
1 or -1. One of those options should be linearly independent from every other
row of the matrix.

The
Gram-Schmidt process [http://en.wikipedia.org/wiki/Gram-Schmidt],
implemented in GramSchmidtOrtho(), is used to find orthonormal unit
vectors which are used to replace the remaining Np-Nc rows of the matrix. This will fail with
a ConstraintException if this is not possible (singular matrix), but that would be
unexpected since the matrix could be converted to row-echelon form. The
Gram-Schmidt result is placed in constrArr as a numpy array.

Rows in the matrix corresponding to “New Var” constraints and those that
were generated by the Gram-Schmidt process are provided with parameter names.
These names are generated using paramPrefix, which is set to "::constr",
plus a number to make the new parameter name unique,
unless a name was specified for the
“New Var” entry by using a "_name" element in the constraint dict.

Finally the parameters used as input to the constraint are placed in
this module’s globals
dependentParmList and the constraint matrix is
placed in into arrayList. This can be used to compute
the initial values for “New Var” parameters. The inverse of the
constraint matrix is placed in invarrayList and a list
of the “New Var” parameters and a list of the fixed values (as str’s)
is placed in indParmList.
Finally the appropriate entry in symGenList is set to
False to indicate that this is not a symmetry generated constraint.

9.4.3. Equivalence Checking and Reorganization (CheckEquivalences())

Equivalences need to be checked for usages that could be internally conflicted
or have possible conflicts with other constraints. Function CheckEquivalences()
is called within GenerateConstraints() to diagnose and where
possible resolve such uses, as discussed below.

Mixed parameter use:

Note that multiple passes, cycling through the equivalences may
be needed to find all mixed-use parameters, as will be discussed
further, below.

	A parameter should not show up as a dependent variable in two equivalence expressions,
such as:

::x1 -> ::x3
::x2 -> ::x3

This will be processed by turning the equivalences into two constraint equations:

::x1 - ::x3 = 0
::x2 - ::x3 = 0

which can be satisfied when ::x1 = ::x2 = ::x3. If ::x1 and ::x2 had been
intended to be independent parameters, then the above equivalences would be conflict and
cannot be statisfied.

	If a parameter is used both as an independent and as a dependent variable (chaining),
as is in these two equivalence expressions:

::x1 -> ::x2 & ::x4
::x2 -> ::x3

This can also be addressed by turning these equivalences into three constraint equations:

::x1 - ::x2 = 0
::x1 - ::x4 = 0
::x2 - ::x3 = 0

which can be satisfied when ::x1 = ::x2 = ::x3 = ::x4

	Use of parameters in both equivalences and “Const” or “New Var” constraint expressions makes
logical sense:

::x1 -> ::x2 & ::x4
::x2 + ::x3 = 0

This can also be addressed by turning the equivalence into two constraint equations:

::x1 - ::x2 = 0
::x1 - ::x4 = 0

With the addition of the “Const” equation (::x2 + ::x3 = 0), the solution will require
::x1 = ::x2 = -1.0*::x3 = ::x4

	Cycling is needed to find all equivalences that must be converted.
Consider this set of constraints:

::x2 + ::x3 = 0
::x1 -> ::x2
::x1 -> ::x4

In the first pass the equivalence with ::x2 would be converted to a “Const” constraint
and in the second pass
the other equivalence with ::x1 would be converted.

Mixing Hold (Fixed) parameters in equivalences

	If one parameter (or more) is designated as a “Hold” in an equivalence, then all parameters in that
equivalence cannot be varied. Considering this equivalence:

::x1 -> ::x2 & ::x4

If any of the three parameters (::x1, ::x2, or ::x4) are marked as Hold, then
the other two parameters may not be varied and will also be set with a “Hold”.

Unvaried parameters in equivalences

	If no parameters in an equivalence are varied, then the equivalence is ignored.

	If only some parameters are marked as varied then
none of the parameters can be varied; any varied parameters will be set with a “Hold”.

Undefined parameters in equivalences

Parameters may be placed in equivalences that are not actually defined in a project.
This can occur in two ways. If an equivalence is created in the GUI for a parameter that
is later supplanted with a different model (for example, changing from isotropic size
broadening to uniaxial broadening replaces the isotropic broadening term with two different
uniaxial terms) or symmetry may require restrictions on anisotropic ADPs that are not
in use).

	If the independent parameter is undefined, then any dependent parameters that are defined
are set as “Hold” and the equivalence is ignored.

	If all dependent parameters are undefined, then the equivalence is ignored.

	If a dependent parameter is undefined, then that parameter is dropped from the equivalence.

Multiplier of zero in equivalences

Any dependent parameter that has a multiplier of zero will be dropped from the equivalence.
If no terms remain, then the equivalence is ignored. (Independent parameters do not
have a multiplier).

9.5. Global Variables

This module uses a number of global variables. One set is used to store the
constraints and equivalences after processing by StoreEquivalence() and
GenerateConstraints().
These globals are expected to be used only by this module’s (GSASIImapvars) internal routines.

Lists with information from Constraint Equation and New Var constraints. Each entry
in these variables is related to a group of constraints.

	variable

	explanation

	dependentParmList

	a list containing group of lists of
parameters used in the group.
The columns of the matrices in arrayList match
the order of parameters here.
Note that parameters listed in
dependentParmList will not be included in the Hessian as their
derivatives will not affect the model

	indParmList

	a list containing groups of variables or constants matching
the columns of the matrices in invarrayList.

	arrayList

	a list containing group of relationship matrices to relate
parameters in dependentParmList to those in indParmList.

	invarrayList

	a list containing group of relationship matrices to relate
parameters in indParmList to those in dependentParmList.
Unlikely to be used externally.

	symGenList

	a list of boolean values that will be True to indicate
that an equivalence was generated internally GSAS-II
meaning it is generated based on symmetry, twining
or Pawley overlap.

Lists with information from Hold and Equivalence constraints. Each entry
in these variables is related to a group of constraints.

	variable

	explanation

	holdParmList

	a list of parameters that have been marked as “Hold”.
Unlikely to be accessed outside this module.
Initialized in InitVars(); set in StoreHold().

	holdParmType

	The reason why a parameter has been marked as “Hold”.
Unlikely to be accessed outside this module.
Initialized in InitVars(); set in StoreHold().

	constrParms

	dict with lists of variables in equivalences,
constraint equations and new var expressions.
Used within GetIndependentVars(),
and GetDependentVars().
Best if not referenced outside this module.
Contains elements:

	‘dep-equiv’: dependent parameters set by equivalences

	‘dep-constr’: dependent parameters set by
constraint equations or new var expressions

	‘indep-equiv’: dependent parameters used in equivalences

	‘indep-constr’: dependent parameters created from
constraint equations or new var expressions

	saveVaryList

	a list of the varied parameters used when constraints
were last processed.

A second set of global variables are set in GenerateConstraints() with lists of parameter
names from equivalences and constraints. Used in CheckEquivalences() and
getConstrError().

	variable

	explanation

	depVarList

	a list of the parameters used in equivalences as dependent
parameters for all equivalences initially specified (including
those to be reclassified as “Constr” constraints.)

	indepVarList

	a list of the parameters used in equivalences as independent
parameters for all equivalences initially specified (including
those to be reclassified as “Constr” constraints.)

	constrVarList

	a list of the parameters that are used in “Constr” or
“New Var” constraints. Does not include those in equivalences
to be reclassified as “Constr” constraints.)

A third set of global variables to store equivalence warning information.
Set in CheckEquivalences() and GenerateConstraints().
Used in getConstrError() to display warning messages.

	variable

	explanation

	convVarList

	parameters in equivalences that were converted to “Const”
constraints

	multdepVarList

	parameters used as dependent parameters in equivalences
multiple times

	unvariedParmsList

	parameters used in equivalences and constraints
that are not varied

	undefinedVars

	parameters used in equivalences
that are not defined in the parameter dict (parmDict)

	groupErrors

	parameters in constraints that cause grouping errors

9.6. GSASIImapvars Routines/variables

Classes and routines defined in GSASIImapvars follow.

Note that parameter names in GSAS-II are strings of form <ph#>:<hst#>:<nam> or <ph#>::<nam>:<at#>
where <ph#> is a phase number, <hst#> is a histogram number and <at#> is an atom number.
<nam> is a name that determines the parameter type (see GSASIIobj.CompileVarDesc()). When
stored in the data tree, parameters are saved as GSASIIobj.G2VarObj objects
so that they can be resolved if the phase/histogram order changes.

	
GSASIImapvars.CheckEquivalences(constrDict, varyList, fixedList, parmDict=None, seqHistNum=None)

	Process equivalence constraints, looking for conflicts such as
where a parameter is used in both an equivalence and a constraint expression
or where chaining is done (A->B and B->C).

Removes equivalences or parameters from equivalences or converts equivalences to
constraints as described for Equivalence Checking and Reorganization.

	Parameters:

	
	constrDict (dict) – a list of dicts defining relationships/constraints

	varyList (list) – list of varied parameters (defined during refinements only)

	fixedList (list) – a list of values specifying a fixed value for each
dict in constrDict. Values are either strings that can be converted to
floats or None if the constraint defines a new parameter rather
than a constant.

	parmDict (dict) – a dict containing defined parameters and their values. Used to find
equivalences where a parameter is has been removed from a refinement.

	seqHistNum (int) – the hId number of the current histogram in a sequential
fit. None (default) otherwise.

	Returns:

	warning messages about changes that need to be made to equivalences

	
GSASIImapvars.ComputeDepESD(covMatrix, varyList, noSym=False)

	Compute uncertainties for dependent parameters from independent ones
returns a dictionary containing the esd values for dependent parameters

	Parameters:

	
	covMatrix (np.array) – the full covariance matrix

	varyList (list) – the names of the variables matching the columns
and rows in covMatrix

	noSym (bool) – When True symmetry generated parameters are
not included. Do this so that redundant s.u.’s eare not shown.
When False (default) s.u. values for all dependent
parameters are placed in the returned dict.

	
exception GSASIImapvars.ConstraintException

	Defines an Exception that is used when an exception is raised processing constraints.
Raised in GenerateConstraints() during sequential fits. Possible (but highly unlikely)
to be raised in CheckEquivalences() (called by GenerateConstraints()) if an
infinite loop is detected.
Also raised in GramSchmidtOrtho() and _SwapColumns() but caught
within GenerateConstraints().

	
__weakref__

	list of weak references to the object

	
GSASIImapvars.Dict2Deriv(varyList, derivDict, dMdv)

	Compute derivatives for Independent Parameters from the
derivatives for the original parameters

	Parameters:

	
	varyList (list) – a list of parameters names that will be varied

	derivDict (dict) – a dict containing derivatives for parameter values keyed by the
parameter names.

	dMdv (list) – a Jacobian, as a list of np.array containing derivatives for dependent
parameter computed from derivDict

	
GSASIImapvars.Dict2Map(parmDict)

	Applies the constraints defined using StoreEquivalence(),
GroupConstraints() and GenerateConstraints() by changing
values in a dict containing the parameters. This should be
done after refinement and before the parameters are used for
any computations

	Parameters:

	parmDict (dict) – a dict containing parameter values keyed by the
parameter names. After this is called, all the dependent variables
will be updated based on constraints and equivalences.

	
GSASIImapvars.EvaluateMultipliers(constList, *dicts)

	Convert multipliers for constraints and equivalences that are specified
as strings into values. The strings can specify values in the parameter dicts as
well as normal Python functions, such as “2*np.cos(0::Ax:2/2.)”

	Parameters:

	
	constList (list) – a list of dicts containing constraint expressions

	*dicts – one or more dicts containing GSAS-II parameters and their values
can be specified

	Returns:

	an empty string if there were no errors, or an error message listing
the strings that could not be converted.

	
GSASIImapvars.GenerateConstraints(varyList, constrDict, fixedList, parmDict=None, seqHistNum=None, raiseException=False)

	Takes a list of relationship entries that have been stored by
ProcessConstraints() into lists constrDict and fixedList

This routine then calls CheckEquivalences() for internal
consistency. This includes converting equivalenced variables into
constraints when a variable is used in both.

Once checked, parameters are grouped so that any parameters that are used in
more than one constraint are grouped together. This allows checking for incompatible
logic (for example, when four constraints are specified for three variables).

If parmDict is not None, the parameter groups are checked for constraints where
some parameters are varied, but not others. If so, the value for that unvaried
parameter is subtracted from the constant in the constraint.

Once all checks are complete, the constraints are then
converted to the form used to apply them, saving them as global variables within
this module.

	Parameters:

	
	varyList (list) – a list of parameters names (strings of form
<ph>:<hst>:<nam>) that will be varied. Note that this is changed
here unless set to None. None is used to indicate that all constraints
should be generated.

	constrDict (dict) – a list of dicts defining relationships/constraints
(as described in GroupConstraints())

	fixedList (list) – a list of values specifying a fixed value for each
dict in constrDict. Values are either strings that can be converted to
floats, float values or None if the constraint defines a new parameter.

	parmDict (dict) – a dict containing all parameters defined in current
refinement.

	seqHistNum (int) – the hId number of the current histogram in a sequential
fit. None (default) otherwise.

	raiseException (bool) – When True, generation of an error causes
an exception to be raised (used in sequential fits)

	Returns:

	errmsg,warning,groups,parmlist

	errmsg
	Is an error message or empty if no errors were found

	warning
	Is a warning message about constraints that have been ignored or changed

	groups
	Lists parameter groups

	parmlist
	Lists parameters in each parameter groups

	
GSASIImapvars.GetDependentVars(opt=None)

	Return a list of dependent variables: e.g. parameters that are
constrained in terms of other parameters

	Parameters:

	opt (str) – type of dependent variables.
‘equiv’: from equivalences,
‘constr’: from constraints
None (default): all

	Returns:

	a list of parameter names

	
GSASIImapvars.GetDroppedSym(seqmode, seqhistnum)

	Return automatically generated (equivalence) relationships that were
converted to constraint equations

	Returns:

	a list of strings containing the details of the equivalences

	
GSASIImapvars.GetIndependentVars()

	Return a list of independent variables: e.g. parameters that are
slaved to other parameters by constraints

	Returns:

	a list of parameter names

	
GSASIImapvars.GetSymEquiv(seqmode, seqhistnum)

	Return the automatically generated (equivalence) relationships.

	Returns:

	a list of strings containing the details of the contraint relationships

	
GSASIImapvars.GramSchmidtOrtho(a, nkeep=0)

	Use the Gram-Schmidt process (http://en.wikipedia.org/wiki/Gram-Schmidt) to
find orthonormal unit vectors relative to first row.

If nkeep is non-zero, the first nkeep rows in the array are not changed

	input:
	arrayin: a 2-D non-singular square array

	returns:
	a orthonormal set of unit vectors as a square array

	
GSASIImapvars.GroupConstraints(constrDict)

	Divide the constraints into groups that share no parameters.

	Parameters:

	constrDict (dict) – a list of dicts defining relationships/constraints

constrDict = [{<constr1>}, {<constr2>}, ...]

where {<constr1>} is {‘var1’: mult1, ‘var2’: mult2,… }

	Returns:

	two lists of lists:

	a list of grouped contraints where each constraint grouped containts a list
of indices for constraint constrDict entries

	a list containing lists of parameter names contained in each group

	
GSASIImapvars.InitVars()

	Initializes all constraint information

	
GSASIImapvars.Map2Dict(parmDict, varyList)

	Updates the parameter dictionary and the varyList using the
equivalence and constraint input. This should be called at least once, after
the constraints have been defined using StoreEquivalence(),
GroupConstraints() and GenerateConstraints() and before any
parameter refinement is done.

This completes the parameter dictionary by defining values for parameters
created by constraints based on the constraints that define them
using the values for the current parameters. It also removes all dependent
variables from the varyList

	Parameters:

	
	parmDict (dict) – a dict containing parameter values keyed by the
parameter names. For new variables created by constraints, entries
will be added to the dictionary, if not alreay present, or the
values will be recomputed.

	varyList (list) – a list of parameters names. Will be modified.

	
GSASIImapvars.ProcessConstraints(constList, seqmode='use-all', seqhst=None)

	Interpret the constraints in the constList input into a dictionary, etc.
All GSASIIobj.G2VarObj objects are mapped to the appropriate
phase/hist/atoms based on the object internals (random Ids). If this can’t be
done (if a phase has been deleted, etc.), the variable is ignored.
If the constraint cannot be used due to too many dropped variables,
it is counted as ignored. In the case of sequential refinements,
the current histogram number is substituted for a histogram number of “*”.

NB: this processing does not include symmetry imposed constraints

	Parameters:

	
	constList (list) – a list of lists where each item in the outer list
specifies a constraint of some form, as described in the GSASIIobj
Constraint definitions.

	seqmode (str) – one of ‘use-all’, ‘wildcards-only’ or ‘auto-wildcard’.
When seqmode==’wildcards-only’ then any constraint with a numerical
histogram number is skipped. With seqmode==’auto-wildcard’,
any non-null constraint number is set to the selected histogram.

	seqhst (int) – number for current histogram (used for
‘wildcards-only’ or ‘auto-wildcard’ only). Should be None for
non-sequential fits.

	Returns:

	a tuple of (constrDict,fixedList,ignored) where:

	constrDict (list of dicts) contains the constraint relationships

	fixedList (list) contains the fixed values for each type
of constraint.

	ignored (int) counts the number of invalid constraint items
(should always be zero!)

	
GSASIImapvars.StoreEquivalence(independentVar, dependentList, symGen=True)

	Takes a list of dependent parameter(s) and stores their
relationship to a single independent parameter (independentVar).

Called with user-supplied constraints by ProcessConstraints(),
with Pawley constraints from GSASIIstrIO.GetPawleyConstr(),
with Unit Cell constraints from GSASIIstrIO.cellVary()
with symmetry-generated atom constraints from GSASIIstrIO.GetPhaseData()

There is no harm in using StoreEquivalence with the same independent variable:

StoreEquivalence('x',('y',))
StoreEquivalence('x',('z',))

but the same outcome can be obtained with a single call:

StoreEquivalence('x',('y','z'))

The latter will run more efficiently.

Note that mixing independent and dependent variables, such as:

StoreEquivalence('x',('y',))
StoreEquivalence('y',('z',))

is a poor choice. The module will attempt to fix this by transforming the equivalence to a
“Const” constraint.

	Parameters:

	
	independentVar (str) – name of master parameter that will be used to determine the value
to set the dependent variables

	dependentList (list) – a list of parameters that will set from
independentVar. Each item in the list can be a string with the parameter
name or a tuple containing a name and multiplier:
['::parm1',('::parm2',.5),]

	
GSASIImapvars.StoreHold(var, holdType=None)

	Takes a variable name and prepares it to be removed from the
refined variables.

Called with user-supplied constraints by ProcessConstraints().
At present symGen is not used, but could be set up to track Holds generated
by symmetry.

	
GSASIImapvars.SubfromParmDict(s, prmDict)

	Process a string as a multiplier and convert it to a float value. This
is done by subsituting any GSAS-II parameter names that appear in the
string that have associated values in the parameter dict with the value
for that parameter.

	Parameters:

	
	s (str) – a string to be converted to a value

	prmDict (dict) – a dictionary with keys as GSAS-II parameter names
and values the corresponding parameter value.

	Returns:

	the evaluated expression as a float.

	
GSASIImapvars.VarKeys(constr)

	Finds the keys in a constraint that represent parameters
e.g. eliminates any that start with ‘_’

	Parameters:

	constr (dict) – a single constraint entry of form:

{'var1': mult1, 'var2': mult2,... '_notVar': val,...}

(see GroupConstraints())

	Returns:

	a list of keys where any keys beginning with ‘_’ are
removed.

	
GSASIImapvars.VarRemapShow(varyList=None, inputOnly=False, linelen=60)

	List out the saved relationships. This should be done after the constraints have been
defined using StoreEquivalence(), GroupConstraints() and GenerateConstraints().

	Returns:

	a string containing the details of the contraint relationships

	
GSASIImapvars._FillArray(sel, d, collist)

	Construct a n by n matrix [n = len(collist)]
with the initial m rows [m = len(sel)] using the
relationships defined in the expressions dict, d.
Since m may be smaller than n, the remaining rows
are filled with rows that are tested to not create
a singular matrix.

	Parameters:

	
	sel (list) – a list of indices in dict d

	d (list) – a list of dict’s where each dict describes an
expression from a constraint equation or a new var

	collist (list) – a list parameter names.

	Returns:

	an n by n numpy.array matrix

	
GSASIImapvars._FormatConstraint(RelDict, RelVal)

	Formats a Constraint or Function for use in a convenient way

	
GSASIImapvars._RowEchelon(m, arr, collist)

	Convert the first m rows in Matrix arr to row-echelon form
exchanging columns in the matrix and collist as needed.

throws an exception if the matrix is singular because
the first m rows are not linearly independent

	
GSASIImapvars._SwapColumns(i, m, v)

	Swap columns in matrix m as well as the labels in v
so that element (i,i) is replaced by the first non-zero element in row i after that element

Throws an exception if there are no non-zero elements in that row

	
GSASIImapvars._showEquiv(varlist, mapvars, invmultarr, longmsg=False)

	Format an equivalence relationship, note that varlist, mapvars, invmultarr
are elements of dependentParmList, indParmList, invarrayList

	
GSASIImapvars.arrayList = []

	a list of of relationship matrices that map model parameters in each
constraint group (in dependentParmList) to
generated (New Var) parameters.

	
GSASIImapvars.consNum = 0

	The number to be assigned to the next constraint to be created

	
GSASIImapvars.constrParms = {'dep-constr': [], 'dep-equiv': [], 'indep-constr': [], 'indep-equiv': []}

	A dict with parameters in equivalences, compiled from
(dependentParmList) and (indParmList).
Used within GetIndependentVars() and GetDependentVars().

	
GSASIImapvars.constrVarList = []

	List of parameters used in “Constr” and “New Var” constraints

	
GSASIImapvars.convVarList = []

	parameters in equivalences that were converted to “Const” constraints

	
GSASIImapvars.depVarList = []

	A list of all dependent parameters in equivalences

	
GSASIImapvars.dependentParmList = []

	a list of lists where each item contains a list of parameters in each constraint group.
note that parameters listed in dependentParmList should not be refined directly.

	
GSASIImapvars.droppedSym = []

	A list of symmetry generated equivalences that have been converted to
constraint equations in CheckEquivalences()

	
GSASIImapvars.getConstrError(constrLst, seqmode, seqhst)

	This is used to display error messages for constraints and
equivalence relations

	Parm list constrLst:

	a single constraint or equivalence as saved
in the data tree
(see constraint definitions).

	Parameters:

	
	seqmode (str) – one of ‘use-all’, ‘wildcards-only’ or ‘auto-wildcard’

	seqhst (int) – number for current histogram (used for
‘wildcards-only’ or ‘auto-wildcard’ only). Should be None for
non-sequential fits.

	Returns:

	error, msg where error (bool) is True if the
constraint/equivalence creates an error, msg (str) can be a warning
or an error

	
GSASIImapvars.getInvConstraintEq(var, varyList)

	For a dependent variable, find the constraint that
defines the dependent variable in terms of varied independent variables.
This works for constraint equations (via new var or generated parameters)
or equivalences. For equivalences the result will lists of length 1

	Parameters:

	
	var (str) – named of refined variable (e.g. 0:0:Scale)

	varyList (list) – list of refined variables

	Returns:

	vList,mList where vList is a list of variables and
mList is a list of multipliers for that variable (floats)

	
GSASIImapvars.groupErrors = []

	parameters in constraints where parameter grouping and matrix inversion fails

	
GSASIImapvars.holdParmList = []

	List of parameters that should not be refined (“Hold”s).
Set in StoreHold(). Initialized in InitVars().

	
GSASIImapvars.holdParmType = {}

	The reason why a parameter has been marked as “Hold”.
Initialized in InitVars(); set in StoreHold().

	
GSASIImapvars.indParmList = []

	a list of lists where each item contains a list for each constraint group with
fixed values for constraint equations and names of generated/New Var parameters.
In the case of equivalences, the name of a single independent parameter is stored.

	
GSASIImapvars.indepVarList = []

	A list of all independent parameters in equivalences

	
GSASIImapvars.invarrayList = []

	a list of of inverse-relationship matrices that map constrained values and
generated (New Var) parameters (in indParmList) to model parameters
(in dependentParmList).

	
GSASIImapvars.multdepVarList = []

	parameters used as dependents multiple times in equivalences

	
GSASIImapvars.normParms(parmDict)

	Attempt to put parameters into the right ballpark by scaling to
enforce constraint equations

	
GSASIImapvars.paramPrefix = '::constr'

	A prefix for generated parameter names

	
GSASIImapvars.saveVaryList = []

	A list of the varied parameters that was last supplied when constraints were
processed. This is set in GenerateConstraints() and updated in
Map2Dict(). Used in VarRemapShow()

	
GSASIImapvars.symGenList = []

	A list of flags that if True indicates a constraint was generated by symmetry

	
GSASIImapvars.undefinedVars = []

	parameters used in equivalences that are not defined in the parameter dict

	
GSASIImapvars.unvariedParmsList = []

	parameters used in equivalences that are not varied

 \(\renewcommand\AA{\text{Å}}\)

10. GSASIIimage: Image calc module

10.1. Summary/Contents

Image calibration, masking & image integration routines.

Note that the GSAS-II image coordinate system is defined as follows:
standing facing the x-ray source (e.g. behind the beamstop),
the synchrotron ring will be to the left (for a left handed
synchrotron – almost all are left handed). That left-right direction
defines X. Y is up and thus Z is toward the source/sample.
The resulting 2D image is then viewed from the sample position
(e.g. between the x-ray source and the detector).
The detector is addressed in units of pixels (or distances using the
pixel size) with the origin as the lower left corner.
The beam center is measured from this point; usually somewhere near
the center of the image, thus both Xc & Yc will be greater than zero
unless the beam center is not on the image. Note that when images are
displayed in image viewers, most software puts the origin in the upper
left corner.

Section Contents

	GSASIIimage: Image calc module

	Summary/Contents

	GSASIIimage Routines

10.2. GSASIIimage Routines

Classes and routines defined in GSASIIimage follow.

	
GSASIIimage.AutoPixelMask(Image, Masks, Controls, numChans, dlg=None)

	Find “bad” regions on an image and creata a pixel mask to remove them.
This works by masking pixels that are well outside the range of the
median at that radial distance.
This is ~4x faster than the original version from RBVD.
Developed by Howard Yanxon, Wenqian Xu and James Weng.

Called from GSASIIimgGUI.UpdateMasks.OnFindPixelMask (single image)
and GSASIIimgGUI.UpdateMasks.OnAutoFindPixelMask (multiple images)
[see GSASIIimgGUI.UpdateMasks()]

	Parameters:

	
	Image (np.array) – 2D data structure describing a diffaction image

	Masks (dict) – contents of Masks data tree

	Controls (dict) – diffraction & calibration parameters for image from
IMG data tree entry

	numChans (int) – number of channels in eventual 2theta pattern
after integration

	dlg (wx.Dialog) – a widget that can be used to show the status of
the pixel mask scan and can optionally be used to cancel the scan. If
dlg=None then this is ignored (for non-GUI use).

	Returns:

	a mask array with the same shape as Image or None if the
the scan is cancelled from the dlg Dialog.

	
GSASIIimage.DoPolaCalib(ImageZ, imageData, arcTth)

	Determine image polarization by successive integrations with & without preset arc mask.
After initial search, does a set of five with offset azimuth to get mean(std) result.

	
GSASIIimage.EdgeFinder(image, data)

	this makes list of all x,y where I>edgeMin suitable for an ellipse search?
Not currently used but might be useful in future?

	
GSASIIimage.FastAutoPixelMask(Image, Masks, Controls, numChans, dlg=None)

	Find “bad” regions on an image and create a pixel mask to remove them.
This works by masking pixels that are m*sigma outside the range of the
median at that radial distance using the using the fmask C module (based on the
AIRXD C++ code https://github.com/AdvancedPhotonSource/AIRXD-ML-PUB, developed
by Howard Yanxon, Wenqian Xu and James Weng.)

This is much faster than AutoPixelMask, which does pretty much the
same computation, but uses pure Python/numpy code.

Called from GSASIIimgGUI.UpdateMasks.OnFindPixelMask (single image)
and GSASIIimgGUI.UpdateMasks.OnAutoFindPixelMask (multiple images)
[see GSASIIimgGUI.UpdateMasks()]

	Parameters:

	
	Image (np.array) – 2D data structure describing a diffaction image

	Masks (dict) – contents of Masks data tree

	Controls (dict) – diffraction & calibration parameters for image from
IMG data tree entry

	numChans (int) – number of channels in eventual 2theta pattern
after integration

	Returns:

	a bool mask array with the same shape as Image

	
GSASIIimage.Fill2ThetaAzimuthMap(masks, TAr, tam, image)

	Makes masked intensity correction arrays that depend on image
intensity, 2theta and azimuth. Masking is generated from the
combination of the following:
an array previously generated by MakeMaskMap() combined with
Thresholds, Rings and Arcs mask input.

These correction arrays are generated for a rectangular section
of an image (must be 1024x1024 or smaller) where the size is
determined the input arrays.

Note that older, less optimized, code has been left commented out below
in case there are future problems or questions.

	Parameters:

	
	masks (dict) – GSAS-II mask settings

	TAr (np.array) – 2theta/azimuth/correction arrays, reshaped

	tam (np.array) – mask array from MakeMaskMap()

	image (np.array) – image array

	Returns:

	a list of 4 masked arrays with values for: azimuth, 2-theta,
intensity/polarization, dist**2/d0**2

	
GSASIIimage.FitDetector(rings, varyList, parmDict, Print=True, covar=False)

	Fit detector calibration parameters

	Parameters:

	
	rings (np.array) – vector of ring positions

	varyList (list) – calibration parameters to be refined

	parmDict (dict) – all calibration parameters

	Print (bool) – set to True (default) to print the results

	covar (bool) – set to True to return the covariance matrix (default is False)

	Returns:

	[chisq,vals,sigList] unless covar is True, then
[chisq,vals,sigList,coVarMatrix] is returned

	
GSASIIimage.FitImageSpots(Image, ImMax, ind, pixSize, nxy, spotSize=1.0)

	Used with “s” key in image plots to search for spot masks

	
GSASIIimage.FitMultiDist(rings, varyList, parmDict, Print=True, covar=False)

	Fit detector calibration parameters with multi-distance data

	Parameters:

	
	rings (np.array) – vector of ring positions (x,y,dist,d-space)

	varyList (list) – calibration parameters to be refined

	parmDict (dict) – calibration parameters

	Print (bool) – set to True (default) to print the results

	covar (bool) – set to True to return the covariance matrix (default is False)

	Returns:

	[chisq,vals,sigDict] unless covar is True, then
[chisq,vals,sigDict,coVarMatrix] is returned

	
GSASIIimage.FitStrSta(Image, StrSta, Controls)

	Needs a doc string

	
GSASIIimage.FitStrain(rings, p0, dset, wave, phi, StaType)

	Fits external strain tensor from distortion of Bragg rings in images

	
GSASIIimage.GetAzm(x, y, data)

	Give azimuth value for detector x,y position; calibration info in data

	
GSASIIimage.GetDetXYfromThAzm(Th, Azm, data)

	Computes a detector position from a 2theta angle and an azimultal
angle (both in degrees) - apparently not used!

	
GSASIIimage.GetDetectorXY(dsp, azm, data)

	Get detector x,y position from d-spacing (dsp), azimuth (azm,deg)
& image controls dictionary (data) - new version
it seems to be only used in plotting

	
GSASIIimage.GetDetectorXY2(dsp, azm, data)

	Get detector x,y position from d-spacing (dsp), azimuth (azm,deg)
& image controls dictionary (data)
it seems to be only used in plotting

	
GSASIIimage.GetDsp(x, y, data)

	Give d-spacing value for detector x,y position; calibration info in data

	
GSASIIimage.GetEllipse(dsp, data)

	uses Dandelin spheres to find ellipse or hyperbola parameters from detector geometry
as given in image controls dictionary (data) and a d-spacing (dsp)

	
GSASIIimage.GetEllipse2(tth, dxy, dist, cent, tilt, phi)

	uses Dandelin spheres to find ellipse or hyperbola parameters from detector geometry
on output
radii[0] (b-minor axis) set < 0. for hyperbola

	
GSASIIimage.GetTth(x, y, data)

	Give 2-theta value for detector x,y position; calibration info in data

	
GSASIIimage.GetTthAzm(x, y, data)

	Give 2-theta, azimuth values for detector x,y position; calibration info in data

	
GSASIIimage.GetTthAzmDsp(x, y, data)

	Computes a 2theta, etc. from a detector position and calibration constants - checked
OK for ellipses & hyperbola.
Use for detector 2-theta != 0.

	Returns:

	np.array(tth,azm,G,dsp) where tth is 2theta, azm is the azimutal angle,
G is ? and dsp is the d-space

	
GSASIIimage.GetTthAzmDsp2(x, y, data)

	Computes a 2theta, etc. from a detector position and calibration constants - checked
OK for ellipses & hyperbola.
Use only for detector 2-theta = 0

	Returns:

	np.array(tth,azm,G,dsp) where tth is 2theta, azm is the azimutal angle,
G is ? and dsp is the d-space

	
GSASIIimage.GetTthAzmG(x, y, data)

	Give 2-theta, azimuth & geometric corr. values for detector x,y position;
calibration info in data - only used in integration for detector 2-theta != 0.
checked OK for ellipses & hyperbola
This is the slow step in image integration

	
GSASIIimage.GetTthAzmG2(x, y, data)

	Give 2-theta, azimuth & geometric corr. values for detector x,y position;
calibration info in data - only used in integration for detector 2-theta = 0

	
GSASIIimage.ImageCalibrate(G2frame, data)

	Called to perform an initial image calibration after points have been
selected for the inner ring.

	
GSASIIimage.ImageCompress(image, scale)

	Reduces size of image by selecting every n’th point
param: image array: original image
param: scale int: intervsl between selected points
returns: array: reduced size image

	
GSASIIimage.ImageIntegrate(image, data, masks, blkSize=128, returnN=False, useTA=None, useMask=None)

	Integrate an image; called from OnIntegrate() and
OnIntegrateAll() inside GSASIIimgGUI.UpdateImageControls()
as well as GSASIIscriptable.G2Image.Integrate().

	Parameters:

	
	image (np.array) – contains the 2-D image

	data (np.array) – specifies controls/calibration parameters for an image

	masks (np.array) – specifies masks parameters for an image

	blkSize (int) – a blocksize that is selected for speed

	returnN (bool) – If True, causes an extra matrix (NST) to be
returned. The default is False.

	useTA (np.array) – contains a cached set of blocked
2theta/azimuth/correction matrices (see MakeUseTA()) for the
current image.
The default, None, causes this to be computed as needed.

	useMask (np.array) – contains a cached set of blocked masks (see
MakeUseMask()) for the current image.
The default, None, causes this to be computed as needed.

	Returns:

	list ints, azms, Xvals, cancel (or ints, azms, Xvals,
NST, cancel if returnN is True), where azms is a list of M azimuth
values that were requested for integration, ints is a list M arrays
of diffraction intensities (where each array of diffraction data is
length N), Xvals is an array of “x” values, 2theta, Q, log(q)
(determined by data[‘binType’]), also of length N. Variable cancel
will always be False, since a status window is no longer supported.

	
GSASIIimage.ImageLocalMax(image, w, Xpix, Ypix)

	Needs a doc string

	
GSASIIimage.ImageRecalibrate(G2frame, ImageZ, data, masks, getRingsOnly=False)

	Called to repeat the calibration on an image, usually called after
calibration is done initially to improve the fit, but also
can be used after reading approximate calibration parameters,
if they are close enough that the first ring can be found.

	Parameters:

	
	G2frame – The top-level GSAS-II frame or None, to skip plotting

	ImageZ (np.Array) – the image to calibrate

	data (dict) – the Controls dict for the image

	masks (dict) – a dict with masks

	Returns:

	a list containing vals,varyList,sigList,parmDict,covar or rings
(with an array of x, y, and d-space values) if getRingsOnly is True
or an empty list, in case of an error

	
GSASIIimage.Make2ThetaAzimuthMap(data, iLim, jLim)

	Makes a set of matrices that provide the 2-theta, azimuth and geometric
correction values for each pixel in an image taking into account the
detector orientation. Can be used for the entire image or a rectangular
section of an image (determined by iLim and jLim).

This is used in two ways. For image integration, the computation is done
over blocks of fixed size (typically 128 or 256 pixels) but for pixel mask
generation, the two-theta matrix for all pixels is computed. Note that
for integration, this routine will be called to generate sections as needed
or may be called by MakeUseTA(), which creates all sections at
once, so they can be reused multiple times.

	Parameters:

	
	data (dict) – GSAS-II image data object (describes the image)

	iLim (list) – boundary along x-pixels

	jLim (list) – boundary along y-pixels

	Returns:

	TA, array[4,nI,nJ]: 2-theta, azimuth, 2 geometric corrections

	
GSASIIimage.MakeFrameMask(data, frame)

	Assemble a Frame mask for a image, according to the input supplied.
Note that this requires use of the Fortran polymask routine that is limited
to 1024x1024 arrays, so this computation is done in blocks (fixed at 512)
and the master image is assembled from that.

	Parameters:

	
	data (dict) – Controls for an image. Used to find the image size
and the pixel dimensions.

	frame (list) – Frame parameters, typically taken from Masks['Frames'].

	Returns:

	a mask array with dimensions matching the image Controls.

	
GSASIIimage.MakeMaskMap(data, masks, iLim, jLim, tamp)

	Makes a mask array from masking parameters that are not determined by
image calibration parameters or the image intensities. Thus this uses
mask Frames, Polygons and Lines settings (but not Thresholds, Rings or
Arcs). Used on a rectangular section of an image (must be 1024x1024 or
smaller, as dictated by module polymask) where the size is determined
by iLim and jLim.

	Parameters:

	
	data (dict) – GSAS-II image data object (describes the image)

	iLim (list) – boundary along x-pixels

	jLim (list) – boundary along y-pixels

	tamp (np.array) – all-zero pixel mask array used in Polymask

	Returns:

	array[nI,nJ] TA: 2-theta, azimuth, 2 geometric corrections

	
GSASIIimage.MakeUseMask(data, masks, blkSize=128)

	Precomputes a set of blocked mask arrays for the mask elements
that do not depend on the instrument controls (see MakeMaskMap()).
This computation is done optionally, but provides speed as the results
from this can be cached to avoid recomputation for a series of images
with the same mask parameters.

	Parameters:

	
	data (np.array) – specifies mask parameters for an image

	blkSize (int) – a blocksize that is selected for speed

	Returns:

	a list of TA blocks

	
GSASIIimage.MakeUseTA(data, blkSize=128)

	Precomputes the set of blocked arrays for 2theta-azimuth mapping from
the controls settings of the current image for image integration.
This computation is done optionally, but provides speed as the results
from this can be cached to avoid recomputation for a series of images
with the same calibration parameters.

	Parameters:

	
	data (np.array) – specifies parameters for an image

	blkSize (int) – a blocksize that is selected for speed

	Returns:

	a list of TA blocks

	
GSASIIimage.TestFastPixelMask()

	Test if the fast (C) version of Auto Pixel Masking is available.

	Returns:

	True if the airxd.mask package can be imported; False otherwise.

	
GSASIIimage.calcFij(omg, phi, azm, th)

	Uses parameters as defined by Bob He & Kingsley Smith, Adv. in X-Ray Anal. 41, 501 (1997)

	Parameters:

	
	omg – his omega = sample omega rotation; 0 when incident beam || sample surface,
90 when perp. to sample surface

	phi – his phi = sample phi rotation; usually = 0, axis rotates with omg.

	azm – his chi = azimuth around incident beam

	th – his theta = theta

	
GSASIIimage.checkEllipse(Zsum, distSum, xSum, ySum, dist, x, y)

	Needs a doc string

	
GSASIIimage.makeMat(Angle, Axis)

	Make rotation matrix from Angle and Axis

	Parameters:

	
	Angle (float) – in degrees

	Axis (int) – 0 for rotation about x, 1 for about y, etc.

	
GSASIIimage.makeRing(dsp, ellipse, pix, reject, scalex, scaley, image, mul=1)

	Needs a doc string

	
GSASIIimage.peneCorr(tth, dep, dist)

	Needs a doc string

	
GSASIIimage.pointInPolygon(pXY, xy)

	Needs a doc string

 \(\renewcommand\AA{\text{Å}}\)

11. GSASIImath: computation module

11.1. Summary/Contents

Least-squares minimization and misc. computation routines.

Section Contents

	GSASIImath: computation module

	Summary/Contents

	GSASIImath Classes and routines

11.2. GSASIImath Classes and routines

Routines defined in GSASIImath follow.

	
GSASIImath.AV2Q(A, V)

	convert angle (radians) & vector to quaternion
q=r+ai+bj+ck

	
GSASIImath.AVdeg2Q(A, V)

	convert angle (degrees) & vector to quaternion
q=r+ai+bj+ck

	
GSASIImath.ApplyModeDisp(data)

	Applies ISODISTORT mode displacements to atom lists.
This changes the contents of the Draw Atoms positions and
the Atoms positions.

	Parameters:

	data (dict) – the contents of the Phase data tree item for a
particular phase

	
GSASIImath.ApplyModulation(data, tau)

	Applies modulation to drawing atom positions & Uijs for given tau

	
GSASIImath.ApplySeqData(data, seqData, PF2=False)

	Applies result from seq. refinement to drawing atom positions & Uijs

	Parameters:

	
	data (dict) – GSAS-II phase data structure

	seqData (dict) – GSAS-II sequential refinement results structure

	PF2 (bool) – if True then seqData is from a sequential run of PDFfit2

	Returns:

	list drawAtoms: revised Draw Atoms list

	
GSASIImath.AtomTLS2UIJ(atomData, atPtrs, Amat, rbObj)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.AtomsCollect(data, Ind, Sel)

	Finds the symmetry set of atoms for those selected. Selects
the one closest to the selected part of the unit cell for the
selected atoms

	Parameters:

	
	data – the phase data structure

	Ind (list) – list of selected atom indices

	Sel (int) – an index with the selected plane or location in the
unit cell to find atoms closest to

	Returns:

	the list of unique atoms where selected atoms may have been
replaced. Anisotropic Uij’s are transformed

	
GSASIImath.BessIn(nmax, x)

	compute modified Bessel function I(n,x) from scipy routines & recurrance relation
returns sequence of I(n,x) for n in range [-nmax…0…nmax]

	Parameters:

	
	nmax (integer) – maximul order for In(x)

	x (float) – argument for In(x)

	Returns numpy array:

	[I(-nmax,x)…I(0,x)…I(nmax,x)]

	
GSASIImath.BessJn(nmax, x)

	compute Bessel function J(n,x) from scipy routine & recurrance relation
returns sequence of J(n,x) for n in range [-nmax…0…nmax]

	Parameters:

	
	nmax (integer) – maximul order for Jn(x)

	x (float) – argument for Jn(x)

	Returns numpy array:

	[J(-nmax,x)…J(0,x)…J(nmax,x)]

	
GSASIImath.CalcIsoCoords(Phase, parmDict, covdata={})

	Compute the coordinate positions from ISODISTORT displacement mode values
Uncertainties are computed if covdata is supplied.

	Parameters:

	
	Phase (dict) – contents of tree entry for selected phase

	parmDict (dict) – a dict with values for the modes; note that in the
parmDict from refinements the mode values are not normalized,
but this assumes they are.

	Phase – full covariance information from tree

	Returns:

	modeDict,posDict where modeDict contains pairs of mode values
and mode s.u. values; posDict contains pairs of displacement values
and their s.u. values.

	
GSASIImath.CalcIsoDisp(Phase, parmDict={}, covdata={})

	Compute the ISODISTORT displacement variable values from the
atomic coordinates, applying the p::dA?:n displacements if parmDict
is supplied. Uncertainties are computed if covdata is supplied.

	
GSASIImath.Cart2Polar(X, Y, Z)

	convert Cartesian to polar coordinates in deg

	
GSASIImath.ChargeFlip(data, reflDict, pgbar)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.Den2Vol(Elements, density)

	converts density to molecular volume

	Parameters:

	
	Elements (dict) – elements in molecular formula;
each must contain
Num: number of atoms in formula
Mass: at. wt.

	density (float) – material density in gm/cm^3

	Returns:

	float volume: molecular volume in A^3

	
GSASIImath.DrawAtomsReplaceByID(data, loc, atom, ID)

	Replace all atoms in drawing array with an ID matching the specified value

	
GSASIImath.El2EstVol(Elements)

	Estimate volume from molecular formula; assumes atom volume = 10A^3

	Parameters:

	Elements (dict) – elements in molecular formula;
each must contain
Num: number of atoms in formula

	Returns:

	float volume: estimate of molecular volume in A^3

	
GSASIImath.El2Mass(Elements)

	compute molecular weight from Elements

	Parameters:

	Elements (dict) – elements in molecular formula;
each must contain
Num: number of atoms in formula
Mass: at. wt.

	Returns:

	float mass: molecular weight.

	
GSASIImath.FillAtomLookUp(atomData, indx)

	create a dictionary of atom indexes with atom IDs as keys

	Parameters:

	
	atomData (list) – Atom table to be used

	indx (int) – pointer to position of atom id in atom record (typically cia+8)

	Returns:

	dict atomLookUp: dictionary of atom indexes with atom IDs as keys

	
GSASIImath.FindAllNeighbors(phase, FrstName, AtNames, notName='', Orig=None, Short=False, searchType='Bond')

	Find neighboring atoms
Uses Bond search criteria unless searchType is set to non-default

	
GSASIImath.FindAtomIndexByIDs(atomData, loc, IDs, Draw=True)

	finds the set of atom array indices for a list of atom IDs. Will search
either the Atom table or the drawAtom table.

	Parameters:

	
	atomData (list) – Atom or drawAtom table containting coordinates, etc.

	loc (int) – location of atom id in atomData record

	IDs (list) – atom IDs to be found

	Draw (bool) – True if drawAtom table to be searched; False if Atom table
is searched

	Returns:

	list indx: atom (or drawAtom) indices

	
GSASIImath.Fourier4DMap(data, reflDict)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.FourierMap(data, reflDict)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
exception GSASIImath.G2NormException

	
	
__weakref__

	list of weak references to the object

	
GSASIImath.GetAngleSig(Oatoms, Atoms, Amat, SGData, covData={})

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.GetAtomCoordsByID(pId, parmDict, AtLookup, indx)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.GetAtomFracByID(pId, parmDict, AtLookup, indx)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.GetAtomItemsById(atomData, atomLookUp, IdList, itemLoc, numItems=1)

	gets atom parameters for atoms using atom IDs

	Parameters:

	
	atomData (list) – Atom table to be used

	atomLookUp (dict) – dictionary of atom indexes with atom IDs as keys

	IdList (list) – atom IDs to be found

	itemLoc (int) – pointer to desired 1st item in an atom table entry

	numItems (int) – number of items to be retrieved

	Returns:

	type name: description

	
GSASIImath.GetAtomMomsByID(pId, parmDict, AtLookup, indx)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.GetAtomsById(atomData, atomLookUp, IdList)

	gets a list of atoms from Atom table that match a set of atom IDs

	Parameters:

	
	atomData (list) – Atom table to be used

	atomLookUp (dict) – dictionary of atom indexes with atom IDs as keys

	IdList (list) – atom IDs to be found

	Returns:

	list atoms: list of atoms found

	
GSASIImath.GetDATSig(Oatoms, Atoms, Amat, SGData, covData={})

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.GetDistSig(Oatoms, Atoms, Amat, SGData, covData={})

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.GetMag(mag, Cell)

	Compute magnetic moment magnitude.
:param list mag: atom magnetic moment parms (must be magnetic!)
:param list Cell: lattice parameters

	Returns:

	moment magnitude as float

	
GSASIImath.GetMagDerv(mag, Cell)

	Compute magnetic moment derivatives numerically
:param list mag: atom magnetic moment parms (must be magnetic!)
:param list Cell: lattice parameters

	Returns:

	moment derivatives as floats

	
GSASIImath.GetSHCoeff(pId, parmDict, SHkeys)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.GetTorsionSig(Oatoms, Atoms, Amat, SGData, covData={})

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.GetXYZDist(xyz, XYZ, Amat)

	
	gets distance from position xyz to all XYZ, xyz & XYZ are np.array
	and are in crystal coordinates; Amat is crystal to Cart matrix

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.HessianLSQ(func, x0, Hess, args=(), ftol=1.49012e-08, xtol=1e-06, maxcyc=0, lamda=-3, Print=False, refPlotUpdate=None)

	Minimize the sum of squares of a function (\(f\)) evaluated on a series of
values (y): \(\sum_{y=0}^{N_{obs}} f(y,{args})\)
where \(x = arg min(\sum_{y=0}^{N_{obs}} (func(y)^2,axis=0))\)

	Parameters:

	
	func (function) – callable method or function
should take at least one (possibly length N vector) argument and
returns M floating point numbers.

	x0 (np.ndarray) – The starting estimate for the minimization of length N

	Hess (function) – callable method or function
A required function or method to compute the weighted vector and Hessian for func.
It must be a symmetric NxN array

	args (tuple) – Any extra arguments to func are placed in this tuple.

	ftol (float) – Relative error desired in the sum of squares.

	xtol (float) – Relative tolerance of zeros in the SVD solution in nl.pinv.

	maxcyc (int) – The maximum number of cycles of refinement to execute, if -1 refine
until other limits are met (ftol, xtol)

	lamda (int) – initial Marquardt lambda=10**lamda

	Print (bool) – True for printing results (residuals & times) by cycle

	Returns:

	(x,cov_x,infodict) where

	x : ndarray
The solution (or the result of the last iteration for an unsuccessful
call).

	cov_x : ndarray
Uses the fjac and ipvt optional outputs to construct an
estimate of the jacobian around the solution. None if a
singular matrix encountered (indicates very flat curvature in
some direction). This matrix must be multiplied by the
residual standard deviation to get the covariance of the
parameter estimates – see curve_fit.

	infodict : dict, a dictionary of optional outputs with the keys:

	’fvec’ : the function evaluated at the output

	’num cyc’:

	’nfev’: number of objective function evaluation calls

	’lamMax’:

	’psing’: list of variable variables that have been removed from the refinement

	’SVD0’: -1 for singlar matrix, -2 for objective function exception, Nzeroes = # of SVD 0’s

	’Hcorr’: list entries (i,j,c) where i & j are of highly correlated variables & c is correlation coeff.

	
GSASIImath.HessianSVD(func, x0, Hess, args=(), ftol=1.49012e-08, xtol=1e-06, maxcyc=0, lamda=-3, Print=False, refPlotUpdate=None)

	Minimize the sum of squares of a function (\(f\)) evaluated on a series of
values (y): \(\sum_{y=0}^{N_{obs}} f(y,{args})\)
where \(x = arg min(\sum_{y=0}^{N_{obs}} (func(y)^2,axis=0))\)

	Parameters:

	
	func (function) – callable method or function
should take at least one (possibly length N vector) argument and
returns M floating point numbers.

	x0 (np.ndarray) – The starting estimate for the minimization of length N

	Hess (function) – callable method or function
A required function or method to compute the weighted vector and Hessian for func.
It must be a symmetric NxN array

	args (tuple) – Any extra arguments to func are placed in this tuple.

	ftol (float) – Relative error desired in the sum of squares.

	xtol (float) – Relative tolerance of zeros in the SVD solution in nl.pinv.

	maxcyc (int) – The maximum number of cycles of refinement to execute, if -1 refine
until other limits are met (ftol, xtol)

	Print (bool) – True for printing results (residuals & times) by cycle

	Returns:

	(x,cov_x,infodict) where

	x : ndarray
The solution (or the result of the last iteration for an unsuccessful
call).

	cov_x : ndarray
Uses the fjac and ipvt optional outputs to construct an
estimate of the jacobian around the solution. None if a
singular matrix encountered (indicates very flat curvature in
some direction). This matrix must be multiplied by the
residual standard deviation to get the covariance of the
parameter estimates – see curve_fit.

	infodict : dict
a dictionary of optional outputs with the keys:

	’fvec’ : the function evaluated at the output

	’num cyc’:

	’nfev’:

	’lamMax’:0.

	’psing’:

	’SVD0’:

	
GSASIImath.MagMod(glTau, XYZ, modQ, MSSdata, SGData, SSGData)

	this needs to make magnetic moment modulations & magnitudes as
fxn of gTau points; NB: this allows only 1 mag. wave fxn.

	
GSASIImath.MagMod2(glTau, xyz, modQ, MSSdata, SGData, SSGData)

	this needs to make magnetic moment modulations & magnitudes as
fxn of gTau points; NB: this allows only 1 mag. wave fxn.

	
GSASIImath.MakeDrawAtom(data, atom, oldatom=None)

	needs a description

	
GSASIImath.Modulation(H, HP, nWaves, Fmod, Xmod, Umod, glTau, glWt)

	H: array nRefBlk x ops X hklt
HP: array nRefBlk x ops X hklt proj to hkl
nWaves: list number of waves for frac, pos, uij & mag
Fmod: array 2 x atoms x waves (sin,cos terms)
Xmod: array atoms X 3 X ngl
Umod: array atoms x 3x3 x ngl
glTau,glWt: arrays Gauss-Lorentzian pos & wts

	
GSASIImath.ModulationDerv(H, HP, Hij, nWaves, waveShapes, Fmod, Xmod, UmodAB, SCtauF, SCtauX, SCtauU, glTau, glWt)

	Compute Fourier modulation derivatives
H: array ops X hklt proj to hkl
HP: array ops X hklt proj to hkl
Hij: array 2pi^2[a*^2h^2 b*^2k^2 c*^2l^2 a*b*hk a*c*hl b*c*kl] of projected hklm to hkl space

	
GSASIImath.ModulationTw(H, HP, nWaves, Fmod, Xmod, Umod, glTau, glWt)

	H: array nRefBlk x tw x ops X hklt
HP: array nRefBlk x tw x ops X hklt proj to hkl
Fmod: array 2 x atoms x waves (sin,cos terms)
Xmod: array atoms X ngl X 3
Umod: array atoms x ngl x 3x3
glTau,glWt: arrays Gauss-Lorentzian pos & wts

	
GSASIImath.NCScattDen(Elements, vol, wave=0.0)

	Estimate neutron scattering density from molecular formula & volume;
ignores valence, but includes anomalous effects

	Parameters:

	
	Elements (dict) – elements in molecular formula;
each element must contain
Num: number of atoms in formula
Z: atomic number

	vol (float) – molecular volume in A^3

	wave (float) – optional wavelength in A

	Returns:

	float rho: scattering density in 10^10cm^-2;
if wave > 0 the includes f’ contribution

	Returns:

	float mu: if wave>0 absorption coeff in cm^-1 ; otherwise 0

	Returns:

	float fpp: if wave>0 f” in 10^10cm^-2; otherwise 0

	
GSASIImath.OmitMap(data, reflDict, pgbar=None)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.PeaksEquiv(data, Ind)

	Find the equivalent map peaks for those selected. Works on the
contents of data[‘Map Peaks’].

	Parameters:

	
	data – the phase data structure

	Ind (list) – list of selected peak indices

	Returns:

	augmented list of peaks including those related by symmetry to the
ones in Ind

	
GSASIImath.PeaksUnique(data, Ind, Sel, dlg)

	Finds the symmetry unique set of peaks from those selected. Selects
the one closest to the center of the unit cell.
Works on the contents of data[‘Map Peaks’]. Called from OnPeaksUnique in
GSASIIphsGUI.py,

	Parameters:

	
	data – the phase data structure

	Ind (list) – list of selected peak indices

	Sel (int) – selected column to find peaks closest to

	dlg (wx object) – progress bar dialog box

	Returns:

	the list of symmetry unique peaks from among those given in Ind

	
GSASIImath.Polar2Cart(R, Az, Pl)

	Convert polar angles in deg to Cartesian coordinates

	
GSASIImath.Q2AV(Q)

	convert quaternion to angle (radians 0-2pi) & normalized vector
q=r+ai+bj+ck

	
GSASIImath.Q2AVdeg(Q)

	convert quaternion to angle (degrees 0-360) & normalized vector
q=r+ai+bj+ck

	
GSASIImath.Q2Mat(Q)

	make rotation matrix from quaternion
q=r+ai+bj+ck

	
GSASIImath.RotPolbyM(R, Az, Pl, M)

	Rotate polar coordinates by rotation matrix

	
GSASIImath.RotPolbyQ(R, Az, Pl, Q)

	Rotate polar coordinates by quaternion

	
GSASIImath.RotateRBXYZ(Bmat, Cart, oriQ, symAxis=None)

	rotate & transform cartesian coordinates to crystallographic ones
no translation applied. To be used for numerical derivatives

	Parameters:

	
	Bmat (array) – Orthogonalization matrix, see GSASIIlattice.cell2AB()

	Cart (array) – 2D array of coordinates

	Q (array) – quaternion as an np.array

	symAxis (tuple) – if not None (default), specifies the symmetry
axis of the rigid body, which will be aligned to the quaternion vector.

	Returns:

	2D array of fractional coordinates, without translation to origin

	
GSASIImath.SSChargeFlip(data, reflDict, pgbar)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.SearchMap(generalData, drawingData, Neg=False)

	Does a search of a density map for peaks meeting the criterion of peak
height is greater than mapData[‘cutOff’]/100 of mapData[‘rhoMax’] where
mapData is data[‘General’][‘mapData’]; the map is also in mapData.

	Parameters:

	
	generalData – the phase data structure; includes the map

	drawingData – the drawing data structure

	Neg – if True then search for negative peaks (i.e. H-atoms & neutron data)

	Returns:

	(peaks,mags,dzeros) where

	peaks : ndarray
x,y,z positions of the peaks found in the map

	mags : ndarray
the magnitudes of the peaks

	dzeros : ndarray
the distance of the peaks from the unit cell origin

	dcent : ndarray
the distance of the peaks from the unit cell center

	
GSASIImath.SetMolCent(model, RBData)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.TLS2Uij(xyz, g, Amat, rbObj)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.UpdateMCSAxyz(Bmat, MCSA)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.UpdateRBUIJ(Bmat, Cart, RBObj)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.UpdateRBXYZ(Bmat, RBObj, RBData, RBType)

	returns crystal coordinates for atoms described by RBObj.
Note that RBObj[‘symAxis’], if present, determines the symmetry
axis of the rigid body, which will be aligned to the
quaternion direction.

	Parameters:

	
	Bmat (np.array) – see GSASIIlattice.cell2AB()

	rbObj (dict) – rigid body selection/orientation information

	RBData (dict) – rigid body tree data structure

	RBType (str) – rigid body type, ‘Vector’ or ‘Residue’

	Returns:

	coordinates for rigid body as XYZ,Cart where XYZ is
the location in crystal coordinates and Cart is in cartesian

	
GSASIImath.ValEsd(value, esd=0, nTZ=False)

	Format a floating point number with a given level of precision or
with in crystallographic format with a “esd”, as value(esd). If esd is
negative the number is formatted with the level of significant figures
appropriate if abs(esd) were the esd, but the esd is not included.
if the esd is zero, approximately 6 significant figures are printed.
nTZ=True causes “extra” zeros to be removed after the decimal place.
for example:

	“1.235(3)” for value=1.2346 & esd=0.003

	“1.235(3)e4” for value=12346. & esd=30

	“1.235(3)e6” for value=0.12346e7 & esd=3000

	“1.235” for value=1.2346 & esd=-0.003

	“1.240” for value=1.2395 & esd=-0.003

	“1.24” for value=1.2395 & esd=-0.003 with nTZ=True

	“1.23460” for value=1.2346 & esd=0.0

	Parameters:

	
	value (float) – number to be formatted

	esd (float) – uncertainty or if esd < 0, specifies level of
precision to be shown e.g. esd=-0.01 gives 2 places beyond decimal

	nTZ (bool) – True to remove trailing zeros (default is False)

	Returns:

	value(esd) or value as a string

	
GSASIImath.Vol2Den(Elements, volume)

	converts volume to density

	Parameters:

	
	Elements (dict) – elements in molecular formula;
each must contain
Num: number of atoms in formula
Mass: at. wt.

	volume (float) – molecular volume in A^3

	Returns:

	float density: material density in gm/cm^3

	
GSASIImath.XScattDen(Elements, vol, wave=0.0)

	Estimate X-ray scattering density from molecular formula & volume;
ignores valence, but includes anomalous effects

	Parameters:

	
	Elements (dict) – elements in molecular formula;
each element must contain
Num: number of atoms in formula
Z: atomic number

	vol (float) – molecular volume in A^3

	wave (float) – optional wavelength in A

	Returns:

	float rho: scattering density in 10^10cm^-2;
if wave > 0 the includes f’ contribution

	Returns:

	float mu: if wave>0 absorption coeff in cm^-1 ; otherwise 0

	Returns:

	float fpp: if wave>0 f” in 10^10cm^-2; otherwise 0

	
GSASIImath.adjHKLmax(SGData, Hmax)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.anneal(func, x0, args=(), schedule='fast', T0=None, Tf=1e-12, maxeval=None, maxaccept=None, maxiter=400, feps=1e-06, quench=1.0, c=1.0, lower=-100, upper=100, dwell=50, slope=0.9, ranStart=False, ranRange=0.1, autoRan=False, dlg=None)

	Minimize a function using simulated annealing.

Schedule is a schedule class implementing the annealing schedule.
Available ones are ‘fast’, ‘cauchy’, ‘boltzmann’

	Parameters:

	
	func (callable) – f(x, *args)
Function to be optimized.

	x0 (ndarray) – Initial guess.

	args (tuple) – Extra parameters to func.

	schedule (base_schedule) – Annealing schedule to use (a class).

	T0 (float) – Initial Temperature (estimated as 1.2 times the largest
cost-function deviation over random points in the range).

	Tf (float) – Final goal temperature.

	maxeval (int) – Maximum function evaluations.

	maxaccept (int) – Maximum changes to accept.

	maxiter (int) – Maximum cooling iterations.

	feps (float) – Stopping relative error tolerance for the function value in
last four coolings.

	quench,c (float) – Parameters to alter fast_sa schedule.

	lower,upper (float/ndarray) – Lower and upper bounds on x.

	dwell (int) – The number of times to search the space at each temperature.

	slope (float) – Parameter for log schedule

	ranStart=False (bool) – True for set 10% of ranges about x

	Returns:

	(xmin, Jmin, T, feval, iters, accept, retval) where

	xmin (ndarray): Point giving smallest value found.

	Jmin (float): Minimum value of function found.

	T (float): Final temperature.

	feval (int): Number of function evaluations.

	iters (int): Number of cooling iterations.

	accept (int): Number of tests accepted.

	retval (int): Flag indicating stopping condition:

	0: Points no longer changing

	1: Cooled to final temperature

	2: Maximum function evaluations

	3: Maximum cooling iterations reached

	4: Maximum accepted query locations reached

	5: Final point not the minimum amongst encountered points

Notes:
Simulated annealing is a random algorithm which uses no derivative
information from the function being optimized. In practice it has
been more useful in discrete optimization than continuous
optimization, as there are usually better algorithms for continuous
optimization problems.

Some experimentation by trying the difference temperature
schedules and altering their parameters is likely required to
obtain good performance.

The randomness in the algorithm comes from random sampling in numpy.
To obtain the same results you can call numpy.random.seed with the
same seed immediately before calling scipy.optimize.anneal.

We give a brief description of how the three temperature schedules
generate new points and vary their temperature. Temperatures are
only updated with iterations in the outer loop. The inner loop is
over range(dwell), and new points are generated for
every iteration in the inner loop. (Though whether the proposed
new points are accepted is probabilistic.)

For readability, let d denote the dimension of the inputs to func.
Also, let x_old denote the previous state, and k denote the
iteration number of the outer loop. All other variables not
defined below are input variables to scipy.optimize.anneal itself.

In the ‘fast’ schedule the updates are

u ~ Uniform(0, 1, size=d)
y = sgn(u - 0.5) * T * ((1+ 1/T)**abs(2u-1) -1.0)
xc = y * (upper - lower)
x_new = x_old + xc

T_new = T0 * exp(-c * k**quench)

	
GSASIImath.calcRamaEnergy(phi, psi, Coeff=[])

	Computes pseudo potential energy from a pair of torsion angles and a
numerical description of the potential energy surface. Used to create
penalty function in LS refinement:
\(Eval(\phi,\psi) = C[0]*exp(-V/1000)\)

where \(V = -C[3] * (\phi-C[1])^2 - C[4]*(\psi-C[2])^2 - 2*(\phi-C[1])*(\psi-C[2])\)

	Parameters:

	
	phi (float) – first torsion angle (\(\phi\))

	psi (float) – second torsion angle (\(\psi\))

	Coeff (list) – pseudo potential coefficients

	Returns:

	list (sum,Eval): pseudo-potential difference from minimum & value;
sum is used for penalty function.

	
GSASIImath.calcTorsionEnergy(TOR, Coeff=[])

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.dropTerms(bad, hessian, indices, *vectors)

	Remove the ‘bad’ terms from the Hessian and vector

	Parameters:

	
	bad (tuple) – a list of variable (row/column) numbers that should be
removed from the hessian and vector. Example: (0,3) removes the 1st and
4th column/row

	hessian (np.array) – a square matrix of length n x n

	indices (np.array) – the indices of the least-squares vector of length n
referenced to the initial variable list; as this routine is called
multiple times, more terms may be removed from this list

	additional-args – various least-squares model values, length n

	Returns:

	hessian, indices, vector0, vector1,… where the lengths are
now n’ x n’ and n’, with n’ = n - len(bad)

	
GSASIImath.findOffset(SGData, A, Fhkl)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.findSSOffset(SGData, SSGData, A, Fhklm)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.fmtPhaseContents(compdict)

	Format results from phaseContents()

	
GSASIImath.getAngSig(VA, VB, Amat, SGData, covData={})

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.getAtomPtrs(data, draw=False)

	get atom data pointers cx,ct,cs,cia in Atoms or Draw Atoms lists
NB:may not match column numbers in displayed table

param: dict: data phase data structure
draw: boolean True if Draw Atoms list pointers are required
return: cx,ct,cs,cia pointers to atom xyz, type, site sym, uiso/aniso flag

	
GSASIImath.getAtomXYZ(atoms, cx)

	Create an array of fractional coordinates from the atoms list

	Parameters:

	
	atoms (list) – atoms object as found in tree

	cx (int) – offset to where coordinates are found

	Returns:

	np.array with shape (n,3)

	
GSASIImath.getCWgam(ins, pos)

	get CW peak profile gamma

	Parameters:

	
	ins (dict) – instrument parameters with at least ‘X’, ‘Y’ & ‘Z’
as values only

	pos (float) – 2-theta of peak

	Returns:

	float getCWgam: peak gamma

	
GSASIImath.getCWgamDeriv(pos)

	get derivatives of CW peak profile gamma wrt X, Y & Z

	Parameters:

	pos (float) – 2-theta of peak

	Returns:

	list getCWgamDeriv: d(gam)/dX & d(gam)/dY

	
GSASIImath.getCWsig(ins, pos)

	get CW peak profile sigma^2

	Parameters:

	
	ins (dict) – instrument parameters with at least ‘U’, ‘V’, & ‘W’
as values only

	pos (float) – 2-theta of peak

	Returns:

	float getCWsig: peak sigma^2

	
GSASIImath.getCWsigDeriv(pos)

	get derivatives of CW peak profile sigma^2 wrt U,V, & W

	Parameters:

	pos (float) – 2-theta of peak

	Returns:

	list getCWsigDeriv: d(sig^2)/dU, d(sig)/dV & d(sig)/dW

	
GSASIImath.getDensity(generalData)

	calculate crystal structure density

	Parameters:

	generalData (dict) – The General dictionary in Phase

	Returns:

	float density: crystal density in gm/cm^3

	
GSASIImath.getDistDerv(Oxyz, Txyz, Amat, Tunit, Top, SGData)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.getEDgam(ins, pos)

	get ED peak profile gam

	Parameters:

	
	ins (dict) – instrument parameters with at least X, Y & Z
as values only

	pos (float) – energy of peak as keV

	Returns:

	float getEDsig: peak gam im keV

	
GSASIImath.getEDgamDeriv(ins, pos)

	get derivatives of ED peak profile gam wrt X, Y & Z

	Parameters:

	pos (float) – energy of peak in keV

	Returns:

	list getEDsigDeriv: d(gam)/dX, d(gam)/dY & d(gam)/dZ,

	
GSASIImath.getEDsig(ins, pos)

	get ED peak profile sig

	Parameters:

	
	ins (dict) – instrument parameters with at least ‘A’, ‘B’ & ‘C’
as values only

	pos (float) – energy of peak as keV

	Returns:

	float getEDsig: peak sigma^2 im keV**2

	
GSASIImath.getEDsigDeriv(ins, pos)

	get derivatives of ED peak profile sig wrt A, B & C

	Parameters:

	pos (float) – energy of peak in keV

	Returns:

	list getEDsigDeriv: d(sig)/dA, d(sig)/dB & d(sig)/dC,

	
GSASIImath.getMass(generalData)

	Computes mass of unit cell contents

	Parameters:

	generalData (dict) – The General dictionary in Phase

	Returns:

	float mass: Crystal unit cell mass in AMU.

	
GSASIImath.getMeanWave(Parms)

	returns mean wavelength from Instrument parameters dictionary

	Parameters:

	Parms (dict) – Instrument parameters;
must contain:
Lam: single wavelength
or
Lam1,Lam2: Ka1,Ka2 radiation wavelength
I(L2)/I(L1): Ka2/Ka1 ratio

	Returns:

	float wave: mean wavelength

	
GSASIImath.getPinkNalpha(ins, tth)

	get pink neutron peak alpha profile

	Parameters:

	
	ins (dict) – instrument parameters with at least ‘alpha’
as values only

	tth (float) – 2-theta of peak

	Returns:

	float getPinkNalpha: peak alpha

	
GSASIImath.getPinkNalphaDeriv(tth)

	get alpha derivatives of pink neutron peak profile

	Parameters:

	tth (float) – 2-theta of peak

	Returns:

	float getPinkNalphaDeriv: d(alp)/d(alpha-0), d(alp)/d(alpha-1)

	
GSASIImath.getPinkNbeta(ins, tth)

	get pink neutron peak profile beta

	Parameters:

	
	ins (dict) – instrument parameters with at least ‘beta-0’ & ‘beta-1’
as values only

	tth (float) – 2-theta of peak

	Returns:

	float getPinkbeta: peak beta

	
GSASIImath.getPinkNbetaDeriv(tth)

	get beta derivatives of pink neutron peak profile

	Parameters:

	tth (float) – 2-theta of peak

	Returns:

	list getPinkNbetaDeriv: d(beta)/d(beta-0) & d(beta)/d(beta-1)

	
GSASIImath.getPinkXalpha(ins, tth)

	get pink x-ray peak alpha profile

	Parameters:

	
	ins (dict) – instrument parameters with at least ‘alpha’
as values only

	tth (float) – 2-theta of peak

	Returns:

	float getPinkXalpha: peak alpha

	
GSASIImath.getPinkXalphaDeriv(tth)

	get alpha derivatives of pink x-ray peak profile

	Parameters:

	tth (float) – 2-theta of peak

	Returns:

	float getPinkXalphaDeriv: d(alp)/d(alpha-0), d(alp)/d(alpha-1)

	
GSASIImath.getPinkXbeta(ins, tth)

	get pink x-ray peak profile beta

	Parameters:

	
	ins (dict) – instrument parameters with at least ‘beta-0’ & ‘beta-1’
as values only

	tth (float) – 2-theta of peak

	Returns:

	float getPinkXbeta: peak beta

	
GSASIImath.getPinkXbetaDeriv(tth)

	get beta derivatives of pink x-ray peak profile

	Parameters:

	tth (float) – 2-theta of peak

	Returns:

	list getPinkXbetaDeriv: d(beta)/d(beta-0) & d(beta)/d(beta-1)

	
GSASIImath.getRBTransMat(X, Y)

	Get transformation for Cartesian axes given 2 vectors
X will be parallel to new X-axis; X cross Y will be new Z-axis &
(X cross Y) cross Y will be new Y-axis
Useful for rigid body axes definintion

	Parameters:

	
	X (array) – normalized vector

	Y (array) – normalized vector

	Returns:

	array M: transformation matrix

use as XYZ’ = np.inner(M,XYZ) where XYZ are Cartesian

	
GSASIImath.getRamaDeriv(XYZ, Amat, Coeff)

	Computes numerical derivatives of torsion angle pair pseudo potential
with respect of crystallographic atom coordinates of the 5 atom sequence

	Parameters:

	
	XYZ (nparray) – crystallographic coordinates of 5 atoms

	Amat (nparray) – crystal to cartesian transformation matrix

	Coeff (list) – pseudo potential coefficients

	Returns:

	list (deriv) derivatives of pseudopotential with respect to 5 atom
crystallographic xyz coordinates.

	
GSASIImath.getRestAngle(XYZ, Amat)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.getRestChiral(XYZ, Amat)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.getRestDeriv(Func, XYZ, Amat, ops, SGData)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.getRestDist(XYZ, Amat)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.getRestPlane(XYZ, Amat)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.getRestPolefig(ODFln, SamSym, Grid)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.getRestPolefigDerv(HKL, Grid, SHCoeff)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.getRestRama(XYZ, Amat)

	Computes a pair of torsion angles in a 5 atom string

	Parameters:

	
	XYZ (nparray) – crystallographic coordinates of 5 atoms

	Amat (nparray) – crystal to cartesian transformation matrix

	Returns:

	list (phi,psi) two torsion angles in degrees

	
GSASIImath.getRestTorsion(XYZ, Amat)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.getRho(xyz, mapData)

	get scattering density at a point by 8-point interpolation
param xyz: coordinate to be probed
param: mapData: dict of map data

	Returns:

	density at xyz

	
GSASIImath.getRhos(XYZ, rho)

	get scattering density at an array of point by 8-point interpolation
this is faster than gerRho which is only used for single points. However, getRhos is
replaced by scipy.ndimage.interpolation.map_coordinates which does a better job & is just as fast.
Thus, getRhos is unused in GSAS-II at this time.
param xyz: array coordinates to be probed Nx3
param: rho: array copy of map (NB: don’t use original!)

	Returns:

	density at xyz

	
GSASIImath.getSyXYZ(XYZ, ops, SGData)

	default doc

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.getTOFalpha(ins, dsp)

	get TOF peak profile alpha

	Parameters:

	
	ins (dict) – instrument parameters with at least ‘alpha’
as values only

	dsp (float) – d-spacing of peak

	Returns:

	flaot getTOFalpha: peak alpha

	
GSASIImath.getTOFalphaDeriv(dsp)

	get alpha derivatives of TOF peak profile

	Parameters:

	dsp (float) – d-spacing of peak

	Returns:

	float getTOFalphaDeriv: d(alp)/d(alpha)

	
GSASIImath.getTOFbeta(ins, dsp)

	get TOF peak profile beta

	Parameters:

	
	ins (dict) – instrument parameters with at least ‘beat-0’, ‘beta-1’ & ‘beta-q’
as values only

	dsp (float) – d-spacing of peak

	Returns:

	float getTOFbeta: peak beat

	
GSASIImath.getTOFbetaDeriv(dsp)

	get derivatives of TOF peak profile beta wrt beta-0, beta-1, & beat-q

	Parameters:

	dsp (float) – d-spacing of peak

	Returns:

	list getTOFbetaDeriv: d(beta)/d(beat-0), d(beta)/d(beta-1) & d(beta)/d(beta-q)

	
GSASIImath.getTOFgamma(ins, dsp)

	get TOF peak profile gamma

	Parameters:

	
	ins (dict) – instrument parameters with at least ‘X’, ‘Y’ & ‘Z’
as values only

	dsp (float) – d-spacing of peak

	Returns:

	float getTOFgamma: peak gamma

	
GSASIImath.getTOFgammaDeriv(dsp)

	get derivatives of TOF peak profile gamma wrt X, Y & Z

	Parameters:

	dsp (float) – d-spacing of peak

	Returns:

	list getTOFgammaDeriv: d(gam)/dX & d(gam)/dY

	
GSASIImath.getTOFsig(ins, dsp)

	get TOF peak profile sigma^2

	Parameters:

	
	ins (dict) – instrument parameters with at least ‘sig-0’, ‘sig-1’ & ‘sig-q’
as values only

	dsp (float) – d-spacing of peak

	Returns:

	float getTOFsig: peak sigma^2

	
GSASIImath.getTOFsigDeriv(dsp)

	get derivatives of TOF peak profile sigma^2 wrt sig-0, sig-1, & sig-q

	Parameters:

	dsp (float) – d-spacing of peak

	Returns:

	list getTOFsigDeriv: d(sig0/d(sig-0), d(sig)/d(sig-1) & d(sig)/d(sig-q)

	
GSASIImath.getTorsionDeriv(XYZ, Amat, Coeff)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.getVCov(varyNames, varyList, covMatrix)

	obtain variance-covariance terms for a set of variables. NB: the varyList
and covMatrix were saved by the last least squares refinement so they must match.

	Parameters:

	
	varyNames (list) – variable names to find v-cov matric for

	varyList (list) – full list of all variables in v-cov matrix

	covMatrix (nparray) – full variance-covariance matrix from the last
least squares refinement

	Returns:

	nparray vcov: variance-covariance matrix for the variables given
in varyNames

	
GSASIImath.getWave(Parms)

	returns wavelength from Instrument parameters dictionary

	Parameters:

	Parms (dict) – Instrument parameters;
must contain:
Lam: single wavelength
or
Lam1: Ka1 radiation wavelength

	Returns:

	float wave: wavelength

	
GSASIImath.invQ(Q)

	get inverse of quaternion
q=r+ai+bj+ck; q* = r-ai-bj-ck

	
GSASIImath.make2Quat(A, B)

	Make quaternion from rotation of A vector to B vector

	Parameters:

	A,B (np.array) – Cartesian 3-vectors

	Returns:

	quaternion & rotation angle in radians q=r+ai+bj+ck

	
GSASIImath.makeQuat(A, B, C)

	Make quaternion from rotation of A vector to B vector about C axis

	Parameters:

	A,B,C (np.array) – Cartesian 3-vectors

	Returns:

	quaternion & rotation angle in radians q=r+ai+bj+ck

	
GSASIImath.makeWaves(waveTypes, FSSdata, XSSdata, USSdata, MSSdata, Mast)

	waveTypes: array nAtoms: ‘Fourier’,’ZigZag’ or ‘Block’
FSSdata: array 2 x atoms x waves (sin,cos terms)
XSSdata: array 2x3 x atoms X waves (sin,cos terms)
USSdata: array 2x6 x atoms X waves (sin,cos terms)
MSSdata: array 2x3 x atoms X waves (sin,cos terms)

Mast: array orthogonalization matrix for Uij

	
GSASIImath.makeWavesDerv(ngl, waveTypes, FSSdata, XSSdata, USSdata, Mast)

	Only for Fourier waves for fraction, position & adp (probably not used for magnetism)
FSSdata: array 2 x atoms x waves (sin,cos terms)
XSSdata: array 2x3 x atoms X waves (sin,cos terms)
USSdata: array 2x6 x atoms X waves (sin,cos terms)
Mast: array orthogonalization matrix for Uij

	
GSASIImath.mcsaSearch(data, RBdata, reflType, reflData, covData, pgbar, start=True)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.normQ(QA)

	get length of quaternion & normalize it
q=r+ai+bj+ck

	
GSASIImath.patchIsoDisp(ISO)

	patch: look for older ISODISTORT imports (<Nov 2021)

	
GSASIImath.phaseContents(phase)

	Compute the unit cell and asymmetric unit contents for a phase.

This has been tested only on type=’nuclear’ phases and
might need adaptation for phases of other types, if the
phase type does not have an occupancy defined.

	Parameters:

	phase (dict) – the dict for a phase, as found in the
data tree

	Returns:

	acomp,ccomp where acomp is the asymmetric unit contents and
ccomp is the contents of the unit cell

	
GSASIImath.pinv(a, rcond=1e-15)

	Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Modified from numpy.linalg.pinv; assumes a is Hessian & returns no. zeros found
Calculate the generalized inverse of a matrix using its
singular-value decomposition (SVD) and including all
large singular values.

	Parameters:

	
	a (array) – (M, M) array_like - here assumed to be LS Hessian
Matrix to be pseudo-inverted.

	rcond (float) – Cutoff for small singular values.
Singular values smaller (in modulus) than
rcond * largest_singular_value (again, in modulus)
are set to zero.

	Returns:

	B : (M, M) ndarray
The pseudo-inverse of a

	Raises: LinAlgError
	If the SVD computation does not converge.

	Notes:
	The pseudo-inverse of a matrix A, denoted \(A^+\), is
defined as: “the matrix that ‘solves’ [the least-squares problem]
\(Ax = b\),” i.e., if \(\bar{x}\) is said solution, then
\(A^+\) is that matrix such that \(\bar{x} = A^+b\).

It can be shown that if \(Q_1 \Sigma Q_2^T = A\) is the singular
value decomposition of A, then
\(A^+ = Q_2 \Sigma^+ Q_1^T\), where \(Q_{1,2}\) are
orthogonal matrices, \(\Sigma\) is a diagonal matrix consisting
of A’s so-called singular values, (followed, typically, by
zeros), and then \(\Sigma^+\) is simply the diagonal matrix
consisting of the reciprocals of A’s singular values
(again, followed by zeros). [1]

References:
.. [1] G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pp. 139-142.

	
GSASIImath.printRho(SGLaue, rho, rhoMax)

	default doc string

	Parameters:

	name (type) – description

	Returns:

	type name: description

	
GSASIImath.prodQQ(QA, QB)

	Grassman quaternion product
QA,QB quaternions; q=r+ai+bj+ck

	
GSASIImath.prodQVQ(Q, V)

	compute the quaternion vector rotation qvq-1 = v’
q=r+ai+bj+ck

	
GSASIImath.randomAVdeg(r0, r1, r2, r3)

	create random angle (deg),vector from 4 random number in range (-1,1)

	
GSASIImath.randomQ(r0, r1, r2, r3)

	create random quaternion from 4 random numbers in range (-1,1)

	
GSASIImath.searchBondRestr(origAtoms, targAtoms, bond, Factor, GType, SGData, Amat, defESD=0.01, dlg=None)

	Search for bond distance restraints.

	
GSASIImath.setHcorr(info, Amat, xtol, problem=False)

	Find & report high correlation terms in covariance matrix

	
GSASIImath.setPeakparms(Parms, Parms2, pos, mag, ifQ=False, useFit=False)

	set starting peak parameters for single peak fits from plot selection or auto selection

	Parameters:

	
	Parms (dict) – instrument parameters dictionary

	Parms2 (dict) – table lookup for TOF profile coefficients

	pos (float) – peak position in 2-theta, TOF or Q (ifQ=True)

	mag (float) – peak top magnitude from pick

	ifQ (bool) – True if pos in Q

	useFit (bool) – True if use fitted CW Parms values (not defaults)

	Returns:

	list XY: peak list entry:
for CW: [pos,0,mag,1,sig,0,gam,0]
for TOF: [pos,0,mag,1,alp,0,bet,0,sig,0,gam,0]
for Pink: [pos,0,mag,1,alp,0,bet,0,sig,0,gam,0]
NB: mag refinement set by default, all others off

	
GSASIImath.setSVDwarn(info, Amat, Nzeros, indices)

	Find & report terms causing SVN zeros

	
GSASIImath.sortArray(data, pos, reverse=False)

	data is a list of items
sort by pos in list; reverse if True

	
GSASIImath.wavekE(wavekE)

	Convert wavelength to energy & vise versa

:param float waveKe:wavelength in A or energy in kE

:returns float waveKe:the other one

 \(\renewcommand\AA{\text{Å}}\)

12. GSASIIindex: Cell Indexing Module

12.1. Summary/Contents

Unit cell indexing routines (based on work of A. Coehlo) and
cell refinement from peak positions

Section Contents

	GSASIIindex: Cell Indexing Module

	Summary/Contents

	GSASIIindex routines

12.2. GSASIIindex routines

Classes and routines defined in GSASIIindex follow.

	
GSASIIindex.A2values(ibrav, A)

	needs a doc string

	
GSASIIindex.DoIndexPeaks(peaks, controls, bravais, dlg, ifX20=True, timeout=None, M20_min=2.0, X20_max=None, return_Nc=False, cctbx_args=None)

	needs a doc string

	
GSASIIindex.FitHKL(ibrav, peaks, A, Pwr)

	needs a doc string

	
GSASIIindex.FitHKLE(tth, ibrav, peaks, A)

	needs a doc string

	
GSASIIindex.FitHKLT(difC, ibrav, peaks, A, Z, Zref)

	needs a doc string

	
GSASIIindex.FitHKLTSS(difC, ibrav, peaks, A, V, Vref, Z, Zref)

	needs a doc string

	
GSASIIindex.FitHKLZ(wave, ibrav, peaks, A, Z, Zref)

	needs a doc string

	
GSASIIindex.FitHKLZSS(wave, ibrav, peaks, A, V, Vref, Z, Zref)

	needs a doc string

	
GSASIIindex.IndexPeaks(peaks, HKL)

	needs a doc string

	
GSASIIindex.IndexSSPeaks(peaks, HKL)

	needs a doc string

	
GSASIIindex.TestData()

	needs a doc string

	
GSASIIindex.Values2A(ibrav, values)

	needs a doc string

	
GSASIIindex.calc_M20(peaks, HKL, ifX20=True)

	needs a doc string

	
GSASIIindex.calc_M20SS(peaks, HKL)

	needs a doc string

	
GSASIIindex.findBestCell(dlg, ncMax, A, Ntries, ibrav, peaks, V1, ifX20=True, cctbx_args=None)

	needs a doc string

	
GSASIIindex.getDmax(peaks)

	needs a doc string

	
GSASIIindex.getDmin(peaks)

	needs a doc string

	
GSASIIindex.halfCell(ibrav, A, peaks)

	needs a doc string

	
GSASIIindex.monoCellReduce(ibrav, A)

	needs a doc string

	
GSASIIindex.oddPeak(indx, peaks)

	needs a doc string

	
GSASIIindex.ran2axis(k, N)

	needs a doc string

	
GSASIIindex.ranAbyR(Bravais, A, k, N, ranFunc)

	needs a doc string

	
GSASIIindex.ranAbyV(Bravais, dmin, dmax, V)

	needs a doc string

	
GSASIIindex.ranaxis(dmin, dmax)

	needs a doc string

	
GSASIIindex.rancell(Bravais, dmin, dmax)

	needs a doc string

	
GSASIIindex.refinePeaks(peaks, ibrav, A, ifX20=True, cctbx_args=None)

	needs a doc string

	
GSASIIindex.refinePeaksE(peaks, tth, ibrav, A)

	needs a doc string

	
GSASIIindex.refinePeaksT(peaks, difC, ibrav, A, Zero, ZeroRef)

	needs a doc string

	
GSASIIindex.refinePeaksTSS(peaks, difC, Inst, SGData, SSGData, maxH, ibrav, A, vec, vecRef, Zero, ZeroRef)

	needs a doc string

	
GSASIIindex.refinePeaksZ(peaks, wave, ibrav, A, Zero, ZeroRef)

	needs a doc string

	
GSASIIindex.refinePeaksZSS(peaks, wave, Inst, SGData, SSGData, maxH, ibrav, A, vec, vecRef, Zero, ZeroRef)

	needs a doc string

	
GSASIIindex.rotOrthoA(A)

	needs a doc string

	
GSASIIindex.scaleAbyV(A, V)

	needs a doc string

	
GSASIIindex.sortM20(cells)

	needs a doc string

	
GSASIIindex.swapMonoA(A)

	needs a doc string

 \(\renewcommand\AA{\text{Å}}\)

13. GSASIIplot: plotting routines

13.1. Summary/Contents

Routines for visualization, using matplotlib and OpenGL graphics.
Note that the plot toolbar is customized with GSASIItoolbar

Section Contents

	GSASIIplot: plotting routines

	Summary/Contents

	List of Graphics routines

	Window management routines

	GSASIIplot Classes and routines

13.2. List of Graphics routines

The following plotting routines are defined:

	plotting routine

	action

	PlotPatterns()

	Powder pattern plotting

	PublishRietveldPlot()

	Create publication-quality Rietveld plots from PlotPatterns() plot

	PlotImage()

	Plots of 2D detector images

	PlotPeakWidths()

	Plot instrument broadening terms as function of 2-theta/TOF

	PlotCovariance()

	Show covariance terms in 2D

	PlotStructure()

	Crystal structure plotting with balls, sticks, lines,
ellipsoids, polyhedra and magnetic moments

	PlotBeadModel()

	Plots representation of protein shape from small angle scattering

	Plot1DSngl()

	1D stick plots of structure factors

	PlotSngl()

	Structure factor plotting

	Plot3DSngl()

	3D Structure factor plotting

	PlotDeltSig()

	Normal probability plot (powder or single crystal)

	PlotISFG()

	PDF analysis: displays I(Q), S(Q), F(Q) and G(r)

	PlotCalib()

	CW or TOF peak calibration

	PlotXY()

	Simple plot of xy data

	PlotXYZ()

	Simple contour plot of xyz data

	PlotXYZvect()

	Quiver Plot for 3D cartesian vectors

	Plot3dXYZ()

	Surface Plot for 3D vectors

	PlotAAProb()

	Protein “quality” plot

	PlotStrain()

	Plot of strain data, used for diagnostic purposes

	PlotSASDSizeDist()

	Small angle scattering size distribution plot

	PlotPowderLines()

	Plot powder pattern as a stick plot (vertical lines)

	PlotSizeStrainPO()

	Plot 3D mustrain/size/preferred orientation figure

	PlotTexture()

	Pole figure, inverse pole figure plotting

	ModulationPlot()

	Plots modulation information

	PlotTorsion()

	Plots MC torsion angles

	PlotRama()

	Ramachandran of energetically allowed regions for dihedral
angles in protein

	PlotSelectedSequence()

	Plot one or more sets of values selected from the sequential
refinement table

	PlotIntegration()

	Rectified plot of 2D image after image integration with 2-theta and
azimuth as coordinates

	PlotTRImage()

	test plot routine

	PlotRigidBody()

	show rigid body structures as balls & sticks

	PlotLayers()

	show layer structures as balls & sticks

	PlotFPAconvolutors()

	plots the convolutors from Fundamental Parameters

	PlotClusterXYZ()

	plots the result of cluster analysis

13.3. Window management routines

The above plotting routines place their graphics in the GSAS-II Plot Window, which contains a
G2PlotNoteBook tabbed panel allowing multiple plots to be viewed. Methods
G2PlotNoteBook.addMpl() (2-D matplotlib),
G2PlotNoteBook.add3D() (3-D matplotlib), and
G2PlotNoteBook.addOgl() (OpenGL) are used to
create tabbed plot objects to hold plots of the following classes:
G2PlotMpl (2-D matplotlib),
G2Plot3D (3-D matplotlib), and
G2PlotOgl (OpenGL). Note that two G2PlotNoteBook methods are
potentially used to determine how plot updates after a refinement are handled:

	class method

	description

	G2PlotNoteBook.RegisterRedrawRoutine()

	This specifies a function
to redraw the plot after the data tree has been
reloaded. Be sure this updates data
objects with new values from the tree, when needed.

	G2PlotNoteBook.SetNoDelete()

	Use this to indicate that a plot does not need to be
updated after a refinement and should not be closed.

These two methods define the following attributes (variables) in the plot tab classes:

	variable

	default

	use

	replotFunction

	None

	Defines a routine to be called to update the plot
after a refinement (unless None). Use
G2PlotNoteBook.RegisterRedrawRoutine()
to define this (and replotArgs & replotKwArgs).
Plotting functions that take significant time
to complete should probably not use this.)

	replotArgs

	[]

	Defines the positional arguments to be supplied to
the replotFunction function or method.

	replotKwArgs

	{}

	Defines the keyword arguments to be supplied to
the replotFunction function or method.

	plotRequiresRedraw

	True

	If set to True, after a refinement, the plot will be
closed (in GSASIIdataGUI.GSASII.CleanupOldPlots())
if it was not updated after the refinement. Set this to
False using G2PlotNoteBook.SetNoDelete()
for plots that should not be deleted or do
not change based on refinement results.

	plotInvalid

	False

	Used to track if a plot has been updated. Set to False
in G2PlotNoteBook.FindPlotTab() when a plot is
drawn. After a refinement is completed, method
GSASIIdataGUI.GSASII.ResetPlots() sets
plotInvalid to False for all plots before any routines
are called.

13.4. GSASIIplot Classes and routines

Classes and routines defined in GSASIIplot follow.

	
GSASIIplot.ComputeArc(angI, angO, wave, azm0=0, azm1=362)

	Computes arc/ring arrays in with inner and outer radii from angI,angO
and beginning and ending azimuths azm0,azm1 (optional).
Returns the inner and outer ring/arc arrays.

	
GSASIIplot.CopyRietveldPlot(G2frame, Pattern, Plot, Page, figure)

	Copy the contents of the Rietveld graph from the plot window to another
mpl figure which can be on screen or can be a file for hard copy.
Uses values from Pattern to also generate a delta/sigma plot below the
main figure, since the weights are not available from the plot.

	Parameters:

	
	Pattern (list) – histogram object from data tree

	Plot (mpl.axes) – The axes object from the Rietveld plot

	Page (wx.Panel) – The tabbed panel for the Rietveld plot

	figure (matplotlib.figure.Figure) – The figure object from the Rietveld plot

	
class GSASIIplot.G2Plot3D(parent, id=-1, dpi=None, **kwargs)

	Creates a 3D Matplotlib plot in the GSAS-II graphics window

	
__init__(parent, id=-1, dpi=None, **kwargs)

	

	
class GSASIIplot.G2PlotMpl(parent, id=-1, dpi=None, publish=None, **kwargs)

	Creates a Matplotlib 2-D plot in the GSAS-II graphics window

	
__init__(parent, id=-1, dpi=None, publish=None, **kwargs)

	

	
class GSASIIplot.G2PlotNoteBook(parent, id=-1, G2frame=None)

	create a tabbed panel to hold a GSAS-II graphics window

	
Delete(name)

	delete a tabbed page

	
FindPlotTab(label, Type, newImage=True, publish=None)

	Open a plot tab for initial plotting, or raise the tab if it already exists
Set a flag (Page.plotInvalid) that it has been redrawn
Record the name of the this plot in self.lastRaisedPlotTab

	Parameters:

	
	label (str) – title of plot

	Type (str) – determines the type of plot that will be opened.

’mpl’ for 2D graphs in matplotlib
‘ogl’ for openGL
‘3d’ for 3D plotting in matplotlib

	newImage (bool) – forces creation of a new graph for matplotlib
plots only (defaults as True)

	publish (function) – reference to routine used to create a
publication version of the current mpl plot (default is None,
which prevents use of this).

	Returns:

	new,plotNum,Page,Plot,limits where

	new: will be True if the tab was just created

	plotNum: is the tab number

	Page: is the subclassed wx.Panel (G2PlotMpl, etc.) where
the plot appears

	Plot: the mpl.Axes object for the graphic (mpl) or the figure for
openGL.

	limits: for mpl plots, when a plot already exists, this will be a tuple
with plot scaling. None otherwise.

	
GetTabIndex(label)

	Look up a tab label and return the index in the notebook (this appears to be
independent to the order it is dragged to – at least in Windows) as well as
the associated wx.Panel

An exception is raised if the label is not found

	
InvokeTreeItem(pid)

	This is called to select an item from the tree using the self.allowZoomReset
flag to prevent a reset to the zoom of the plot (where implemented)

	
OnNotebookKey(event)

	Called when a keystroke event gets picked up by the notebook window
rather the child. This is not expected, but somehow it does sometimes
on the Mac and perhaps Linux.

Assume that the page associated with the currently displayed tab
has a child, .canvas; give that child the focus and pass it the event.

	
OnPageChanged(event)

	respond to someone pressing a tab on the plot window.
Called when a plot tab is clicked. on some platforms (Mac for sure) this
is also called when a plot is created or selected with .SetSelection() or
.SetFocus().

(removed) The self.skipPageChange is used variable is set to suppress repeated replotting.

	
RaisePageNoRefresh(Page)

	Raises a plot tab without triggering a refresh via OnPageChanged

	
RegisterRedrawRoutine(name, routine=None, args=(), kwargs={})

	Save information to determine how to redraw a plot
:param str name: label on tab of plot
:param Object routine: a function to be called
:param args: a list of positional parameters for the function
:param kwargs: a dict with keyword parameters for the function

	
Rename(oldName, newName)

	rename a tab

	
SetHelpButton(help)

	Adds a Help button to the status bar on plots.

TODO: This has a problem with PlotPatterns where creation of the
HelpButton causes the notebook tabs to be duplicated. A manual
resize fixes that, but the SendSizeEvent has not worked.

	
SetNoDelete(name)

	Indicate that a plot does not need to be redrawn

	
SetSelectionNoRefresh(plotNum)

	Raises a plot tab without triggering a refresh via OnPageChanged

	
__init__(parent, id=-1, G2frame=None)

	

	
_addPage(name, page)

	Add the newly created page to the notebook and associated lists.
:param name: the label placed on the tab, which should be unique
:param page: the wx.Frame for the matplotlib, openGL, etc. window

	
add3D(name='')

	Add a tabbed page with a 3D plot

	
addMpl(name='', publish=None)

	Add a tabbed page with a matplotlib plot

	
addOgl(name='')

	Add a tabbed page with an openGL plot

	
clear()

	clear all pages from plot window

	
class GSASIIplot.G2PlotOgl(parent, id=-1, dpi=None, **kwargs)

	Creates an OpenGL plot in the GSAS-II graphics window

	
__init__(parent, id=-1, dpi=None, **kwargs)

	

	
class GSASIIplot.GSASIItoolbar(plotCanvas, publish=None, Arrows=True)

	Override the matplotlib toolbar so we can add more icons

	
OnArrow(event)

	reposition limits to scan or zoom by button press

	
OnHelp(event)

	Respond to press of help button on plot toolbar

	
OnKey(event)

	Provide user with list of keystrokes defined for plot as well as an
alternate way to access the same functionality

	
__init__(plotCanvas, publish=None, Arrows=True)

	Adds additional icons to toolbar

	
_update_view()

	Overrides the post-buttonbar update action to invoke a redraw; needed for plot magnification

	
get_zoompan()

	Return “Zoom” if Zoom is active, “Pan” if Pan is active,
or None if neither

	
set_message(s)

	this removes spurious text messages from the tool bar

	
GSASIIplot.ModulationPlot(G2frame, data, atom, ax, off=0)

	Needs a description

	
GSASIIplot.OnStartMask(G2frame)

	Initiate the start of a Frame or Polygon map, etc.
Called from a menu command (GSASIIimgGUI) or from OnImPlotKeyPress.
Variable G2frame.MaskKey contains a single letter (‘f’ or ‘p’, etc.) that
determines what type of mask is created.

	Parameters:

	G2frame (wx.Frame) – The main GSAS-II tree “window”

	
GSASIIplot.OnStartNewDzero(G2frame)

	Initiate the start of adding a new d-zero to a strain data set

	Parameters:

	
	G2frame (wx.Frame) – The main GSAS-II tree “window”

	eventkey (str) – a single letter (‘a’) that
triggers the addition of a d-zero.

	
GSASIIplot.Plot1DSngl(G2frame, newPlot=False, hklRef=None, Super=0, Title=False)

	1D Structure factor plotting package - displays reflections as sticks proportional
to F, F**2, etc. as requested

	
GSASIIplot.Plot3DSngl(G2frame, newPlot=False, Data=None, hklRef=None, Title=False)

	3D Structure factor plotting package - displays reflections as spots proportional
to F, F**2, etc. as requested as 3D array via pyOpenGl

	
GSASIIplot.Plot3dXYZ(G2frame, nX, nY, Zdat, labelX='X', labelY='Y', labelZ='Z', newPlot=False, Title='', Centro=False)

	Creates a surface Plot for 3D vectors

	
GSASIIplot.PlotAAProb(G2frame, resNames, Probs1, Probs2, Title='', thresh=None, pickHandler=None)

	Needs a description

	
GSASIIplot.PlotBarGraph(G2frame, Xarray, Xname='', Yname='Number', Title='', PlotName=None, ifBinned=False, maxBins=None)

	does a vertical bar graph

	
GSASIIplot.PlotBeadModel(G2frame, Atoms, defaults, PDBtext)

	Bead modelplotting package. For bead models from SHAPES

	
GSASIIplot.PlotCalib(G2frame, Inst, XY, Sigs, newPlot=False)

	plot of CW or TOF peak calibration

	
GSASIIplot.PlotClusterXYZ(G2frame, YM, XYZ, CLuDict, Title='', PlotName='cluster')

	To plot cluster analysis results
:param wx.Frame G2frame: The main GSAS-II tree “window”
:param array YM: data matrix; plotted as contour
:param array XYZ: array of 3D PCA coordinates; plotted as 3D scatter plot
;param dict CLuDict: Cluster info; may have dendrogram & Kmeans results
:param str Title: plot title
:param str PlotName: plot tab name

	
GSASIIplot.PlotCovariance(G2frame, Data, Cube=False)

	Plots the covariance matrix. Also shows values for parameters
and their standard uncertainties (esd’s) or the correlation between
variables.

	
GSASIIplot.PlotDeform(G2frame, general, atName, atType, deform, UVmat, neigh)

	Plot deformation atoms & neighbors

	
GSASIIplot.PlotDeltSig(G2frame, kind, PatternName=None)

	Produces normal probability plot for a powder or single crystal histogram

	
GSASIIplot.PlotExposedImage(G2frame, newPlot=False, event=None)

	General access module for 2D image plotting

	
GSASIIplot.PlotFPAconvolutors(G2frame, NISTpk, conv2T=None, convI=None, convList=None)

	Plot the convolutions used for the current peak computed with
GSASIIfpaGUI.doFPAcalc()

	
GSASIIplot.PlotISFG(G2frame, data, newPlot=False, plotType='', peaks=None)

	Plotting package for PDF analysis; displays I(Q), S(Q), F(Q) and G(r) as single
or multiple plots with waterfall and contour plots as options

	
GSASIIplot.PlotImage(G2frame, newPlot=False, event=None, newImage=True)

	Plot of 2D detector images as contoured plot. Also plot calibration ellipses,
masks, etc. Plots whatever is in G2frame.ImageZ

	Parameters:

	
	G2frame (wx.Frame) – main GSAS-II frame

	newPlot (bool) – if newPlot is True, the plot is reset (zoomed out, etc.)

	event – matplotlib mouse event (or None)

	newImage (bool) – If True, the Figure is cleared and redrawn

	
GSASIIplot.PlotIntegration(G2frame, newPlot=False, event=None)

	Plot of 2D image after image integration with 2-theta and azimuth as coordinates

	
GSASIIplot.PlotLayers(G2frame, Layers, laySeq, defaults)

	Layer plotting package. Can show layer structures as balls & sticks

	
GSASIIplot.PlotNamedFloatHBarGraph(G2frame, Xvals, Ynames, Xlabel='Value', Ylabel='', Title='', PlotName=None)

	does a horizintal bar graph

	
GSASIIplot.PlotPatterns(G2frame, newPlot=False, plotType='PWDR', data=None, extraKeys=[], refineMode=False)

	Powder pattern plotting package - displays single or multiple powder patterns as intensity vs
2-theta, q or TOF. Can display multiple patterns as “waterfall plots” or contour plots. Log I
plotting available.

	Note that plotting information will be found in:
	G2frame.PatternId (contains the tree item for the current histogram)

G2frame.PickId (contains the actual selected tree item (can be child of histogram)

G2frame.HKL (used for tool tip display of hkl for selected phase reflection list)

	
GSASIIplot.PlotPeakWidths(G2frame, PatternName=None)

	Plotting of instrument broadening terms as function of Q
Seen when “Instrument Parameters” chosen from powder pattern data tree.
Parameter PatternName allows the PWDR to be referenced as a string rather than
a wx tree item, defined in G2frame.PatternId.

	
GSASIIplot.PlotPowderLines(G2frame)

	plotting of powder lines (i.e. no powder pattern) as sticks

	
GSASIIplot.PlotRama(G2frame, phaseName, Rama, RamaName, Names=[], PhiPsi=[], Coeff=[])

	needs a doc string

	
GSASIIplot.PlotRawImage(G2frame, image, label, newPlot=False)

	Plot an image without axes etc.

	
GSASIIplot.PlotRigidBody(G2frame, rbType, AtInfo, rbData, defaults)

	RB plotting package. Can show rigid body structures as balls & sticks

	
GSASIIplot.PlotSASDPairDist(G2frame)

	Needs a description

	
GSASIIplot.PlotSASDSizeDist(G2frame)

	Needs a description

	
GSASIIplot.PlotSelectedSequence(G2frame, ColumnList, TableGet, SelectX, fitnum=None, fitvals=None)

	Plot a result from a sequential refinement

	Parameters:

	
	G2frame (wx.Frame) – The main GSAS-II tree “window”

	ColumnList (list) – list of int values corresponding to columns
selected as y values

	TableGet (function) – a function that takes a column number
as argument and returns the column label, the values and there ESDs (or None)

	SelectX (function) – a function that returns a selected column
number (or None) as the X-axis selection

	
GSASIIplot.PlotSizeStrainPO(G2frame, data, hist='')

	Plot 3D mustrain/size/preferred orientation figure. In this instance data is for a phase

	
GSASIIplot.PlotSngl(G2frame, newPlot=False, Data=None, hklRef=None, Title='')

	Structure factor plotting package - displays zone of reflections as rings proportional
to F, F**2, etc. as requested via matpltlib; plots are not geometrically correct

	
GSASIIplot.PlotStrain(G2frame, data, newPlot=False)

	plot of strain data, used for diagnostic purposes

	
GSASIIplot.PlotStructure(G2frame, data, firstCall=False, pageCallback=None)

	Crystal structure plotting package. Can show structures as balls, sticks, lines,
thermal motion ellipsoids and polyhedra. Magnetic moments shown as black/red
arrows according to spin state

	Parameters:

	
	G2frame (wx.Frame) – main GSAS-II window

	data (dict) – dict with plotting information
(see Phase Tree object)

	firstCall (bool) – If True, this is the initial call and causes
the plot to be shown twice (needed for Mac and possibly linux)

	pageCallback (function) – a callback function to
update items on the parent page. Currently implemented for
RB Models tab only

	
GSASIIplot.PlotTRImage(G2frame, tax, tay, taz, newPlot=False)

	a test plot routine - not normally used

	
GSASIIplot.PlotTexture(G2frame, data, Start=False)

	Pole figure, inverse pole figure plotting.
dict generalData contains all phase info needed which is in data

	
GSASIIplot.PlotTorsion(G2frame, phaseName, Torsion, TorName, Names=[], Angles=[], Coeff=[])

	needs a doc string

	
GSASIIplot.PlotXY(G2frame, XY, XY2=[], labelX='X', labelY='Y', newPlot=False, Title='', lines=False, names=[], names2=[], vertLines=[])

	simple plot of xy data

	Parameters:

	
	G2frame (wx.Frame) – The main GSAS-II tree “window”

	XY (list) – a list of X,Y array pairs; len(X) = len(Y)

	XY2 (list) – a secondary list of X,Y pairs

	labelX (str) – label for X-axis

	labelY (str) – label for Y-axis

	newPlot (bool) – =True if new plot is to be made

	Title (str) – title for plot

	lines (bool) – = True if lines desired for XY plot; XY2 always plotted as lines

	names (list) – legend names for each XY plot as list a of str values

	names2 (list) – legend names for each XY2 plot as list a of str values

	vertLines (list) – lists of vertical line x-positions; can be one for each XY

	Returns:

	nothing

	
GSASIIplot.PlotXYZ(G2frame, XY, Z, labelX='X', labelY='Y', newPlot=False, Title='', zrange=None, color=None, buttonHandler=None)

	simple contour plot of xyz data

	Parameters:

	
	G2frame (wx.Frame) – The main GSAS-II tree “window”

	XY (list) – a list of X,Y arrays

	Z (list) – a list of Z values for each X,Y pair

	labelX (str) – label for X-axis

	labelY (str) – label for Y-axis

	newPlot (bool) – =True if new plot is to be made

	Title (str) – title for plot

	zrange (list) – [zmin,zmax]; default=None to use limits in Z

	color (str) – one of mpl.cm.dated.keys(); default=None to use G2frame.ContourColor

	Returns:

	nothing

	
GSASIIplot.PlotXYZvect(G2frame, X, Y, Z, R, labelX='X', labelY='Y', labelZ='Z', Title='', PlotName=None)

	To plot a quiver of quaternion vectors colored by the rotation
:param wx.Frame G2frame: The main GSAS-II tree “window”
:param list X,Y,Z: list of X,Y,Z arrays
:param list R: a list of rotations (0-90) for each X,Y,Z in degrees
:param str labelX,labelY,labelZ: labels for X,Y,Z-axes
:param str Title: plot title
:param str PlotName: plot tab name

	
GSASIIplot.PublishRietveldPlot(G2frame, Pattern, Plot, Page)

	Show a customizable “Rietveld” plot and export as a publication-quality
file. Will only work when a single pattern is displayed.

	Parameters:

	
	G2Frame (wx.Frame) – the main GSAS-II window

	Pattern (list) – list of np.array items with obs, calc (etc.) diffraction pattern

	Plot (mpl.axes) – axes of the graph in plot window

	Page (wx.Panel) – tabbed panel containing the plot

	
GSASIIplot.ReplotPattern(G2frame, newPlot, plotType, PatternName=None, PickName=None)

	This does the same as PlotPatterns except that it expects the information
to be plotted (pattern name, item picked in tree + eventually the reflection list)
to be passed as names rather than references to wx tree items, defined as class entries

	
GSASIIplot.ToggleMultiSpotMask(G2frame)

	Turns on and off MultiSpot selection mode; displays a subtitle on plot
the is cleared by the next PlotImage call

	
GSASIIplot.UpdatePolygon(pick, event, polygon)

	Update a polygon (or frame) in response to the location of the mouse.
Delete the selected point if moved on top of another.
With right button add a point after the current button.

	
GSASIIplot.Write2csv(fil, dataItems, header=False)

	Write a line to a CSV file

	Parameters:

	
	fil (object) – file object

	dataItems (list) – items to write as row in file

	header (bool) – True if all items should be written with quotes (default is False)

	
GSASIIplot._Old_Paired_data = {'blue': [(0.0, 0.8901960849761963, 0.8901960849761963), (0.09090909090909091, 0.7058823704719543, 0.7058823704719543), (0.18181818181818182, 0.5411764979362488, 0.5411764979362488), (0.2727272727272727, 0.1725490242242813, 0.1725490242242813), (0.36363636363636365, 0.6000000238418579, 0.6000000238418579), (0.45454545454545453, 0.10980392247438431, 0.10980392247438431), (0.5454545454545454, 0.43529412150382996, 0.43529412150382996), (0.6363636363636364, 0.0, 0.0), (0.7272727272727273, 0.8392156958580017, 0.8392156958580017), (0.8181818181818182, 0.6039215922355652, 0.6039215922355652), (0.9090909090909091, 0.6000000238418579, 0.6000000238418579), (1.0, 0.1568627506494522, 0.1568627506494522)], 'green': [(0.0, 0.8078431487083435, 0.8078431487083435), (0.09090909090909091, 0.47058823704719543, 0.47058823704719543), (0.18181818181818182, 0.8745098114013672, 0.8745098114013672), (0.2727272727272727, 0.6274510025978088, 0.6274510025978088), (0.36363636363636365, 0.6039215922355652, 0.6039215922355652), (0.45454545454545453, 0.10196078568696976, 0.10196078568696976), (0.5454545454545454, 0.7490196228027344, 0.7490196228027344), (0.6363636363636364, 0.49803921580314636, 0.49803921580314636), (0.7272727272727273, 0.6980392336845398, 0.6980392336845398), (0.8181818181818182, 0.239215686917305, 0.239215686917305), (0.9090909090909091, 1.0, 1.0), (1.0, 0.3490196168422699, 0.3490196168422699)], 'red': [(0.0, 0.6509804129600525, 0.6509804129600525), (0.09090909090909091, 0.12156862765550613, 0.12156862765550613), (0.18181818181818182, 0.6980392336845398, 0.6980392336845398), (0.2727272727272727, 0.20000000298023224, 0.20000000298023224), (0.36363636363636365, 0.9843137264251709, 0.9843137264251709), (0.45454545454545453, 0.8901960849761963, 0.8901960849761963), (0.5454545454545454, 0.9921568632125854, 0.9921568632125854), (0.6363636363636364, 1.0, 1.0), (0.7272727272727273, 0.7921568751335144, 0.7921568751335144), (0.8181818181818182, 0.4156862795352936, 0.4156862795352936), (0.9090909090909091, 1.0, 1.0), (1.0, 0.6941176652908325, 0.6941176652908325)]}

	This can be done on request for other colors - any new names must be explicitly added to color list
obtained from mpl.cm.datad.keys() (currently 10 places in GSAS-II code)

	
class GSASIIplot._tabPlotWin(parent, id=-1, dpi=None, **kwargs)

	Creates a basic tabbed plot window for GSAS-II graphics

	
__init__(parent, id=-1, dpi=None, **kwargs)

	

	
GSASIIplot.changePlotSettings(G2frame, Plot)

	Code in development to allow changes to plot settings
prior to export of plot with “floppy disk” button

	
GSASIIplot.onLegendPick(event)

	When a line in the legend is selected, find the matching line
in the plot and then highlight it by adding/enlarging markers.
Set up a timer to make a reset after delay selected in SetupLegendPick

	
GSASIIplot.uneqImgShow(figure, ax, Xlist, Ylist, cmap, vmin, vmax, Ylbls=[])

	Plots a contour plot where point spacing varies within a dataset
and where the X values may differ between histograms. Note that
the length of Xlist and Ylist must be the same and will be the number
of histograms to be plotted

	Parameters:

	
	figure (matplotlib.figure) – The figure where the plot will be placed.

	ax (matplotlib.axes) – The axes where the plot will be made.

	Xlist (list) – A list of X values for each histogram.

	Ylist (list) – A list of intensities for each histogram.

	cmap (matplotlib.colormap) – The colormap used for shading intensities.

	vmin (float) – Minimum intensity.

	vmax (float) – float
Maximum intensity.

	Ylbls (list) – Optional.
Label to place on each histogram. The default is [] where the axes
are labeled normally with the first histogram numbered starting at 0.

 \(\renewcommand\AA{\text{Å}}\)

14. GSASIIpwd: Powder calculations

14.1. Summary/Contents

Routines for powder pattern computations, includes
peak fitting, creation of PDF fitting scripts,
interfaces to DIFFaX & Dysnomia.

Section Contents

	GSASIIpwd: Powder calculations

	Summary/Contents

	GSASIIpwd Classes and routines

14.2. GSASIIpwd Classes and routines

Classes and routines defined in GSASIIpwd follow.

	
GSASIIpwd.Absorb(Geometry, MuR, Tth, Phi=0, Psi=0)

	Calculate sample absorption
:param str Geometry: one of ‘Cylinder’,’Bragg-Brentano’,’Tilting Flat Plate in transmission’,’Fixed flat plate’
:param float MuR: absorption coeff * sample thickness/2 or radius
:param Tth: 2-theta scattering angle - can be numpy array
:param float Phi: flat plate tilt angle - future
:param float Psi: flat plate tilt axis - future

	
GSASIIpwd.AbsorbDerv(Geometry, MuR, Tth, Phi=0, Psi=0)

	needs a doc string

	
GSASIIpwd.CalcPDF(data, inst, limits, xydata)

	Computes I(Q), S(Q) & G(r) from Sample, Bkg, etc. diffraction patterns loaded into
dict xydata; results are placed in xydata.
Calculation parameters are found in dicts data and inst and list limits.
The return value is at present an empty list.

	
GSASIIpwd.Dict2Values(parmdict, varylist)

	Use before call to leastsq to setup list of values for the parameters
in parmdict, as selected by key in varylist

	
GSASIIpwd.DoPeakFit(FitPgm, Peaks, Background, Limits, Inst, Inst2, data, fixback=None, prevVaryList=[], oneCycle=False, controls=None, wtFactor=1.0, dlg=None, noFit=False)

	Called to perform a peak fit, refining the selected items in the peak
table as well as selected items in the background.

	Parameters:

	
	FitPgm (str) – type of fit to perform. At present this is ignored.

	Peaks (list) – a list of peaks. Each peak entry is a list with paired values:
The number of pairs depends on the data type (see getHeaderInfo()).
For CW data there are
four values each followed by a refine flag where the values are: position, intensity,
sigma (Gaussian width) and gamma (Lorentzian width). From the Histogram/”Peak List”
tree entry, dict item “peaks”. For some types of fits, overall parameters are placed
in a dict entry.

	Background (list) – describes the background. List with two items.
Item 0 specifies a background model and coefficients. Item 1 is a dict.
From the Histogram/Background tree entry.

	Limits (list) – min and max x-value to use

	Inst (dict) – Instrument parameters

	Inst2 (dict) – more Instrument parameters

	data (numpy.array) – a 5xn array. data[0] is the x-values,
data[1] is the y-values, data[2] are weight values, data[3], [4] and [5] are
calc, background and difference intensities, respectively.

	fixback (array) – fixed background array; same size as data[0-5]

	prevVaryList (list) – Used in sequential refinements to override the
variable list. Defaults as an empty list.

	oneCycle (bool) – True if only one cycle of fitting should be performed

	controls (dict) – a dict specifying two values, Ftol = controls[‘min dM/M’]
and derivType = controls[‘deriv type’]. If None default values are used.

	wtFactor (float) – weight multiplier; = 1.0 by default

	dlg (wx.Dialog) – A dialog box that is updated with progress from the fit.
Defaults to None, which means no updates are done.

	noFit (bool) – When noFit is True, a refinement is not performed. Default
is False.

	
GSASIIpwd.GetAsfMean(ElList, Sthl2)

	Calculate various scattering factor terms for PDF calcs

	Parameters:

	
	ElList (dict) – element dictionary contains scattering factor coefficients, etc.

	Sthl2 (np.array) – numpy array of sin theta/lambda squared values

	Returns:

	mean(f^2), mean(f)^2, mean(compton)

	
GSASIIpwd.GetNumDensity(ElList, Vol)

	needs a doc string

	
GSASIIpwd.GetPDFfitAtomVar(Phase, RMCPdict)

	Find dict of independent “@n” variables for PDFfit in atom constraints

	
GSASIIpwd.GetSeqCell(SGData, parmDict)

	For use in processing PDFfit sequential results

	
GSASIIpwd.ISO2PDFfit(Phase)

	Creates new phase structure to be used for PDFfit from an ISODISTORT mode displacement phase.
It builds the distortion mode parameters to be used as PDFfit variables for atom displacements from
the original parent positions as transformed to the child cell wiht symmetry defined from ISODISTORT.

	Parameters:

	Phase – dict GSAS-II Phase structure; must contain ISODISTORT dict. NB: not accessed otherwise

	Returns:

	dict: GSAS-II Phase structure; will contain [‘RMC’][‘PDFfit’] dict

	
GSASIIpwd.LaueFringePeakCalc(ttArr, intArr, lam, peakpos, intens, sigma2, gamma, shol, ncells, clat, dampM, dampP, calcwid, fitPowerM=2, fitPowerP=2, plot=False)

	Compute the peakshape for a Laue Fringe peak convoluted with a Gaussian, Lorentzian &
an axial divergence asymmetry correction.

	Parameters:

	
	ttArr (np.array) – Array of two-theta values (in degrees)

	intArr (np.array) – Array of intensity values (peaks are added to this)

	lam (float) – wavelength in Angstrom

	peakpos (float) – peak position in two-theta (deg.)

	intens (float) – intensity factor for peak

	sigma2 (float) – Gaussian variance (in centidegrees**2) **

	gamma (float) – Lorenzian FWHM (in centidegrees) **

	shol (float) – FCJ (S + H)/L where S=sample-half height, H=slit half-height, L=radius **

	ncells (float) – number of unit cells in specular direction **

	clat (float) – c lattice parameter **

	dampM (float) –

	dampP (float) –

	calcwid (float) – two-theta (deg.) width for cutoff of peak computation.
Defaults to 5

	fitPowerM (float) – exponent used for damping fall-off on minus side of peak

	fitPowerP (float) – exponent used for damping fall-off on plus side of peak

	plot (bool) – for debugging, shows contributions to peak

** If term is <= zero, item is removed from convolution

	
GSASIIpwd.LaueSatellite(peakpos, wave, c, ncell, j=[-4, -3, -2, -1, 0, 1, 2, 3, 4])

	Returns the locations of the Laue satellite positions relative
to the peak position

	Parameters:

	
	peakpos (float) – the peak position in degrees 2theta

	ncell (float) – Laue fringe parameter, number of unit cells in layer

	j (list) – the satellite order, where j=-1 is the first satellite
on the lower 2theta side and j=1 is the first satellite on the high
2theta side. j=0 gives the peak position

	
GSASIIpwd.LorchWeight(Q)

	needs a doc string

	
GSASIIpwd.MEMupdateReflData(prfName, data, reflData)

	Update reflection data with new Fosq, phase result from Dysnomia

	Parameters:

	
	prfName (str) – phase.mem file name

	reflData (list) – GSAS-II reflection data

	
GSASIIpwd.MakePDFfitAtomsFile(Phase, RMCPdict)

	Make the PDFfit atoms file

	
GSASIIpwd.MakePDFfitRunFile(Phase, RMCPdict)

	Make the PDFfit python run file

	
GSASIIpwd.MakefullrmcRun(pName, Phase, RMCPdict)

	Creates a script to run fullrmc. Returns the name of the file that was
created.

	
GSASIIpwd.MakefullrmcSupercell(Phase, RMCPdict)

	Create a fullrmc supercell from GSAS-II

	Parameters:

	
	Phase (dict) – phase information from data tree

	RMCPdict (dict) – fullrmc parameters from GUI

	grpDict (list) – a list of lists where the inner list
contains the atom numbers contained in each group. e.g.
[[0,1,2,3,4],[5,6],[4,6]] creates three groups with
atoms 0-4 in the first
atoms 5 & 6 in the second and
atoms 4 & 6 in the third. Note that it is fine that
atom 4 appears in two groups.

	
GSASIIpwd.Oblique(ObCoeff, Tth)

	currently assumes detector is normal to beam

	
GSASIIpwd.PhaseWtSum(G2frame, histo)

	Calculate sum of phase mass*phase fraction for PWDR data (exclude magnetic phases)

	Parameters:

	
	G2frame – GSASII main frame structure

	histo (str) – histogram name

	Returns:

	sum(scale*mass) for phases in histo

	
GSASIIpwd.Polarization(Pola, Tth, Azm=0.0)

	Calculate angle dependent x-ray polarization correction (not scaled correctly!)

	Parameters:

	
	Pola – polarization coefficient e.g 1.0 fully polarized, 0.5 unpolarized

	Azm – azimuthal angle e.g. 0.0 in plane of polarization - can be numpy array

	Tth – 2-theta scattering angle - can be numpy array
which (if either) of these is “right”?

	Returns:

	(pola, dpdPola) - both 2-d arrays
* pola = ((1-Pola)*npcosd(Azm)**2+Pola*npsind(Azm)**2)*npcosd(Tth)**2+ (1-Pola)*npsind(Azm)**2+Pola*npcosd(Azm)**2
* dpdPola: derivative needed for least squares

	
GSASIIpwd.Ruland(RulCoff, wave, Q, Compton)

	needs a doc string

	
GSASIIpwd.SetBackgroundParms(Background)

	Loads background parameters into dicts/lists to create varylist & parmdict

	
GSASIIpwd.StackSim(Layers, ctrls, scale=0.0, background={}, limits=[], inst={}, profile=[])

	Simulate powder or selected area diffraction pattern from stacking faults using DIFFaX

	Parameters:

	
	Layers (dict) – dict with following items

{'Laue':'-1','Cell':[False,1.,1.,1.,90.,90.,90,1.],
'Width':[[10.,10.],[False,False]],'Toler':0.01,'AtInfo':{},
'Layers':[],'Stacking':[],'Transitions':[]}

	ctrls (str) – controls string to be written on DIFFaX controls.dif file

	scale (float) – scale factor

	background (dict) – background parameters

	limits (list) – min/max 2-theta to be calculated

	inst (dict) – instrument parameters dictionary

	profile (list) – powder pattern data

Note that parameters all updated in place

	
GSASIIpwd.SurfaceRough(SRA, SRB, Tth)

	Suortti (J. Appl. Cryst, 5,325-331, 1972) surface roughness correction
:param float SRA: Suortti surface roughness parameter
:param float SRB: Suortti surface roughness parameter
:param float Tth: 2-theta(deg) - can be numpy array

	
GSASIIpwd.SurfaceRoughDerv(SRA, SRB, Tth)

	Suortti surface roughness correction derivatives
:param float SRA: Suortti surface roughness parameter (dimensionless)
:param float SRB: Suortti surface roughness parameter (dimensionless)
:param float Tth: 2-theta(deg) - can be numpy array
:return list: [dydSRA,dydSRB] derivatives to be used for intensity derivative

	
GSASIIpwd.TestData()

	needs a doc string

	
GSASIIpwd.Transmission(Geometry, Abs, Diam)

	Calculate sample transmission

	Parameters:

	
	Geometry (str) – one of ‘Cylinder’,’Bragg-Brentano’,’Tilting flat plate in transmission’,’Fixed flat plate’

	Abs (float) – absorption coeff in cm-1

	Diam (float) – sample thickness/diameter in mm

	
GSASIIpwd.UpdatePDFfit(Phase, RMCPdict)

	Updates various PDFfit parameters held in GSAS-II

	
GSASIIpwd.Values2Dict(parmdict, varylist, values)

	Use after call to leastsq to update the parameter dictionary with
values corresponding to keys in varylist

	
GSASIIpwd.abeles(kz, depth, rho, irho=0, sigma=0)

	Optical matrix form of the reflectivity calculation.
O.S. Heavens, Optical Properties of Thin Solid Films

Reflectometry as a function of kz for a set of slabs.

	Parameters:

	
	kz – float[n] (1/Ang). Scattering vector, \(2\pi\sin(\theta)/\lambda\).
This is \(\tfrac12 Q_z\).

	depth – float[m] (Ang).
thickness of each layer. The thickness of the incident medium
and substrate are ignored.

	rho – float[n,k] (1e-6/Ang^2)
Real scattering length density for each layer for each kz

	irho – float[n,k] (1e-6/Ang^2)
Imaginary scattering length density for each layer for each kz
Note: absorption cross section mu = 2 irho/lambda for neutrons

	sigma – float[m-1] (Ang)
interfacial roughness. This is the roughness between a layer
and the previous layer. The sigma array should have m-1 entries.

Slabs are ordered with the surface SLD at index 0 and substrate at
index -1, or reversed if kz < 0.

	
GSASIIpwd.autoBkgCalc(bkgdict, ydata)

	Compute the autobackground using the selected pybaselines function

	Parameters:

	
	bkgdict (dict) – background parameters

	ydata (np.array) – array of Y values

	Returns:

	points for background intensity at each Y position

	
GSASIIpwd.calcIncident(Iparm, xdata)

	needs a doc string

	
class GSASIIpwd.cauchy_gen(momtype=1, a=None, b=None, xtol=1e-14, badvalue=None, name=None, longname=None, shapes=None, seed=None)

	Cauchy distribution

cauchy.pdf(x) = 1/(pi*(1+x**2))

This is the t distribution with one degree of freedom.

	
pdf(x, *args, **kwds)

	Probability density function at x of the given RV.

14. Parameters

	xarray_like
	quantiles

	arg1, arg2, arg3,…array_like
	The shape parameter(s) for the distribution (see docstring of the
instance object for more information)

	locarray_like, optional
	location parameter (default=0)

	scalearray_like, optional
	scale parameter (default=1)

14. Returns

	pdfndarray
	Probability density function evaluated at x

	
GSASIIpwd.ellipseSize(H, Sij, GB)

	Implements r=1/sqrt(sum((1/S)*(q.v)^2) per note from Alexander Brady

	
GSASIIpwd.ellipseSizeDerv(H, Sij, GB)

	Implements r=1/sqrt(sum((1/S)*(q.v)^2) derivative per note from Alexander Brady

	
GSASIIpwd.factorize(num)

	Provide prime number factors for integer num
:returns: dictionary of prime factors (keys) & power for each (data)

	
class GSASIIpwd.fcjde_gen(momtype=1, a=None, b=None, xtol=1e-14, badvalue=None, name=None, longname=None, shapes=None, seed=None)

	Finger-Cox-Jephcoat D(2phi,2th) function for S/L = H/L
Ref: J. Appl. Cryst. (1994) 27, 892-900.

	Parameters:

	
	x – array -1 to 1

	t – 2-theta position of peak

	s – sum(S/L,H/L); S: sample height, H: detector opening,
L: sample to detector opening distance

	dx – 2-theta step size in deg

	Returns:

	for fcj.pdf

	T = x*dx+t

	s = S/L+H/L

	if x < 0:

fcj.pdf = [1/sqrt({cos(T)**2/cos(t)**2}-1) - 1/s]/|cos(T)|

	if x >= 0: fcj.pdf = 0

	
pdf(x, *args, **kwds)

	Probability density function at x of the given RV.

14. Parameters

	xarray_like
	quantiles

	arg1, arg2, arg3,…array_like
	The shape parameter(s) for the distribution (see docstring of the
instance object for more information)

	locarray_like, optional
	location parameter (default=0)

	scalearray_like, optional
	scale parameter (default=1)

14. Returns

	pdfndarray
	Probability density function evaluated at x

	
GSASIIpwd.findPDFfit()

	Find if PDFfit2 is installed (may be local to GSAS-II). Does the following:
:returns: two items: (1) the full path to a python executable or None, if
it was not found and (2) path(s) to the PDFfit2 location(s) as a list.

	
GSASIIpwd.findfullrmc()

	Find where fullrmc is installed. Tries the following:

	Returns the Config var ‘fullrmc_exec’, if defined. If an executable
is found at that location it is assumed to run and supply
fullrmc 5.0+

	The path is checked for a fullrmc image as named by Bachir

	Returns:

	the full path to a python executable that is assumed to
have fullrmc installed or None, if it was not found.

	
GSASIIpwd.fullrmcDownload()

	Downloads the fullrmc executable from Bachir’s site to the current
GSAS-II binary directory.

Does some error checking.

	
GSASIIpwd.getBackground(pfx, parmDict, bakType, dataType, xdata, fixback=None)

	Computes the background based on parameters that may be taken from
a gpx file or the data tree.

	Parameters:

	
	pfx (str) – histogram prefix (:h:)

	parmDict (dict) – Refinement parameter values

	bakType (str) – defines background function to be used. Should be
one of these: ‘chebyschev’, ‘cosine’, ‘chebyschev-1’,
‘Q^2 power series’, ‘Q^-2 power series’, ‘lin interpolate’,
‘inv interpolate’, ‘log interpolate’

	dataType (str) – Code to indicate histogram type (PXC, PNC, PNT,…)

	xdata (MaskedArray) – independent variable, 2theta (deg*100) or
TOF (microsec?)

	fixback (numpy.array) – Array of fixed background points (length
matching xdata) or None

	Returns:

	yb,sumBK where yp is an array of background values (length
matching xdata) and sumBK is a list with three values. The sumBK[0] is
the sum of all yb values, sumBK[1] is the sum of Debye background terms
and sumBK[2] is the sum of background peaks.

	
GSASIIpwd.getBackgroundDerv(hfx, parmDict, bakType, dataType, xdata, fixback=None)

	Computes the derivatives of the background
Parameters passed to this may be pulled from gpx file or data tree.
See getBackground() for parameter definitions.

	Returns:

	dydb,dyddb,dydpk,dydfb where the first three are 2-D arrays
of derivatives with respect to the background terms, the Debye terms and
the background peak terms vs. the points in the diffracton pattern. The
final 1D array is the derivative with respect to the fixed-background
multiplier (= the fixed background values).

	
GSASIIpwd.getEpsVoigt(pos, alp, bet, sig, gam, xdata)

	Compute the double exponential Pseudo-Voigt convolution function for a
neutron TOF & CW pink peak in external Fortran routine

	
GSASIIpwd.getFCJVoigt(pos, intens, sig, gam, shl, xdata)

	Compute the Finger-Cox-Jepcoat modified Voigt function for a
CW powder peak by direct convolution. This version is not used.

	
GSASIIpwd.getFCJVoigt3(pos, sig, gam, shl, xdata)

	Compute the Finger-Cox-Jepcoat modified Pseudo-Voigt function for a
CW powder peak in external Fortran routine

param pos: peak position in degrees
param sig: Gaussian variance in centideg^2
param gam: Lorentzian width in centideg
param shl: axial divergence parameter (S+H)/L
param xdata: array; profile points for peak to be calculated; bounded by 20FWHM to 50FWHM (or vv)

returns: array: calculated peak function at each xdata
returns: integral of peak; nominally = 1.0

	
GSASIIpwd.getFWHM(pos, Inst, N=1)

	Compute total FWHM from Thompson, Cox & Hastings (1987) , J. Appl. Cryst. 20, 79-83
via getgamFW(g,s).

	Parameters:

	
	pos – float peak position in deg 2-theta or tof in musec

	Inst – dict instrument parameters

	N – int Inst index (0 for input, 1 for fitted)

	Returns float:

	total FWHM of pseudoVoigt in deg or musec

	
GSASIIpwd.getHKLMpeak(dmin, Inst, SGData, SSGData, Vec, maxH, A)

	needs a doc string

	
GSASIIpwd.getHKLpeak(dmin, SGData, A, Inst=None, nodup=False)

	Generates allowed by symmetry reflections with d >= dmin
NB: GenHKLf & checkMagextc return True for extinct reflections

	Parameters:

	
	dmin – minimum d-spacing

	SGData – space group data obtained from SpcGroup

	A – lattice parameter terms A1-A6

	Inst – instrument parameter info

	Returns:

	HKLs: np.array hkl, etc for allowed reflections

	
GSASIIpwd.getHeaderInfo(dataType)

	Provide parameter name, label name and formatting information for the
contents of the Peak Table and where used in DoPeakFit

	
GSASIIpwd.getPeakProfile(dataType, parmDict, xdata, fixback, varyList, bakType)

	Computes the profiles from multiple peaks for individual peak fitting
for powder patterns.
NB: not used for Rietveld refinement

	
GSASIIpwd.getPeakProfileDerv(dataType, parmDict, xdata, fixback, varyList, bakType)

	Computes the profile derivatives for a powder pattern for single peak fitting

return: np.array([dMdx1,dMdx2,…]) in same order as varylist = backVary,insVary,peakVary order

NB: not used for Rietveld refinement

	
GSASIIpwd.getPsVoigt(pos, sig, gam, xdata)

	Compute the simple Pseudo-Voigt function for a
small angle Bragg peak in external Fortran routine

param pos: peak position in degrees
param sig: Gaussian variance in centideg^2
param gam: Lorentzian width in centideg
param xdata: array; profile points for peak to be calculated

returns: array: calculated peak function at each xdata
returns: integral of peak; nominally = 1.0

	
GSASIIpwd.getWidthsCW(pos, sig, gam, shl)

	Compute the peak widths used for computing the range of a peak
for constant wavelength data. On low-angle side, 50 FWHM are used,
on high-angle side 75 are used, high angle side extended for axial divergence
(for peaks above 90 deg, these are reversed.)

	Parameters:

	
	pos – peak position; 2-theta in degrees

	sig – Gaussian peak variance in centideg^2

	gam – Lorentzian peak width in centidegrees

	shl – axial divergence parameter (S+H)/L

	Returns:

	widths; [Gaussian sigma, Lorentzian gamma] in degrees, and
low angle, high angle ends of peak; 20 FWHM & 50 FWHM from position
reversed for 2-theta > 90 deg.

	
GSASIIpwd.getWidthsED(pos, sig, gam)

	Compute the peak widths used for computing the range of a peak
for energy dispersive data. On low-energy side, 20 FWHM are used,
on high-energy side 20 are used

	Parameters:

	
	pos – peak position; energy in keV (not used)

	sig – Gaussian peak variance in keV^2

	gam – Lorentzian peak width in keV

	Returns:

	widths; [Gaussian sigma, Lorentzian gamma] in keV, and
low angle, high angle ends of peak; 5 FWHM & 5 FWHM from position

	
GSASIIpwd.getWidthsTOF(pos, alp, bet, sig, gam)

	Compute the peak widths used for computing the range of a peak
for constant wavelength data. 50 FWHM are used on both sides each
extended by exponential coeff.

param pos: peak position; TOF in musec (not used)
param alp,bet: TOF peak exponential rise & decay parameters
param sig: Gaussian peak variance in musec^2
param gam: Lorentzian peak width in musec

returns: widths; [Gaussian sigma, Lornetzian gamma] in musec
returns: low TOF, high TOF ends of peak; 50FWHM from position

	
GSASIIpwd.getdEpsVoigt(pos, alp, bet, sig, gam, xdata)

	Compute the double exponential Pseudo-Voigt convolution function derivatives for a
neutron TOF & CW pink peak in external Fortran routine

	
GSASIIpwd.getdFCJVoigt3(pos, sig, gam, shl, xdata)

	Compute analytic derivatives the Finger-Cox-Jepcoat modified Pseudo-Voigt
function for a CW powder peak

param pos: peak position in degrees
param sig: Gaussian variance in centideg^2
param gam: Lorentzian width in centideg
param shl: axial divergence parameter (S+H)/L
param xdata: array; profile points for peak to be calculated; bounded by 20FWHM to 50FWHM (or vv)

returns: arrays: function and derivatives of pos, sig, gam, & shl

	
GSASIIpwd.getdPsVoigt(pos, sig, gam, xdata)

	Compute the simple Pseudo-Voigt function derivatives for a
small angle Bragg peak peak in external Fortran routine

param pos: peak position in degrees
param sig: Gaussian variance in centideg^2
param gam: Lorentzian width in centideg
param xdata: array; profile points for peak to be calculated

returns: arrays: function and derivatives of pos, sig & gam
NB: the pos derivative has the opposite sign compared to that in other profile functions

	
GSASIIpwd.getgamFW(g, s)

	Compute total FWHM from Thompson, Cox & Hastings (1987), J. Appl. Cryst. 20, 79-83
lambda fxn needs FWHM for both Gaussian & Lorentzian components

	Parameters:

	
	g – float Lorentzian gamma = FWHM(L)

	s – float Gaussian sig

	Returns float:

	total FWHM of pseudoVoigt

	
GSASIIpwd.makeFFTsizeList(nmin=1, nmax=1023, thresh=15)

	Provide list of optimal data sizes for FFT calculations

	Parameters:

	
	nmin (int) – minimum data size >= 1

	nmax (int) – maximum data size > nmin

	thresh (int) – maximum prime factor allowed

	Returns:

	list of data sizes where the maximum prime factor is < thresh

	
GSASIIpwd.makeMEMfile(data, reflData, MEMtype, DYSNOMIA)

	make Dysnomia .mem file of reflection data, etc.

	Parameters:

	
	data (dict) – GSAS-II phase data

	reflData (list) – GSAS-II reflection data

	MEMtype (int) – 1 for neutron data with negative scattering lengths
0 otherwise

	DYSNOMIA (str) – path to dysnomia.exe

	
GSASIIpwd.makePRFfile(data, MEMtype)

	makes Dysnomia .prf control file from Dysnomia GUI controls

	Parameters:

	
	data (dict) – GSAS-II phase data

	MEMtype (int) – 1 for neutron data with negative scattering lengths
0 otherwise

	Returns str:

	name of Dysnomia control file

	
class GSASIIpwd.norm_gen(momtype=1, a=None, b=None, xtol=1e-14, badvalue=None, name=None, longname=None, shapes=None, seed=None)

	
Normal distribution

The location (loc) keyword specifies the mean.
The scale (scale) keyword specifies the standard deviation.

normal.pdf(x) = exp(-x**2/2)/sqrt(2*pi)

	
pdf(x, *args, **kwds)

	Probability density function at x of the given RV.

14. Parameters

	xarray_like
	quantiles

	arg1, arg2, arg3,…array_like
	The shape parameter(s) for the distribution (see docstring of the
instance object for more information)

	locarray_like, optional
	location parameter (default=0)

	scalearray_like, optional
	scale parameter (default=1)

14. Returns

	pdfndarray
	Probability density function evaluated at x

	
GSASIIpwd.peakInstPrmMode = True

	Determines the mode used for peak fitting. When peakInstPrmMode=True peak
width parameters are computed from the instrument parameters (UVW,… or
alpha,… etc) unless the individual parameter is refined. This allows the
instrument parameters to be refined. When peakInstPrmMode=False, the instrument
parameters are not used and cannot be refined.
The default is peakFitMode=True. This is changed only in
setPeakInstPrmMode(), which is called from GSASIIscriptable
or GSASIIphsGUI.OnSetPeakWidMode (‘Gen unvaried widths’ menu item).

	
GSASIIpwd.setPeakInstPrmMode(normal=True)

	Determines the mode used for peak fitting. If normal=True (default)
peak width parameters are computed from the instrument parameters
unless the individual parameter is refined. If normal=False,
peak widths are used as supplied for each peak.

Note that normal=True unless this routine is called. Also,
instrument parameters can only be refined with normal=True.

	Parameters:

	normal (bool) – setting to apply to global variable
peakInstPrmMode

 \(\renewcommand\AA{\text{Å}}\)

15. GSAS-II Small Angle Scattering

15.1. GSASII small angle calculation module

Classes and routines defined in GSASIIsasd follow.

	
GSASIIsasd.CylinderARFF(Q, R, args)

	Compute form factor for cylinders - can use numpy arrays
param float Q: Q value array (A-1)
param float R: cylinder radius (A)
param array args: [float AR]: cylinder aspect ratio = L/D = L/2R
returns float: form factor

	
GSASIIsasd.CylinderARVol(R, args)

	Compute cylinder volume for radius & aspect ratio = L/D
- numpy array friendly
param float: R radius (A)
param array args: [float AR]: =L/D=L/2R aspect ratio
returns float:volume

	
GSASIIsasd.CylinderDFF(Q, L, args)

	Compute form factor for cylinders - can use numpy arrays
param float Q: Q value array (A-1)
param float L: cylinder half length (A)
param array args: [float R]: cylinder radius (A)
returns float: form factor

	
GSASIIsasd.CylinderDVol(L, args)

	Compute cylinder volume for length & diameter
- numpy array friendly
param float: L half length (A)
param array args: [float D]: diameter (A)
returns float:volume (A^3)

	
GSASIIsasd.CylinderFF(Q, R, args)

	Compute form factor for cylinders - can use numpy arrays
param float Q: Q value array (A-1)
param float R: cylinder radius (A)
param array args: [float L]: cylinder length (A)
returns float: form factor

	
GSASIIsasd.CylinderVol(R, args)

	Compute cylinder volume for radius & length
- numpy array friendly
param float R: diameter (A)
param array args: [float L]: length (A)
returns float:volume (A^3)

	
GSASIIsasd.DiluteSF(Q, args=[])

	Default: no structure factor correction for dilute system

	
GSASIIsasd.G_matrix(q, r, contrast, FFfxn, Volfxn, args=())

	Calculates the response matrix \(G(Q,r)\)

	Parameters:

	
	q (float) – \(Q\)

	r (float) – \(r\)

	contrast (float) – \(|\Delta\rho|^2\), the scattering contrast

	FFfxn (function) – form factor function FF(q,r,args)

	Volfxn (function) – volume function Vol(r,args)

	Returns float:

	G(Q,r)

	
GSASIIsasd.GaussCume(x, pos, args)

	Standard Normal cumulative distribution - numpy friendly on x axis
param float x: independent axis (can be numpy array)
param float pos: location of distribution
param float scale: width of distribution (sigma)
param float shape: not used
returns float: Normal cumulative distribution

	
GSASIIsasd.GaussDist(x, pos, args)

	Standard Normal distribution - numpy friendly on x axis
param float x: independent axis (can be numpy array)
param float pos: location of distribution
param float scale: width of distribution (sigma)
param float shape: not used
returns float: Normal distribution

	
GSASIIsasd.HardSpheresSF(Q, args)

	Computes structure factor for not dilute monodisperse hard spheres
Refs.: PERCUS,YEVICK PHYS. REV. 110 1 (1958),THIELE J. CHEM PHYS. 39 474 (1968),
WERTHEIM PHYS. REV. LETT. 47 1462 (1981)

param float Q: Q value array (A-1)
param array args: [float R, float VolFrac]: interparticle distance & volume fraction
returns numpy array S(Q)

	
GSASIIsasd.IPG(datum, sigma, G, Bins, Dbins, IterMax, Qvec=[], approach=0.8, Power=-1, report=False)

	An implementation of the Interior-Point Gradient method of
Michael Merritt & Yin Zhang, Technical Report TR04-08, Dept. of Comp. and
Appl. Math., Rice Univ., Houston, Texas 77005, U.S.A. found on the web at
http://www.caam.rice.edu/caam/trs/2004/TR04-08.pdf
Problem addressed: Total Non-Negative Least Squares (TNNLS)
:param float datum[]:
:param float sigma[]:
:param float[][] G: transformation matrix
:param int IterMax:
:param float Qvec: data positions for Power = 0-4
:param float approach: 0.8 default fitting parameter
:param int Power: 0-4 for Q^Power weighting, -1 to use input sigma

	
GSASIIsasd.InterPrecipitateSF(Q, args)

	Computes structure factor for precipitates in a matrix
Refs.: E-Wen Huang, Peter K. Liaw, Lionel Porcar, Yun Liu, Yee-Lang Liu,
Ji-Jung Kai, and Wei-Ren Chen,APPLIED PHYSICS LETTERS 93, 161904 (2008)
R. Giordano, A. Grasso, and J. Teixeira, Phys. Rev. A 43, 6894 1991
param float Q: Q value array (A-1)
param array args: [float R, float VolFr]: “radius” & volume fraction
returns numpy array S(Q)

	
GSASIIsasd.LSWCume(x, pos, args=[])

	Lifshitz-Slyozov-Wagner Ostwald ripening cumulative distribution - numpy friendly on x axis
param float x: independent axis (can be numpy array)
param float pos: location of distribution
param float scale: not used
param float shape: not used
returns float: LSW cumulative distribution

	
GSASIIsasd.LSWDist(x, pos, args=[])

	Lifshitz-Slyozov-Wagner Ostwald ripening distribution - numpy friendly on x axis
ref:
param float x: independent axis (can be numpy array)
param float pos: location of distribution
param float scale: not used
param float shape: not used
returns float: LSW distribution

	
GSASIIsasd.LogNormalCume(x, pos, args)

	Standard LogNormal cumulative distribution - numpy friendly on x axis
ref: http://www.itl.nist.gov/div898/handbook/index.htm 1.3.6.6.9
param float x: independent axis (can be numpy array)
param float pos: location of distribution
param float scale: width of distribution (sigma)
param float shape: shape parameter
returns float: LogNormal cumulative distribution

	
GSASIIsasd.LogNormalDist(x, pos, args)

	Standard LogNormal distribution - numpy friendly on x axis
ref: http://www.itl.nist.gov/div898/handbook/index.htm 1.3.6.6.9
param float x: independent axis (can be numpy array)
param float pos: location of distribution
param float scale: width of distribution (m)
param float shape: shape - (sigma of log(LogNormal))
returns float: LogNormal distribution

	
exception GSASIIsasd.MaxEntException

	Any exception from this module

	
GSASIIsasd.MaxEnt_SB(datum, sigma, G, base, IterMax, image_to_data=None, data_to_image=None, report=False)

	do the complete Maximum Entropy algorithm of Skilling and Bryan

	Parameters:

	
	datum[] (float) –

	sigma[] (float) –

	G (float[][]) – transformation matrix

	base[] (float) –

	IterMax (int) –

	image_to_data (obj) – opus function (defaults to opus)

	data_to_image (obj) – tropus function (defaults to tropus)

	Returns float[]:

	\(f(r) dr\)

	
GSASIIsasd.SchulzZimmCume(x, pos, args)

	Schulz-Zimm cumulative distribution - numpy friendly on x axis
param float x: independent axis (can be numpy array)
param float pos: location of distribution
param float scale: width of distribution (sigma)
param float shape: not used
returns float: Normal distribution

	
GSASIIsasd.SchulzZimmDist(x, pos, args)

	Schulz-Zimm macromolecule distribution - numpy friendly on x axis
ref: http://goldbook.iupac.org/S05502.html
param float x: independent axis (can be numpy array)
param float pos: location of distribution
param float scale: width of distribution (sigma)
param float shape: not used
returns float: Schulz-Zimm distribution

	
GSASIIsasd.SphereFF(Q, R, args=())

	Compute hard sphere form factor - can use numpy arrays
:param float Q: Q value array (usually in A-1)
:param float R: sphere radius (Usually in A - must match Q-1 units)
:param array args: ignored
:returns: form factors as array as needed (float)

	
GSASIIsasd.SphereVol(R, args=())

	Compute volume of sphere
- numpy array friendly
param float R: sphere radius
param array args: ignored
returns float: volume

	
GSASIIsasd.SphericalShellFF(Q, R, args=())

	Compute spherical shell form factor - can use numpy arrays
:param float Q: Q value array (usually in A-1)
:param float R: sphere radius (Usually in A - must match Q-1 units)
:param array args: [float r]: controls the shell thickness: R_inner = min(r*R,R), R_outer = max(r*R,R)
:returns float: form factors as array as needed

Contributed by: L.A. Avakyan, Southern Federal University, Russia

	
GSASIIsasd.SphericalShellVol(R, args)

	Compute volume of spherical shell
- numpy array friendly
param float R: sphere radius
param array args: [float r]: controls shell thickness, see SphericalShellFF description
returns float: volume

	
GSASIIsasd.SpheroidFF(Q, R, args)

	Compute form factor of cylindrically symmetric ellipsoid (spheroid)
- can use numpy arrays for R & AR; will return corresponding numpy array
param float Q : Q value array (usually in A-1)
param float R: radius along 2 axes of spheroid
param array args: [float AR]: aspect ratio so 3rd axis = R*AR
returns float: form factors as array as needed

	
GSASIIsasd.SpheroidVol(R, args)

	Compute volume of cylindrically symmetric ellipsoid (spheroid)
- numpy array friendly
param float R: radius along 2 axes of spheroid
param array args: [float AR]: aspect ratio so radius of 3rd axis = R*AR
returns float: volume

	
GSASIIsasd.SquareWellSF(Q, args)

	Computes structure factor for not dilute monodisperse hard sphere with a
square well potential interaction.
Refs.: SHARMA,SHARMA, PHYSICA 89A,(1977),213-

	Parameters:

	
	Q (float) – Q value array (A-1)

	args (array) – [float R, float VolFrac, float depth, float width]:
interparticle distance, volume fraction (<0.08), well depth (e/kT<1.5kT),
well width

	Returns:

	numpy array S(Q)
well depth > 0 attractive & values outside above limits nonphysical cf.
Monte Carlo simulations

	
GSASIIsasd.StickyHardSpheresSF(Q, args)

	Computes structure factor for not dilute monodisperse hard spheres
Refs.: PERCUS,YEVICK PHYS. REV. 110 1 (1958),THIELE J. CHEM PHYS. 39 474 (1968),
WERTHEIM PHYS. REV. LETT. 47 1462 (1981)

param float Q: Q value array (A-1)
param array args: [float R, float VolFrac]: sphere radius & volume fraction
returns numpy array S(Q)

	
GSASIIsasd.UniDiskFF(Q, R, args)

	Compute form factor for unified disk - can use numpy arrays
param float Q: Q value array (A-1)
param float R: cylinder radius (A)
param array args: [float T]: disk thickness (A)
returns float: form factor

	
GSASIIsasd.UniDiskVol(R, args)

	Compute disk volume for radius & thickness
- numpy array friendly
param float R: diameter (A)
param array args: [float T]: thickness
returns float:volume (A^3)

	
GSASIIsasd.UniRodARFF(Q, R, args)

	Compute form factor for unified rod of fixed aspect ratio - can use numpy arrays
param float Q: Q value array (A-1)
param float R: cylinder radius (A)
param array args: [float AR]: cylinder aspect ratio = L/D = L/2R
returns float: form factor

	
GSASIIsasd.UniRodARVol(R, args)

	Compute rod volume for radius & aspect ratio
- numpy array friendly
param float R: diameter (A)
param array args: [float AR]: =L/D=L/2R aspect ratio
returns float:volume (A^3)

	
GSASIIsasd.UniRodFF(Q, R, args)

	Compute form factor for unified rod - can use numpy arrays
param float Q: Q value array (A-1)
param float R: cylinder radius (A)
param array args: [float R]: cylinder radius (A)
returns float: form factor

	
GSASIIsasd.UniRodVol(R, args)

	Compute cylinder volume for radius & length
- numpy array friendly
param float R: diameter (A)
param array args: [float L]: length (A)
returns float:volume (A^3)

	
GSASIIsasd.UniSphereFF(Q, R, args=0)

	Compute form factor for unified sphere - can use numpy arrays
param float Q: Q value array (A-1)
param float R: cylinder radius (A)
param array args: ignored
returns float: form factor

	
GSASIIsasd.UniSphereVol(R, args=())

	Compute volume of sphere
- numpy array friendly
param float R: sphere radius
param array args: ignored
returns float: volume

	
GSASIIsasd.UniTubeFF(Q, R, args)

	Compute form factor for unified tube - can use numpy arrays
assumes that core of tube is same as the matrix/solvent so contrast
is from tube wall vs matrix
param float Q: Q value array (A-1)
param float R: cylinder radius (A)
param array args: [float L,T]: tube length & wall thickness(A)
returns float: form factor

	
GSASIIsasd.UniTubeVol(R, args)

	Compute tube volume for radius, length & wall thickness
- numpy array friendly
param float R: diameter (A)
param array args: [float L,T]: tube length & wall thickness(A)
returns float: volume (A^3) of tube wall

	
GSASIIsasd.print_arr(text, a)

	print the contents of an array to the console

	
GSASIIsasd.print_vec(text, a)

	print the contents of a vector to the console

15.2. Substances: Define Materials

Defines materials commonly found in small angle & reflectometry experiments.
GSASII substances as a dictionary ‘’Substances.Substances’’ with these materials.

Each entry in ‘’Substances’’ consists of:

'key':{'Elements':{element:{'Num':float number in formula},...},'Density':value, 'Volume':,value}

Density & Volume are optional, if one missing it is calculated from the other; if both
are missing then Volume is estimated from composition & assuming 10 AA^3 for each atom.
Density is calculated from that Volume.
See examples below for what is needed.

 \(\renewcommand\AA{\text{Å}}\)

16. GSASIIscriptable: Scripting Interface

16.1. Summary/Contents

Routines to use an increasing amount of GSAS-II’s capabilities from scripts,
without use of the graphical user interface (GUI). GSASIIscriptable can create and access
GSAS-II project (.gpx) files and can directly perform image handling and refinements.
The module defines wrapper classes (inheriting from G2ObjectWrapper) for a growing number
of data tree items.

GSASIIscriptable can be used in two ways. It offers a command-line mode, but
the more widely used and more powerful mode of GSASIIscriptable is
used is via Python scripts that
call the module’s application interface (API), these are summarized immediately below and are documented in the complete API documentation section.

While the command-line mode
provides access a number of features without writing Python scripts
via shell/batch commands (see GSASIIscriptable Command-line Interface), use in practice
seems somewhat clumsy. Command-line mode
is no longer being developed and its use is discouraged.

Scripting Documentation Contents

	GSASIIscriptable: Scripting Interface

	Summary/Contents

	Installation of GSASIIscriptable

	Application Interface (API) Summary

	Refinement parameters

	Specifying Refinement Parameters

	Access to other parameter settings

	Code Examples

	GSASIIscriptable Command-line Interface

	API: Complete Documentation

16.2. Installation of GSASIIscriptable

GSASIIscriptable is included as part of a standard GSAS-II installation that includes the GSAS-II GUI (as described in the installation instructions [https://subversion.xray.aps.anl.gov/trac/pyGSAS#Installationinstructions]). People who will will use scripting extensively will still need access to the GUI
for some activities, since the scripting API has not yet been extended to all
features of GSAS-II and even if that is ever completed, there will still be some things that GSAS-II does with the GUI would be almost impossible to implement without a interactive graphical view of the data.

Nonetheless, there may be times where it does make sense to install GSAS-II without all of the GUI components, for example on a compute server.
The minimal requirements for use of GSASIIscriptable are only Python, numpy and scipy, but additional optional packages that can be utilized are described in
the Scripting Requirements section of the requirements chapter, which also provides some installation instructions.

In a standard GSAS-II installation, no changes are made to Python. When the GUI is invoked, a small script or Windows batch file is used to start GSAS-II inside Python. When
GSASIIscriptable is used, Python must be provided with the location of the GSAS-II files. There are two ways this can be done:

	define the GSAS-II installation location in the Python sys.path, or

	install a reference to GSAS-II inside Python.

The latter method requires an extra installation step, but has the advantage that
it allows writing portable GSAS-II scripts. This is discussed further in the
Shortcut for Scripting Access section of this chapter.

16.3. Application Interface (API) Summary

This section of the documentation provides an overview to API, with full documentation
in the API: Complete Documentation section. The typical API use will be with a Python script, such as
what is found in Code Examples. Most functionality is provided via the objects and methods
summarized below.

16.3.1. Overview of Classes

	Scripting class name

	Description

	G2Project

	G2Project:
A GSAS-II project file; provides references to objects below,
each corresponding to a tree item
(exception is G2AtomRecord)

	G2Phase

	G2Phase:
Provides phase information access
(also provides access to atom info via G2AtomRecord)

	G2AtomRecord

	G2AtomRecord:
Access to an atom within a phase

	G2PwdrData

	G2PwdrData:
Access to powder histogram info

	G2Image

	G2Image: Access to image info

	G2PDF

	G2PDF: PDF histogram info

	G2SeqRefRes

	G2SeqRefRes:
The sequential results table

16.3.2. Independent Functions

A small number of Scriptable routines do not require use of objects.

	method

	Use

	GenerateReflections()

	Generates a list of unique powder reflections

	SetPrintLevel()

	Sets the amount of output generated when running a script

	installScriptingShortcut()

	Installs GSASIIscriptable within Python as G2script

16.3.3. Class G2Project

All GSASIIscriptable scripts will need to create a G2Project object
either for a new GSAS-II project or to read in an existing project (.gpx) file.
The most commonly used routines in this object are:

	method

	Use

	save()

	Writes the current project to disk.

	add_powder_histogram()

	Used to read in powder diffraction data into a project file.

	add_simulated_powder_histogram()

	Defines a “dummy” powder diffraction data that will be simulated after a refinement step.

	add_image()

	Reads in an image into a project.

	add_phase()

	Adds a phase to a project

	add_PDF()

	Adds a PDF entry to a project (does not compute it)

	histograms()

	Provides a list of histograms in the current project, as G2PwdrData objects

	phases()

	Provides a list of phases defined in the current project, as G2Phase objects

	images()

	Provides a list of images in the current project, as G2Image objects

	pdfs()

	Provides a list of PDFs in the current project, as G2PDF objects

	seqref()

	Returns a G2SeqRefRes object if there are Sequential Refinement results

	do_refinements()

	This is passed a list of dictionaries, where each dict defines a refinement step.
Passing a list with a single empty dict initiates a refinement with the current
parameters and flags. A refinement dict sets up a single refinement step
(as described in Project-level Parameter Dict). Also see Refinement recipe.

	set_refinement()

	This is passed a single dict which is used to set parameters and flags.
These actions can be performed also in do_refinements().

	get_Variable()

	Retrieves the value and esd for a parameter

	get_Covariance()

	Retrieves values and covariance for a set of refined parameters

	set_Controls()

	Set overall GSAS-II control settings such as number of cycles and to set up a sequential
fit. (Also see get_Controls() to read values.)

	imageMultiDistCalib()

	Performs a global calibration fit with images at multiple distance settings.

	get_Constraints()

	Retrieves constraint definition entries.

	add_HoldConstr()

	Adds a hold constraint on one or more variables

	add_EquivConstr()

	Adds an equivalence constraint on two or more variables

	add_EqnConstr()

	Adds an equation-type constraint on two or more variables

	add_NewVarConstr()

	Adds an new variable as a constraint on two or more variables

	ComputeWorstFit()

	Determines the parameters that will have the greatest impact on the fit if refined

16.3.4. Class G2Phase

Another common object in GSASIIscriptable scripts is G2Phase, used to encapsulate each phase in a project, with commonly used methods:

	method

	Use

	set_refinements()

	Provides a mechanism to set values and refinement flags for the phase. See Phase parameters
for more details. This information also can be supplied within a call
to do_refinements()
or set_refinement().

	clear_refinements()

	Unsets refinement flags for the phase.

	set_HAP_refinements()

	Provides a mechanism to set values and refinement flags for parameters specific to both this phase and
one of its histograms. See Histogram-and-phase parameters. This information also can be supplied within
a call to do_refinements() or
set_refinement().

	clear_HAP_refinements()

	Clears refinement flags specific to both this phase and one of its histograms.

	getHAPvalues()

	Returns values of parameters specific to both this phase and one of its histograms.

	copyHAPvalues()

	Copies HAP settings between from one phase/histogram and to other histograms in same phase.

	HAPvalue()

	Sets or retrieves values for some of the parameters specific to both this phase and
one or more of its histograms.

	atoms()

	Returns a list of atoms in the phase

	atom()

	Returns an atom from its label

	add_atom()

	Adds an atom to a phase

	histograms()

	Returns a list of histograms linked to the phase

	get_cell()

	Returns unit cell parameters (also see get_cell_and_esd())

	export_CIF()

	Writes a CIF for the phase

	setSampleProfile()

	Sets sample broadening parameters

	clearDistRestraint()

	Clears any previously defined bond distance restraint(s) for the selected phase

	addDistRestraint()

	Finds and defines new bond distance restraint(s) for the selected phase

	setDistRestraintWeight()

	Sets the weighting factor for the bond distance restraints

16.3.5. Class G2PwdrData

Another common object in GSASIIscriptable scripts is G2PwdrData, which encapsulate each powder diffraction histogram in a project, with commonly used methods:

	method

	Use

	set_refinements()

	Provides a mechanism to set values and refinement flags for the powder histogram. See
Histogram parameters for details.

	clear_refinements()

	Unsets refinement flags for the the powder histogram.

	residuals()

	Reports R-factors etc. for the the powder histogram (also see get_wR())

	add_back_peak()

	Adds a background peak to the histogram. Also see del_back_peak()
and ref_back_peak().

	fit_fixed_points()

	Fits background to the specified fixed points.

	set_background()

	Sets a background histogram that will be subtracted (point by point) from the current histogram.

	calc_autobkg()

	Estimates the background and sets the fixed background points from that.

	getdata()

	Provides access to the diffraction data associated with the histogram.

	reflections()

	Provides access to the reflection lists for the histogram.

	Export()

	Writes the diffraction data or reflection list into a file

	add_peak()

	Adds a peak to the peak list. Also see Peak Fitting.

	set_peakFlags()

	Sets refinement flags for peaks

	refine_peaks()

	Starts a peak/background fitting cycle, returns refinement results

	Peaks

	Provides access to the peak list data structure

	PeakList

	Provides the peak list parameter values

	Export_peaks()

	Writes the peak parameters to a text file

16.3.6. Class G2Image

When working with images, there will be a G2Image object for each image (also see add_image() and images()).

	method

	Use

	Recalibrate()

	Invokes a recalibration fit starting from the current Image Controls calibration coefficients.

	Integrate()

	Invokes an image integration All parameters Image Controls will have previously been set.

	GeneratePixelMask()

	Searches for “bad” pixels creating a pixel mask.

	setControl()

	Set an Image Controls parameter in the current image.

	getControl()

	Return an Image Controls parameter in the current image.

	findControl()

	Get the names of Image Controls parameters.

	loadControls()

	Load controls from a .imctrl file (also see saveControls()).

	loadMasks()

	Load masks from a .immask file.

	setVary()

	Set a refinement flag for Image Controls parameter in the current image.
(Also see getVary())

	setCalibrant()

	Set a calibrant type (or show choices) for the current image.

	setControlFile()

	Set a image to be used as a background/dark/gain map image.

	getControls()

	Returns the Image Controls dict for the current image.

	setControls()

	Updates the Image Controls dict for the current image with specified key/value pairs.

	getMasks()

	Returns the Masks dict for the current image.

	setMasks()

	Updates the Masks dict for the current image with specified key/value pairs.

	IntThetaAzMap()

	Computes the set of 2theta-azimuth mapping matrices to integrate the current image.

	IntMaskMap()

	Computes the masking map for the current image for integration.

	MaskThetaMap()

	Computes the 2theta mapping matrix to determine a pixel mask.

	MaskFrameMask()

	Computes the Frame mask needed to determine a pixel mask.

	TestFastPixelMask()

	Returns True if fast pixel masking is available.

	clearImageCache()

	Clears a saved image from memory, if one is present.

	clearPixelMask()

	Clears a saved Pixel map from the project, if one is present.

16.3.7. Class G2PDF

To work with PDF entries, object G2PDF, encapsulates a PDF entry with methods:

	method

	Use

	export()

	Used to write G(r), etc. as a file

	calculate()

	Computes the PDF using parameters in the object

	optimize()

	Optimizes selected PDF parameters

	set_background()

	Sets the histograms used for sample background, container, etc.

	set_formula()

	Sets the chemical formula for the sample

16.3.8. Class G2SeqRefRes

To work with Sequential Refinement results, object G2SeqRefRes, encapsulates the sequential refinement table with methods:

	method

	Use

	histograms()

	Provides a list of histograms used in the Sequential Refinement

	get_cell_and_esd()

	Returns cell dimensions and standard uncertainties for a phase and histogram from the Sequential Refinement

	get_Variable()

	Retrieves the value and esd for a parameter from a particular histogram in the Sequential Refinement

	get_Covariance()

	Retrieves values and covariance for a set of refined parameters for a particular histogram

16.3.9. Class G2AtomRecord

When working with phases, G2AtomRecord methods provide access to the contents of each atom in a phase. This provides access to atom
values via class “properties” that can be used to get values of much of the atoms associated settings, as below. Most can also be used to set values via
“setter” methods.
See the G2AtomRecord docs and source code.

	method/property

	Use

	label

	Reference as <atom>.label` to get or set label value for atom

	type

	Reference as <atom>.G2AtomRecord.type to get or set the atom type

	element

	Reference as <atom>.G2AtomRecord.element to get the element symbol
associated with an atom (change with <atom>.G2AtomRecord.type,
see type)

	refinement_flags

	Reference class property <atom>.G2AtomRecord.refinement_flags to get or set
the refinement flags associated with an atom

	coordinates

	Reference as <atom>.G2AtomRecord.coordinates to get or set the three coordinates
associated with an atom

	occupancy

	Reference class property <atom>.G2AtomRecord.occupancy to get or set the
site occupancy associated with an atom

	mult

	Reference as <atom>.G2AtomRecord.mult to get an atom site multiplicity
(value cannot be changed in script)

	ranId

	Reference as <atom>.G2AtomRecord.ranId to get an atom random Id number
(value cannot be changed in script)

	adp_flag

	Reference as <atom>.G2AtomRecord.adp_flag to get either ‘U’ or ‘I’
specifying that an atom is set as anisotropic or isotropic
(value cannot be changed in script)

	uiso

	Reference pseudo class variable <atom>.G2AtomRecord.uiso to get
or set the Uiso value associated with an atom

16.4. Refinement parameters

While scripts can be written that setup refinements by changing individual parameters
through calls to the methods associated with objects that wrap each data tree item,
many of these actions can be combined into fairly complex dict structures to conduct refinement
steps. Use of these dicts is required with the GSASIIscriptable Command-line Interface. This section of the
documentation describes these dicts.

16.4.1. Project-level Parameter Dict

As noted below (Refinement parameter types), there are three types of refinement parameters,
which can be accessed individually by the objects that encapsulate individual phases and histograms
but it will often be simplest to create a composite dictionary
that is used at the project-level. A dict is created with keys
“set” and “clear” that can be supplied to set_refinement()
(or do_refinements(), see Refinement recipe below) that will
determine parameter values and will determine which parameters will be refined.

The specific keys and subkeys that can be used are defined in tables
Histogram parameters, Phase parameters and Histogram-and-phase parameters.

Note that optionally a list of histograms and/or phases can be supplied in the call to
set_refinement(), but if not specified, the default is to use all defined
phases and histograms.

As an example:

pardict = {'set': { 'Limits': [0.8, 12.0],
 'Sample Parameters': ['Absorption', 'Contrast', 'DisplaceX'],
 'Background': {'type': 'chebyschev-1', 'refine': True,
 'peaks':[[0,True],[1,1,1]] }},
 'clear': {'Instrument Parameters': ['U', 'V', 'W']}}
my_project.set_refinement(pardict)

16.4.2. Refinement recipe

Building on the Project-level Parameter Dict,
it is possible to specify a sequence of refinement actions as a list of
these dicts and supplying this list
as an argument to do_refinements().

As an example, this code performs the same actions as in the example in the section above:

pardict = {'set': { 'Limits': [0.8, 12.0],
 'Sample Parameters': ['Absorption', 'Contrast', 'DisplaceX'],
 'Background': {'type': 'chebyschev-1', 'refine': True}},
 'clear': {'Instrument Parameters': ['U', 'V', 'W']}}
my_project.do_refinements([pardict])

However, in addition to setting a number of parameters, this example will perform a refinement as well,
after setting the parameters. More than one refinement can be performed by including more
than one dict in the list.

In this example, two refinement steps will be performed:

my_project.do_refinements([pardict,pardict1])

The keys defined in the following table
may be used in a dict supplied to do_refinements(). Note that keys histograms
and phases are used to limit actions to specific sets of parameters within the project.

	key

	explanation

	set

	Specifies a dict with keys and subkeys as described in the
Specifying Refinement Parameters section. Items listed here
will be set to be refined.

	clear

	Specifies a dict, as above for set, except that parameters are
cleared and thus will not be refined.

	once

	Specifies a dict as above for set, except that parameters are
set for the next cycle of refinement and are cleared once the
refinement step is completed.

	skip

	Normally, once parameters are processed with a set/clear/once
action(s), a refinement is started. If skip is defined as True
(or any other value) the refinement step is not performed.

	output

	If a file name is specified for output is will be used to save
the current refinement.

	histograms

	Should contain a list of histogram(s) to be used for the
set/clear/once action(s) on Histogram parameters or
Histogram-and-phase parameters. Note that this will be
ignored for Phase parameters. Histograms may be
specified as a list of strings [(‘PWDR …’),…], indices
[0,1,2] or as list of objects [hist1, hist2].

	phases

	Should contain a list of phase(s) to be used for the
set/clear/once action(s) on Phase parameters or
Histogram-and-phase parameters. Note that this will be
ignored for Histogram parameters.
Phases may be specified as a list of strings
[(‘Phase name’),…], indices [0,1,2] or as list of objects
[phase0, phase2].

	call

	Specifies a function to call after a refinement is completed.
The value supplied can be the object (typically a function)
that will be called or a string that will evaluate (in the
namespace inside
iter_refinements() where
self references the project.)
Nothing is called if this is not specified.

	callargs

	Provides a list of arguments that will be passed to the function
in call (if any). If call is defined and callargs is not, the
current <tt>G2Project</tt> is passed as a single argument.

An example that performs a series of refinement steps follows:

reflist = [
 {"set": { "Limits": { "low": 0.7 },
 "Background": { "no. coeffs": 3,
 "refine": True }}},
 {"set": { "LeBail": True,
 "Cell": True }},
 {"set": { "Sample Parameters": ["DisplaceX"]}},
 {"set": { "Instrument Parameters": ["U", "V", "W", "X", "Y"]}},
 {"set": { "Mustrain": { "type": "uniaxial",
 "refine": "equatorial",
 "direction": [0, 0, 1]}}},
 {"set": { "Mustrain": { "type": "uniaxial",
 "refine": "axial"}}},
 {"clear": { "LeBail": True},
 "set": { "Atoms": { "Mn": "X" }}},
 {"set": { "Atoms": { "O1": "X", "O2": "X" }}},]
my_project.do_refinements(reflist)

In this example, a separate refinement step will be performed for each dict in the list. The keyword
“skip” can be used to specify a dict that should not include a refinement.
Note that in the second from last refinement step, parameters are both set and cleared.

16.4.3. Refinement parameter types

Note that parameters and refinement flags used in GSAS-II fall into three classes:

	Histogram: There will be a set of these for each dataset loaded into a
project file. The parameters available depend on the type of histogram
(Bragg-Brentano, Single-Crystal, TOF,…). Typical Histogram parameters
include the overall scale factor, background, instrument and sample parameters;
see the Histogram parameters table for a list of the histogram
parameters where access has been provided.

	Phase: There will be a set of these for each phase loaded into a
project file. While some parameters are found in all types of phases,
others are only found in certain types (modulated, magnetic, protein…).
Typical phase parameters include unit cell lengths and atomic positions; see the
Phase parameters table for a list of the phase
parameters where access has been provided.

	Histogram-and-phase (HAP): There is a set of these for every histogram
that is associated with each phase, so that if there are N phases and M
histograms, there can be N*M total sets of “HAP” parameters sets (fewer if all
histograms are not linked to all phases.) Typical HAP parameters include the
phase fractions, sample microstrain and crystallite size broadening terms,
hydrostatic strain perturbations of the unit cell and preferred orientation
values.
See the Histogram-and-phase parameters table for the HAP parameters where access has
been provided.

16.5. Specifying Refinement Parameters

Refinement parameter values and flags to turn refinement on and off are specified within dictionaries,
where the details of these dicts are organized depends on the
type of parameter (see Refinement parameter types), with a different set
of keys (as described below) for each of the three types of parameters.

16.5.1. Histogram parameters

This table describes the dictionaries supplied to set_refinements()
and clear_refinements(). As an example,

hist.set_refinements({"Background": {"no. coeffs": 3, "refine": True},
 "Sample Parameters": ["Scale"],
 "Limits": [10000, 40000]})

With do_refinements(), these parameters should be placed inside a dict with a key
set, clear, or once. Values will be set for all histograms, unless the histograms
key is used to define specific histograms. As an example:

gsas_proj.do_refinements([
 {'set': {
 'Background': {'no. coeffs': 3, 'refine': True},
 'Sample Parameters': ['Scale'],
 'Limits': [10000, 40000]},
 'histograms': [1,2]}
])

Note that below in the Instrument Parameters section,
related profile parameters (such as U and V) are grouped together but
separated by commas to save space in the table.

	key

	subkey

	explanation

	Limits

	
	The range of 2-theta (degrees) or TOF (in
microsec) range of values to use. Can
be either a dictionary of ‘low’ and/or ‘high’,
or a list of 2 items [low, high]

	

	low

	Sets the low limit

	

	high

	Sets the high limit

	Sample Parameters

	
	Should be provided as a list of subkeys
to set or clear,e.g. [‘DisplaceX’, ‘Scale’]

	

	Absorption

	

	

	Contrast

	

	

	DisplaceX

	Sample displacement along the X direction

	

	DisplaceY

	Sample displacement along the Y direction

	

	Scale

	Histogram Scale factor

	Background

	
	Sample background. Value will be a dict or
a boolean. If True or False, the refine
parameter for background is set to that.
Note that background peaks are not handled
via this; see
ref_back_peak() instead.
When value is a dict,
supply any of the following keys:

	

	type

	The background model, e.g. ‘chebyschev-1’

	

	refine

	The value of the refine flag, boolean

	

	‘no. coeffs’

	Number of coefficients to use, integer

	

	coeffs

	List of floats, literal values for background

	

	FixedPoints

	List of (2-theta, intensity) values for fixed points

	

	‘fit fixed points’

	If True, triggers a fit to the fixed points to
be calculated. It is calculated when this key is
detected, regardless of calls to refine.

	

	peaks

	Specifies a set of flags for refining
background peaks as a nested list. There may
be an item for each defined background peak
(or fewer) and each item is a list with the flag
values for pos,int,sig & gam (fewer than 4 values
are allowed).

	Instrument Parameters

	
	As in Sample Parameters, provide as a list of
subkeys to
set or clear, e.g. [‘X’, ‘Y’, ‘Zero’, ‘SH/L’]

	

	U, V, W

	Gaussian peak profile terms

	

	X, Y, Z

	Lorentzian peak profile terms

	

	alpha, beta-0,
beta-1, beta-q,

	TOF profile terms

	

	sig-0, sig-1,
sig-2, sig-q

	TOF profile terms

	

	difA, difB, difC

	TOF Calibration constants

	

	Zero

	Zero shift

	

	SH/L

	Finger-Cox-Jephcoat low-angle peak asymmetry

	

	Polariz.

	Polarization parameter

	

	Lam

	Lambda, the incident wavelength

16.5.2. Phase parameters

This table describes the dictionaries supplied to set_refinements()
and clear_refinements(). With do_refinements(),
these parameters should be placed inside a dict with a key
set, clear, or once. Values will be set for all phases, unless the phases
key is used to define specific phase(s).

	key

	explanation

	Cell

	Whether or not to refine the unit cell.

	Atoms

	Dictionary of atoms and refinement flags.
Each key should be an atom label, e.g.
‘O3’, ‘Mn5’, and each value should be
a string defining what values to refine.
Values can be any combination of ‘F’
for site fraction, ‘X’ for position,
and ‘U’ for Debye-Waller factor

	LeBail

	Enables LeBail intensity extraction.

16.5.3. Histogram-and-phase parameters

This table describes the dictionaries supplied to set_HAP_refinements()
and clear_HAP_refinements(). When supplied to
do_refinements(), these parameters should be placed inside a dict with a key
set, clear, or once. Values will be set for all histograms used in each phase,
unless the histograms and phases keys are used to define specific phases and histograms.

	key

	subkey

	explanation

	Babinet

	
	Should be a list of the following
subkeys. If not, assumes both
BabA and BabU

	

	BabA

	

	

	BabU

	

	Extinction

	
	Boolean, True to refine.

	HStrain

	
	Boolean or list/tuple, True to refine all
appropriate Dij terms or False
to not refine any. If a list/tuple, will
be a set of True & False values for each
Dij term; number of items must
match number of terms.

	Mustrain

	
	

	

	type

	Mustrain model. One of ‘isotropic’,
‘uniaxial’, or ‘generalized’. This should
be specified to change the model.

	

	direction

	For uniaxial only. A list of three
integers,
the [hkl] direction of the axis.

	

	refine

	Usually boolean, set to True to refine.
or False to clear.
For uniaxial model, can specify a value
of ‘axial’ or ‘equatorial’ to set that flag
to True or a single
boolean sets both axial and equatorial.

	Size

	
	

	

	type

	Size broadening model. One of ‘isotropic’,
‘uniaxial’, or ‘ellipsoid’. This should
be specified to change from the current.

	

	direction

	For uniaxial only. A list of three
integers,
the [hkl] direction of the axis.

	

	refine

	Boolean, True to refine.

	

	value

	float, size value in microns

	Pref.Ori.

	
	Boolean, True to refine

	Show

	
	Boolean, True to refine

	Use

	
	Boolean, True to refine

	Scale

	
	Phase fraction; Boolean, True to refine

16.5.4. Histogram/Phase objects

Each phase and powder histogram in a G2Project object has an associated
object. Parameters within each individual object can be turned on and off by calling
set_refinements() or clear_refinements()
for histogram parameters;
set_refinements() or clear_refinements()
for phase parameters; and set_HAP_refinements() or
clear_HAP_refinements(). As an example, if some_histogram is a histogram object (of type G2PwdrData), use this to set parameters in that histogram:

params = { 'Limits': [0.8, 12.0],
 'Sample Parameters': ['Absorption', 'Contrast', 'DisplaceX'],
 'Background': {'type': 'chebyschev-1', 'refine': True}}
some_histogram.set_refinements(params)

Likewise to turn refinement flags on, use code such as this:

params = { 'Instrument Parameters': ['U', 'V', 'W']}
some_histogram.set_refinements(params)

and to turn these refinement flags, off use this (Note that the
.clear_refinements() methods will usually will turn off refinement even
if a refinement parameter is set in the dict to True.):

params = { 'Instrument Parameters': ['U', 'V', 'W']}
some_histogram.clear_refinements(params)

For phase parameters, use code such as this:

params = { 'LeBail': True, 'Cell': True,
 'Atoms': { 'Mn1': 'X',
 'O3': 'XU',
 'V4': 'FXU'}}
some_histogram.set_refinements(params)

and here is an example for HAP parameters:

params = { 'Babinet': 'BabA',
 'Extinction': True,
 'Mustrain': { 'type': 'uniaxial',
 'direction': [0, 0, 1],
 'refine': True}}
some_phase.set_HAP_refinements(params)

Note that the parameters must match the object type and method (phase vs. histogram vs. HAP).

16.6. Access to other parameter settings

There are several hundred different types of values that can be stored in a
GSAS-II project (.gpx) file. All can be changed from the GUI but only a
subset have direct mechanism implemented for change from the GSASIIscriptable
API. In practice all parameters in a .gpx file can be edited via scripting,
but sometimes determining what should be set to implement a parameter
change can be complex.
Several routines, getHAPentryList(),
getPhaseEntryList() and getHistEntryList()
(and their related get…Value and set.Value entries),
provide a mechanism to discover what the GUI is changing inside a .gpx file.

As an example, a user in changing the data type for a histogram from Debye-Scherrer
mode to Bragg-Brentano. This capability is not directly exposed in the API. To
find out what changes when the histogram type is changed we can create a short script
that displays the contents of all the histogram settings:

from __future__ import division, print_function
import os,sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII')
import GSASIIscriptable as G2sc
gpx = G2sc.G2Project('/tmp/test.gpx')
h = gpx.histograms()[0]
for h in h.getHistEntryList():
 print(h)

This can be run with a command like this:

python test.py > before.txt

(This will create file before.txt, which will contain hundreds of lines.)

At this point open the project file, test.gpx in the GSAS-II GUI and
change in Histogram/Sample Parameters the diffractometer type from Debye-Scherrer
mode to Bragg-Brentano and then save the file.

Rerun the previous script creating a new file:

python test.py > after.txt

Finally look for the differences between files before.txt and after.txt using a tool
such as diff (on Linux/OS X) or fc (in Windows).

in Windows:

Z:\>fc before.txt after.txt
Comparing files before.txt and after.txt
***** before.txt
 fill_value = 1e+20)
, 'PWDR Co_PCP_Act_d900-00030.fxye Bank 1', 'PWDR Co_PCP_Act_d900-00030.fxye Ban
k 1'])
(['Comments'], <class 'list'>, ['Co_PCP_Act_d900-00030.tif #0001 Azm= 180.00'])
***** AFTER.TXT
 fill_value = 1e+20)
, 'PWDR Co_PCP_Act_d900-00030.fxye Bank 1', 'PWDR Co_PCP_Act_d900-00030.fxye Ban
k 1', 'PWDR Co_PCP_Act_d900-00030.fxye Bank 1']

(['Comments'], <class 'list'>, ['Co_PCP_Act_d900-00030.tif #0001 Azm= 180.00'])

***** before.txt
(['Sample Parameters', 'Scale'], <class 'list'>, [1.276313196832068, True])
(['Sample Parameters', 'Type'], <class 'str'>, 'Debye-Scherrer')
(['Sample Parameters', 'Absorption'], <class 'list'>, [0.0, False])
***** AFTER.TXT
(['Sample Parameters', 'Scale'], <class 'list'>, [1.276313196832068, True])
(['Sample Parameters', 'Type'], <class 'str'>, 'Bragg-Brentano')
(['Sample Parameters', 'Absorption'], <class 'list'>, [0.0, False])

in Linux/Mac:

bht14: toby$ diff before.txt after.txt
103c103
< , 'PWDR Co_PCP_Act_d900-00030.fxye Bank 1', 'PWDR Co_PCP_Act_d900-00030.fxye Bank 1'])

> , 'PWDR Co_PCP_Act_d900-00030.fxye Bank 1', 'PWDR Co_PCP_Act_d900-00030.fxye Bank 1', 'PWDR Co_PCP_Act_d900-00030.fxye Bank 1'])
111c111
< (['Sample Parameters', 'Type'], <class 'str'>, 'Debye-Scherrer')

> (['Sample Parameters', 'Type'], <class 'str'>, 'Bragg-Brentano')

From this we can see there are two changes that took place. One is fairly obscure,
where the histogram name is added to a list, which can be ignored, but the second change
occurs in a straight-forward way and we discover that a simple call:

h.setHistEntryValue(['Sample Parameters', 'Type'], 'Bragg-Brentano')

can be used to change the histogram type.

16.7. Code Examples

Contents for Scripting Examples

	Shortcut for Scripting Access

	Peak Fitting

	Pattern Simulation

	Simple Refinement

	Sequential Refinement

	Image Processing

	Image Calibration

	Optimized Image Integration

	Multicore Image Integration

	Histogram Export

	Automatic Background

16.7.1. Shortcut for Scripting Access

As is seen in a number of the code examples, the location where GSAS-II is
specified in the GSAS-II script using commands such as

import sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII') # needed to "find" GSAS-II modules
import GSASIIscriptable as G2sc

An alternative to this is to “install” the current GSAS-II installation into the current
Python interpreter. Once this has been done a single time, this single command can be used to replace
the three commands listed above for all future uses of GSASIIscripting:

import G2script as G2sc

There are two ways this installation can be done. The most easy way is to invoke the
“Install GSASIIscriptable shortcut” command in the GSAS-II GUI
File menu. Alternatively it can be accomplished from within GSASIIscriptable
using these commands:

import sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII') # update this for your installation
import GSASIIscriptable as G2sc
G2sc.installScriptingShortcut()

An even simpler way to do this is from the command-line, from the GSAS-II directory.
A full path for Python is only needed if if the Python to be used with GSAS-II is not in the
path.

terrier:toby> cd /home/beams1/TOBY/gsas2full/GSASII/
terrier:toby> /mypath/bin/python -c "import GSASIIscriptable as G2sc; G2sc.installScriptingShortcut()"
GSAS-II binary directory: /home/beams1/TOBY/gsas2full/GSASII/bindist
Created file /home/beams1/TOBY/gsas2full/lib/python3.10/site-packages/G2script.py
setting up GSASIIscriptable from /home/beams1/TOBY/gsas2full/GSASII
success creating /home/beams1/TOBY/gsas2full/lib/python3.10/site-packages/G2script.py

Note the shortcut only installs use of GSAS-II with the current Python
installation. If more than one Python installation will be used with GSAS-II
(for example because different conda environments are used), a shortcut
should be created from within each Python environment.

If more than one GSAS-II installation will be used with a Python installation,
a shortcut can only be used with one of them.

16.7.2. Peak Fitting

Peak refinement is performed with routines
add_peak(), set_peakFlags() and
refine_peaks(). Method Export_peaks() and
properties Peaks and PeakList
provide ways to access the results. Note that when peak parameters are
refined with refine_peaks(), the background may also
be refined. Use set_refinements() to change background
settings and the range of data used in the fit. See below for an example
peak refinement script, where the data files are taken from the
“Rietveld refinement with CuKa lab Bragg-Brentano powder data” tutorial
(in https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/LabData/data/).

from __future__ import division, print_function
import os,sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII') # needed to "find" GSAS-II modules
import GSASIIscriptable as G2sc
datadir = os.path.expanduser("~/Scratch/peakfit")
PathWrap = lambda fil: os.path.join(datadir,fil)
gpx = G2sc.G2Project(newgpx=PathWrap('pkfit.gpx'))
hist = gpx.add_powder_histogram(PathWrap('FAP.XRA'), PathWrap('INST_XRY.PRM'),
 fmthint='GSAS powder')
hist.set_refinements({'Limits': [16.,24.],
 'Background': {"no. coeffs": 2,'type': 'chebyschev-1', 'refine': True}
 })
peak1 = hist.add_peak(1, ttheta=16.8)
peak2 = hist.add_peak(1, ttheta=18.9)
peak3 = hist.add_peak(1, ttheta=21.8)
peak4 = hist.add_peak(1, ttheta=22.9)
hist.set_peakFlags(area=True)
hist.refine_peaks()
hist.set_peakFlags(area=True,pos=True)
hist.refine_peaks()
hist.set_peakFlags(area=True, pos=True, sig=True, gam=True)
res = hist.refine_peaks()
print('peak positions: ',[i[0] for i in hist.PeakList])
for i in range(len(hist.Peaks['peaks'])):
 print('peak',i,'pos=',hist.Peaks['peaks'][i][0],'sig=',hist.Peaks['sigDict']['pos'+str(i)])
hist.Export_peaks('pkfit.txt')
#gpx.save() # gpx file is not written without this

16.7.3. Pattern Simulation

This shows two examples where a structure is read from a CIF, a
pattern is computed using a instrument parameter file to specify the
probe type (neutrons here) and wavelength.

The first example uses a CW neutron instrument parameter file.
The pattern is computed over a 2θ range of 5 to 120 degrees
with 1000 points.
The pattern and reflection list are written into files.
Data files are found in the
Scripting Tutorial [https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/PythonScript/data/].

import os,sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII')
import GSASIIscriptable as G2sc
datadir = "/Users/toby/software/G2/Tutorials/PythonScript/data"
PathWrap = lambda fil: os.path.join(datadir,fil)
gpx = G2sc.G2Project(newgpx='PbSO4sim.gpx') # create a project
phase0 = gpx.add_phase(PathWrap("PbSO4-Wyckoff.cif"),
 phasename="PbSO4",fmthint='CIF') # add a phase to the project
add a simulated histogram and link it to the previous phase(s)
hist1 = gpx.add_simulated_powder_histogram("PbSO4 simulation",
 PathWrap("inst_d1a.prm"),5.,120.,Npoints=1000,
 phases=gpx.phases(),scale=500000.)
gpx.do_refinements() # calculate pattern
gpx.save()
save results
gpx.histogram(0).Export('PbSO4data','.csv','hist') # data
gpx.histogram(0).Export('PbSO4refl','.csv','refl') # reflections

This example uses bank#2 from a TOF neutron instrument parameter file.
The pattern is computed over a TOF range of 14 to 35 milliseconds with
the default of 2500 points.
This uses the same CIF as in the example before, but the instrument is found in the
TOF-CW Joint Refinement Tutorial [https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/TOF-CWJointRefinement/data]
tutorial.

import os,sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII')
import GSASIIscriptable as G2sc
cifdir = "/Users/toby/software/G2/Tutorials/PythonScript/data"
datadir = "/Users/toby/software/G2/Tutorials/TOF-CW Joint Refinement/data"
gpx = G2sc.G2Project(newgpx='/tmp/PbSO4simT.gpx') # create a project
phase0 = gpx.add_phase(os.path.join(cifdir,"PbSO4-Wyckoff.cif"),
 phasename="PbSO4",fmthint='CIF') # add a phase to the project
hist1 = gpx.add_simulated_powder_histogram("PbSO4 simulation",
 os.path.join(datadir,"POWGEN_1066.instprm"),14.,35.,
 phases=gpx.phases(),ibank=2)
gpx.do_refinements([{}])
gpx.save()

16.7.4. Simple Refinement

GSASIIscriptable can be used to setup and perform simple refinements.
This example reads in an existing project (.gpx) file, adds a background
peak, changes some refinement flags and performs a refinement.

from __future__ import division, print_function
import os,sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII') # needed to "find" GSAS-II modules
import GSASIIscriptable as G2sc
datadir = "/Users/Scratch/"
gpx = G2sc.G2Project(os.path.join(datadir,'test2.gpx'))
gpx.histogram(0).add_back_peak(4.5,30000,5000,0)
pardict = {'set': {'Sample Parameters': ['Absorption', 'Contrast', 'DisplaceX'],
 'Background': {'type': 'chebyschev-1', 'refine': True,
 'peaks':[[0,True]]}}}
gpx.set_refinement(pardict)

16.7.5. Sequential Refinement

GSASIIscriptable can be used to setup and perform sequential refinements. This example script
is used to take the single-dataset fit at the end of Step 1 of the
Sequential Refinement tutorial [https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/SeqRefine/SequentialTutorial.htm]
and turn on and off refinement flags, add histograms and setup the sequential fit, which is then run:

import os,sys,glob
sys.path.insert(0,'/Users/toby/software/G2/GSASII')
import GSASIIscriptable as G2sc
datadir = os.path.expanduser("~/Scratch/SeqTut2019Mar")
PathWrap = lambda fil: os.path.join(datadir,fil)
load and rename project
gpx = G2sc.G2Project(PathWrap('7Konly.gpx'))
gpx.save(PathWrap('SeqRef.gpx'))
turn off some variables; turn on Dijs
for p in gpx.phases():
 p.set_refinements({"Cell": False})
gpx.phase(0).set_HAP_refinements(
 {'Scale': False,
 "Size": {'type':'isotropic', 'refine': False},
 "Mustrain": {'type':'uniaxial', 'refine': False},
 "HStrain":True,})
gpx.phase(1).set_HAP_refinements({'Scale': False})
gpx.histogram(0).clear_refinements({'Background':False,
 'Sample Parameters':['DisplaceX'],})
gpx.histogram(0).ref_back_peak(0,[])
gpx.phase(1).set_HAP_refinements({"HStrain":(1,1,1,0)})
for fil in sorted(glob.glob(PathWrap('*.fxye'))): # load in remaining fxye files
 if '00' in fil: continue
 gpx.add_powder_histogram(fil, PathWrap('OH_00.prm'), fmthint="GSAS powder",phases='all')
copy HAP values, background, instrument params. & limits, not sample params.
gpx.copyHistParms(0,'all',['b','i','l'])
for p in gpx.phases(): p.copyHAPvalues(0,'all')
setup and launch sequential fit
gpx.set_Controls('sequential',gpx.histograms())
gpx.set_Controls('cycles',10)
gpx.set_Controls('seqCopy',True)
gpx.refine()

16.7.6. Image Processing

A sample script where an image is read, assigned calibration values from a file
and then integrated follows.
The data files are found in the
Scripting Tutorial [https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/PythonScript/data/].

import os,sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII')
import GSASIIscriptable as G2sc
datadir = "/tmp"
PathWrap = lambda fil: os.path.join(datadir,fil)

gpx = G2sc.G2Project(newgpx=PathWrap('inttest.gpx'))
imlst = gpx.add_image(PathWrap('Si_free_dc800_1-00000.tif'),fmthint="TIF")
imlst[0].loadControls(PathWrap('Si_free_dc800_1-00000.imctrl'))
pwdrList = imlst[0].Integrate()
gpx.save()

This example shows a computation similar to what is done in tutorial
Area Detector Calibration with Multiple Distances [https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/DeterminingWavelength/DeterminingWavelength.html]

import os,sys,glob
sys.path.insert(0,'/Users/toby/software/G2/GSASII')
import GSASIIscriptable as G2sc
PathWrap = lambda fil: os.path.join(
 "/Users/toby/wp/Active/MultidistanceCalibration/multimg",
 fil)

gpx = G2sc.G2Project(newgpx='/tmp/img.gpx')
for f in glob.glob(PathWrap('*.tif')):
 im = gpx.add_image(f,fmthint="TIF")
image parameter settings
defImgVals = {'wavelength': 0.24152, 'center': [206., 205.],
 'pixLimit': 2, 'cutoff': 5.0, 'DetDepth': 0.055,'calibdmin': 1.,}
set controls and vary options, then fit
for img in gpx.images():
 img.setCalibrant('Si SRM640c')
 img.setVary('*',False)
 img.setVary(['det-X', 'det-Y', 'phi', 'tilt', 'wave'], True)
 img.setControls(defImgVals)
 img.Recalibrate()
 img.Recalibrate() # 2nd run better insures convergence
gpx.save()
make dict of images for sorting
images = {img.getControl('setdist'):img for img in gpx.images()}
show values
for key in sorted(images.keys()):
 img = images[key]
 c = img.getControls()
 print(c['distance'],c['wavelength'])

16.7.7. Image Calibration

This example performs a number of cycles of constrained fitting.
A project is created with the images found in a directory, setting initial
parameters as the images are read. The initial values
for the calibration are not very good, so a Recalibrate() is done
to quickly improve the fit. Once that is done, a fit of all images is performed
where the wavelength, an offset and detector orientation are constrained to
be the same for all images. The detector penetration correction is then added.
Note that as the calibration values improve, the algorithm is able to find more
points on diffraction rings to use for calibration and the number of “ring picks”
increase. The calibration is repeated until that stops increasing significantly (<10%).
Detector control files are then created.
The files used for this exercise are found in the
Area Detector Calibration Tutorial [https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/DeterminingWavelength/data/]
(see
Area Detector Calibration with Multiple Distances [https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/DeterminingWavelength/DeterminingWavelength.html]).

import os,sys,glob
sys.path.insert(0,'/Users/toby/software/G2/GSASII')
import GSASIIscriptable as G2sc
PathWrap = lambda fil: os.path.join(
 "/Users/toby/wp/Active/MultidistanceCalibration/multimg",
 fil)

gpx = G2sc.G2Project(newgpx='/tmp/calib.gpx')
for f in glob.glob(PathWrap('*.tif')):
 im = gpx.add_image(f,fmthint="TIF")
starting image parameter settings
defImgVals = {'wavelength': 0.240, 'center': [206., 205.],
 'pixLimit': 2, 'cutoff': 5.0, 'DetDepth': 0.03,'calibdmin': 0.5,}
set controls and vary options, then initial fit
for img in gpx.images():
 img.setCalibrant('Si SRM640c')
 img.setVary('*',False)
 img.setVary(['det-X', 'det-Y', 'phi', 'tilt', 'wave'], True)
 img.setControls(defImgVals)
 if img.getControl('setdist') > 900:
 img.setControls({'calibdmin': 1.,})
 img.Recalibrate()
G2sc.SetPrintLevel('warn') # cut down on output
result,covData = gpx.imageMultiDistCalib()
print('1st global fit: initial ring picks',covData['obs'])
print({i:result[i] for i in result if '-' not in i})
add parameter to all images & refit multiple times
for img in gpx.images(): img.setVary('dep',True)
ringpicks = covData['obs']
delta = ringpicks
while delta > ringpicks/10:
 result,covData = gpx.imageMultiDistCalib(verbose=False)
 delta = covData['obs'] - ringpicks
 print('ring picks went from',ringpicks,'to',covData['obs'])
 print({i:result[i] for i in result if '-' not in i})
 ringpicks = covData['obs']
once more for good measure & printout
result,covData = gpx.imageMultiDistCalib(verbose=True)
create image control files
for img in gpx.images():
 img.saveControls(os.path.splitext(img.name)[0]+'.imctrl')
gpx.save()

16.7.8. Optimized Image Integration

This example shows how image integration, including pixel masking of outliers,
can be accomplished for a series of images where the calibration and
other masking (Frame, Spots, etc) are the same for all images. This code has been optimized
significantly so that computations are cached and are not repeated where possible. For one
set of test data, processing of the first image takes ~5 seconds, but processing of subsequent
takes on the order of 0.7 sec.

This code uses an import G2script as G2sc statement to access GSASIIscriptable
without referencing the GSAS-II installation directory. This requires installing a reference to
the GSAS-II location into the current a Python installation, which can be done from the GUI
or with scripting commands, as is discussed in Shortcut for Scripting Access. Here
function installScriptingShortcut() was used to create
the G2script module. That code has been retained here as comments to show what was done.

To simplify use of this script, it is assumed that the script will be placed in the same
directory as where the data files will be collected. Other customization is done
in variables at the beginning of the code. Note that the beamline where these data are collected
opens the output .tif files before the data collection for that image is complete. Once the .metadata
file has been created, the image may be read.

	Processing progresses as follows:
	
	Once a set of images are found, a project is created. This is never written and will be deleted after the images are processed.

	For each image file, routine add_image() is used to add image(s) from that file to the project. The .tif format can only hold one image, but others can have more than one.

	When the first image is processed, calibration and mask info is read; a number of computations are performed and cached.

	For subsequent images cached information is used.

	Pixel masking is performed in GeneratePixelMask() and the mask is saved into the image.

	Image integration is performed in Integrate().

	Note that multiple powder patterns could be created from one image, so creation of data files is done in a loop with Export().

	To reduce memory demands, cached versions of the Pixel map and the Image are deleted and the image file is moved to a separate directory so note that it has been processed.

	The project (.gpx file) is deleted and recreated periodically so that the memory footprint for this script does not grow.

The speed of this code will depend on many things, but the number of pixels in the
image is primary, as well as CPU speed. With ~9 Mb images, I have seen average times in the range of 0.7 to 0.9 sec/image, after the first image is processed and the cached arrays are computed. With the Apple M1 chip the time is closer to 0.6 sec/image.
There is also a possible tuning parameter that may change speed based on the speed of the CPU vs. memory
constraints in variable GSASIIscriptable.blkSize. This value should be a power of two and defaults to
128. You might find that a larger or smaller value will improve performance for you.

import os,glob,time,shutil

Create G2script: do this once
#import sys
#sys.path.insert(0,'/Users/toby/software/G2/GSASII') # update with your install loc
#import GSASIIscriptable as G2sc
#G2sc.installScriptingShortcut()
###

import G2script as G2sc
G2sc.blkSize = 2**8 # computer-dependent tuning parameter
G2sc.SetPrintLevel('warn') # reduces output

cache = {} # place to save intermediate computations
define location & names of files
dataLoc = os.path.abspath(os.path.split(__file__)[0]) # data in location of this file
PathWrap = lambda fil: os.path.join(dataLoc,fil) # convenience function for file paths
imgctrl = PathWrap('Si_ch3_d700-00000.imctrl')
imgmask = PathWrap('Si_ch3_d700-00000.immask')
globPattern = PathWrap("*_d700-*.tif")

def wait_for_metadata(tifname):
 '''A .tif file is created before it can be read. Wait for the
 metadata file to be created before trying to read both.
 '''
 while not os.path.exists(tifname + '.metadata'):
 time.sleep(0.05)

make a subfolder to store integrated images & integrated patterns
pathImg = os.path.join(dataLoc,'img')
if not os.path.exists(pathImg): os.mkdir(pathImg)
pathxye = os.path.join(dataLoc,'xye')
if not os.path.exists(pathxye): os.mkdir(pathxye)

while True: # Loop will never end, stop with ctrl+C
 tiflist = sorted(glob.glob(globPattern),key=lambda x: os.path.getctime(x)) # get images sorted by creation time, oldest 1st
 if not tiflist:
 time.sleep(0.1)
 continue
 gpx = G2sc.G2Project(newgpx=PathWrap('integration.gpx')) # temporary use
 for tifname in tiflist:
 starttime = time.time()
 wait_for_metadata(tifname)
 for img in gpx.add_image(tifname,fmthint="TIF",cacheImage=True): # loop unneeded for TIF (1 image/file)
 if not cache: # load & compute controls & 2theta values once
 img.loadControls(imgctrl) # set controls/calibrations/masks
 img.loadMasks(imgmask)
 cache['Image Controls'] = img.getControls() # save controls & masks contents for quick reload
 cache['Masks'] = img.getMasks()
 cache['intMaskMap'] = img.IntMaskMap() # calc mask & TA arrays to save for integrations
 cache['intTAmap'] = img.IntThetaAzMap()
 cache['FrameMask'] = img.MaskFrameMask() # calc Frame mask & T array to save for Pixel masking
 cache['maskTmap'] = img.MaskThetaMap()
 else:
 img.setControls(cache['Image Controls'])
 img.setMasks(cache['Masks'],True) # True: reset threshold masks
 img.GeneratePixelMask(esdMul=3,ThetaMap=cache['maskTmap'],FrameMask=cache['FrameMask'])
 for pwdr in img.Integrate(MaskMap=cache['intMaskMap'],ThetaAzimMap=cache['intTAmap']):
 pwdr.Export(os.path.join(pathxye,os.path.split(tifname)[1]),'.xye') # '.tif in name ignored
 img.clearImageCache() # save some space
 img.clearPixelMask()
 shutil.move(tifname, pathImg) # move file after integration so that it is not searchable
 shutil.move(tifname + '.metadata', pathImg)
 print('*=== processing complete, time=',time.time()-starttime,'sec\n')
 del gpx

16.7.9. Multicore Image Integration

The previous example (Optimized Image Integration) can be accelerated even further
on a multicore computer using the following script. In this example,
the image integration is moved to a function, integrate_tif, that accepts
a filename to integrate. Note that with the multiprocessing module is used,
the script will be read on each core that will be used, but only on the primary
(controller) process will this __name__ == '__main__' be True.
Thus the code following the if statement runs on the primary process.
The primary process uses the mp.Pool() statement to create a set of
secondary (worker) processes that are intended to run on other cores.
The primary process locates .tif files, if the corresponding
.tif.metadata is also found, both are moved to a separate directory where they
will be processed in a secondary process. When the secondary process starts,
the script is imported and then integrate_tif is called with the name of the
image file from the primary process. The integrate_tif routine
will initially have an empty cache and thus the code preceeded by
“load & compute controls & 2theta values” will be computed once for every
secondary process, which should be on an independent core. The size of the pool
determines how many images will be processed simultaneously.

The script as given below uses the first argument on the command
line to specify the number of cores to be used, where 0 is used to
mean run integrate_tif directly rather than through a pool. This
facilitates timing comparisons.
This code seems to have a maximum speed using slightly less than the
total number of available cores and does benefit partially from
hyperthreading. A two- to three-fold speedup is seen with four cores and a
six-fold speedup has been seen with 16 cores.

import os,sys,glob,time,shutil
scriptstart = time.time()

if len(sys.argv) >= 2:
 nodes = int(sys.argv[1])
else:
 nodes = 4

if nodes == 0:
 print('no multiprocessing')
else:
 print(f'multiprocessing with {nodes} cores')

import G2script as G2sc
G2sc.blkSize = 2**8 # computer-dependent tuning parameter
#G2sc.SetPrintLevel('warn')

cache = {} # place to save intermediate computations

define location & names of files
dataLoc = '/dataserv/inttest' # images found here
globPattern = os.path.join(dataLoc,"*_d700-*.tif")
calibLoc = os.path.abspath(os.path.split(__file__)[0]) # calib in location of this file
imgctrl = os.path.join(calibLoc,'Si_ch3_d700-00000.imctrl')
imgmask = os.path.join(calibLoc,'Si_ch3_d700-00000.immask')
locations to put processed files
pathImg = os.path.join(dataLoc,'img')
pathxye = os.path.join(dataLoc,'xye')

def integrate_tif(tifname):
 starttime = time.time()
 gpx = G2sc.G2Project(newgpx='integration.gpx') # temporary use, not written
 for img in gpx.add_image(tifname,fmthint="TIF",cacheImage=True): # loop unneeded for TIF (1 image/file)
 img.setControl('pixelSize',[150,150])
 if not cache: # load & compute controls & 2theta values once
 print('Initializing cache for',tifname)
 img.loadControls(imgctrl) # set controls/calibrations/masks
 img.loadMasks(imgmask)
 cache['Image Controls'] = img.getControls() # save file contents for quick reload
 cache['Masks'] = img.getMasks()
 cache['intMaskMap'] = img.IntMaskMap() # calc mask & TA arrays to save for integrations
 cache['intTAmap'] = img.IntThetaAzMap()
 cache['FrameMask'] = img.MaskFrameMask() # calc Frame mask & T array to save for Pixel masking
 cache['maskTmap'] = img.MaskThetaMap()
 else:
 img.setControls(cache['Image Controls'])
 img.setMasks(cache['Masks'],True) # not using threshold masks
 img.GeneratePixelMask(esdMul=3,ThetaMap=cache['maskTmap'],FrameMask=cache['FrameMask'])
 for pwdr in img.Integrate(MaskMap=cache['intMaskMap'],ThetaAzimMap=cache['intTAmap']):
 pwdr.Export(os.path.join(pathxye,os.path.split(tifname)[1]),'.xye') # '.tif in name ignored
 img.clearImageCache() # save some space
 img.clearPixelMask()

 print(f'*=== image processed, time={time.time()-starttime:.3f} sec\n')
 del gpx

if __name__ == '__main__':
 if nodes > 0: import multiprocessing as mp

 # make folder to store integrated images & integrated patterns if needed
 if not os.path.exists(pathImg): os.mkdir(pathImg)
 if not os.path.exists(pathxye): os.mkdir(pathxye)

 if nodes > 0: pool = mp.Pool(nodes)

 while True: # Loop will never end, stop with ctrl+C
 tiflist = sorted(glob.glob(globPattern),key=lambda x: os.path.getctime(x)) # get images sorted by creation time, oldest 1st
 if not tiflist:
 time.sleep(0.1)
 continue
 intlist = [] # list of images read to process
 for tifname in tiflist:
 if not os.path.exists(tifname + '.metadata'): continue
 shutil.move(tifname, pathImg) # move file before integration so that it is not found in another search
 shutil.move(tifname + '.metadata', pathImg)
 intlist.append(os.path.join(pathImg,os.path.split(tifname)[1]))
 if nodes == 0:
 for newtifname in intlist: integrate_tif(newtifname)
 else:
 pool.map(integrate_tif,intlist)

 if nodes > 0: pool.close()
 print(f'Total elapsed time={time.time()-scriptstart:.3f} sec')

16.7.10. Histogram Export

This example shows how to export a series of histograms from a collection of
.gpx (project) files. The Python glob() function is used to find all files
matching a wildcard in the specified directory (dataloc). For each file
there is a loop over histograms in that project and for each histogram
Export() is called to write out the contents of that histogram
as CSV (comma-separated variable) file that contains data positions,
observed, computed and background intensities as well as weighting for each
point and Q. Note that for the Export call, there is more than one choice of
exporter that can write .csv extension files, so the export hint must
be specified.

import os,sys,glob
sys.path.insert(0,'/Users/toby/software/G2/GSASII') # change this
import GSASIIscriptable as G2sc

dataloc = "/Users/toby/Scratch/" # where to find data
PathWrap = lambda fil: os.path.join(dataloc,fil) # EZ way 2 add dir to filename

for f in glob.glob(PathWrap('bkg*.gpx')): # put filename prefix here
 print(f)
 gpx = G2sc.G2Project(f)
 for i,h in enumerate(gpx.histograms()):
 hfil = os.path.splitext(f)[0]+'_'+str(i) # file to write
 print('\t',h.name,hfil+'.csv')
 h.Export(hfil,'.csv','histogram CSV')

16.7.11. Automatic Background

This example shows how to use the automatic background feature in GSAS-II to
compute an approximate background and set fixed background points from that
background. This approximately example follows that of the
Autobackground Tutorial [https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/AutoBkg/AutoBkg.html]. In this example, a new project is created and
the data files from the tutorial are read. Note that scripting is not able
to read files from inside a zip archive or use defaulted instrument parameters.
The histograms are then processed in turn.
The first step is to use calc_autobkg to compute the fixed background points.
The refinement flag is then set for the Chebyschev polynomial terms and three
background peaks are added with the width flag set for refinement. The first
call to fit_fixed_points() will refine the three Chebyschev terms and
the intensities of the three background peaks to fit the
fixed background points. The refinement flags for
the widths of the three background peaks are then set as well and the
refinement is repeated. The location of the third background peaks is added
and the refinement is repeated.
Finally, the number of Chebyschev polynomial terms is increased to six
and the refinement is repeated.

import os,glob
import G2script as G2sc
PathWrap = lambda fil: os.path.join('/tmp',fil)
gpx = G2sc.G2Project(newgpx=PathWrap('autobkg.gpx'))
for i in glob.glob(PathWrap('test_RampDown-*.xye')):
 hist = gpx.add_powder_histogram(i,PathWrap('testData.instprm'))
for hist in gpx.histograms('PWDR'):
 hist.calc_autobkg(logLam=3.5)
 hist.set_refinements({"Background": {"no. coeffs": 3, "refine": True}})
 for pk in [2.4,3.1,4.75]:
 hist.add_back_peak(pk,1000,1000,0,[False,True,False,False])
 hist.fit_fixed_points()
 for i in [0,1,2]: hist.ref_back_peak(i,[False,True,True,False])
 hist.fit_fixed_points()
 hist.ref_back_peak(2,[True,True,True,False])
 hist.fit_fixed_points()
 hist.set_refinements({"Background": {"no. coeffs": 6, "refine": True}})
 hist.fit_fixed_points()
 gpx.save()

16.8. GSASIIscriptable Command-line Interface

The routines described above are intended to be called from a Python script, but an
alternate way to access some of the same functionality is to
invoke the GSASIIscriptable.py script from
the command line usually from within a shell script or batch file.
This mode of accessing GSAS-II scripting does not appear to get much use and
is no longer being developed. Please do communicate to the developers if
keeping this mode of access would be of value in your work.

To use the command-line mode is done with a command like this:

python <path/>GSASIIscriptable.py <subcommand> <file.gpx> <options>

The following subcommands are defined:

	create, see create()

	add, see add()

	dump, see dump()

	refine, see refine()

	export, export()

	browse, see IPyBrowse()

Run:

python GSASIIscriptable.py --help

to show the available subcommands, and inspect each subcommand with
python GSASIIscriptable.py <subcommand> –help or see the documentation for each of the above routines.

16.8.1. Parameters in JSON files

The refine command requires two inputs: an existing GSAS-II project (.gpx) file and
a JSON format file
(see Introducing JSON [http://json.org/]) that contains a single dict.
This dict may have two keys:

	refinements:
	This defines the a set of refinement steps in a JSON representation of a
Refinement recipe list.

	code:
	This optionally defines Python code that will be executed after the project is loaded,
but before the refinement is started. This can be used to execute Python code to change
parameters that are not accessible via a Refinement recipe dict (note that the
project object is accessed with variable proj) or to define code that will be called
later (see key call in the Refinement recipe section.)

JSON website: Introducing JSON [http://json.org/].

16.9. API: Complete Documentation

Classes and routines defined in GSASIIscriptable follow.
A script will create one or more G2Project objects by reading
a GSAS-II project (.gpx) file or creating a new one and will then
perform actions such as adding a histogram (method G2Project.add_powder_histogram()),
adding a phase (method G2Project.add_phase()),
or setting parameters and performing a refinement
(method G2Project.do_refinements()).

To change settings within histograms, images and phases, one usually needs to use
methods inside G2PwdrData, G2Image or G2Phase.

	
class GSASIIscriptable.G2AtomRecord(data, indices, proj)

	Wrapper for an atom record. Allows many atom properties to be access
and changed. See the Atom Records description
for the details on what information is contained in an atom record.

Scripts should not try to create a G2AtomRecord object directly as
these objects are created via access from a G2Phase object.

Example showing some uses of G2AtomRecord methods:

>>> atom = some_phase.atom("O3")
>>> # We can access the underlying data structure (a list):
>>> atom.data
['O3', 'O-2', '', ...]
>>> # We can also use wrapper accessors to get or change atom info:
>>> atom.coordinates
(0.33, 0.15, 0.5)
>>> atom.coordinates = [1/3, .1, 1/2]
>>> atom.coordinates
(0.3333333333333333, 0.1, 0.5)
>>> atom.refinement_flags
u'FX'
>>> atom.ranId
4615973324315876477
>>> atom.occupancy
1.0

	
property ADP

	Get or set the associated atom’s Uiso or Uaniso value(s).
Use as x = atom.ADP to obtain the value(s) and
atom.ADP = x to set the value(s). For isotropic atoms
a single float value is returned (or used to set). For
anisotropic atoms a list of six values is used.

See also

adp_flag()
uiso()

	
property adp_flag

	Get the associated atom’s iso/aniso setting. The value
will be ‘I’ or ‘A’. No API provision is offered to change
this.

	
property coordinates

	Get or set the associated atom’s coordinates.
Use as x = atom.coordinates to obtain a tuple with
the three (x,y,z) values and atom.coordinates = (x,y,z)
to set the values.

Changes needed to adapt for changes in site symmetry have not yet been
implemented:

	
property element

	Parses element symbol from the atom type symbol for the atom
associated with the current object.

See also

type()

	
property label

	Get the associated atom’s label.
Use as x = atom.label to obtain the value and
atom.label = x to set the value.

	
property mult

	Get the associated atom’s multiplicity value. Should not be
changed by user.

	
property occupancy

	Get or set the associated atom’s site fraction.
Use as x = atom.occupancy to obtain the value and
atom.occupancy = x to set the value.

	
property ranId

	Get the associated atom’s Random Id number. Don’t change this.

	
property refinement_flags

	Get or set refinement flags for the associated atom.
Use as x = atom.refinement_flags to obtain the flags and
atom.refinement_flags = "XU" (etc) to set the value.

	
property type

	Get or set the associated atom’s type. Call as a variable
(x = atom.type) to obtain the value or use
atom.type = x to change the type. It is the user’s
responsibility to make sure that the atom type is valid;
no checking is done here.

See also

element()

	
property uiso

	A synonym for ADP() to be used for Isotropic atoms.
Get or set the associated atom’s Uiso value.
Use as x = atom.uiso to obtain the value and
atom.uiso = x to set the value. A
single float value is returned or used to set.

See also

adp_flag()
ADP()

	
class GSASIIscriptable.G2Image(data, name, proj, image=None)

	Wrapper for an IMG tree entry, containing an image and associated metadata.

Note that in a GSASIIscriptable script, instances of G2Image will be created by
calls to G2Project.add_image() or G2Project.images().
Scripts should not try to create a G2Image object directly as
G2Image.__init__() should be invoked from inside G2Project.

The object contains these class variables:

	G2Image.proj: contains a reference to the G2Project
object that contains this image

	G2Image.name: contains the name of the image

	G2Image.data: contains the image’s associated data in a dict,
as documented for the Image Data Structure.

	G2Image.image: optionally contains a cached the image to
save time in reloading. This is saved only when cacheImage=True
is specified when G2Project.add_image() is called.

Example use of G2Image:

>>> gpx = G2sc.G2Project(newgpx='itest.gpx')
>>> imlst = gpx.add_image(idata,fmthint="TIF")
>>> imlst[0].loadControls('stdSettings.imctrl')
>>> imlst[0].setCalibrant('Si SRM640c')
>>> imlst[0].loadMasks('stdMasks.immask')
>>> imlst[0].Recalibrate()
>>> imlst[0].setControl('outAzimuths',3)
>>> pwdrList = imlst[0].Integrate()

More detailed image processing examples are shown in the
Image Processing section of this chapter.

	
ControlList = {'bool': ['setRings', 'setDefault', 'centerAzm', 'fullIntegrate', 'DetDepthRef', 'showLines'], 'dict': ['varyList'], 'float': ['cutoff', 'setdist', 'wavelength', 'Flat Bkg', 'azmthOff', 'tilt', 'calibdmin', 'rotation', 'distance', 'DetDepth'], 'int': ['calibskip', 'pixLimit', 'edgemin', 'outChannels', 'outAzimuths'], 'list': ['GonioAngles', 'IOtth', 'LRazimuth', 'Oblique', 'PolaVal', 'SampleAbs', 'center', 'ellipses', 'linescan', 'pixelSize', 'range', 'ring', 'rings', 'size'], 'str': ['SampleShape', 'binType', 'formatName', 'color', 'type']}

	Defines the items known to exist in the Image Controls tree section
and the item’s data types. A few are not included here
(‘background image’, ‘dark image’, ‘Gain map’, and ‘calibrant’) because
these items have special set routines,
where references to entries are checked to make sure their values are
correct.

	
GeneratePixelMask(esdMul=3.0, ttmin=0.0, ttmax=180.0, FrameMask=None, ThetaMap=None, fastmode=True, combineMasks=False)

	Generate a Pixel mask with True at the location of pixels that are
statistical outliers (in comparison with others with the same 2theta
value.) The process for this is that a median is computed for pixels
within a small 2theta window and then the median difference is computed
from magnitude of the difference for those pixels from that median. The
medians are used for this rather than a standard deviation as the
computation used here is less sensitive to outliers.
(See GSASIIimage.AutoPixelMask() and
scipy.stats.median_abs_deviation() for more details.)

Mask is placed into the G2image object where it will be
accessed during integration. Note that this increases the .gpx file
size significantly; use clearPixelMask() to delete
this if it need not be saved.

This code is based on GSASIIimage.FastAutoPixelMask()
but has been modified to recycle expensive computations
where possible.

	Parameters:

	
	esdMul (float) – Significance threshold applied to remove
outliers. Default is 3. The larger this number, the fewer
“glitches” that will be removed.

	ttmin (float) – A lower 2theta limit to be used for pixel
searching. Pixels outside this region may be considered for
establishing the medians, but only pixels with 2theta >= ttmin
are masked. Default is 0.

	ttmax (float) – An upper 2theta limit to be used for pixel
searching. Pixels outside this region may be considered for
establishing the medians, but only pixels with 2theta < ttmax
are masked. Default is 180.

	FrameMask (np.array) – An optional precomputed Frame mask
(from MaskFrameMask()). Compute this once for
a series of similar images to reduce computational time.

	ThetaMap (np.array) – An optional precomputed array that
defines 2theta for each pixel, computed in
MaskThetaMap(). Compute this once for
a series of similar images to reduce computational time.

	fastmode (bool) – If True (default) fast Pixel map
searching is done if the C module is available. If the
module is not available or this is False, the pure Python
implementatruion is used. It is not clear why False is
ever needed.

	combineMasks (bool) – When True, the current Pixel mask
will be combined with any previous Pixel map. If False (the
default), the Pixel map from the current search will
replace any previous ones. The reason for use of this as
True would be where different esdMul values are
used for different regions of the image (by setting
ttmin & ttmax) so that the outlier level
can be tuned by combining different searches.

	
IntMaskMap()

	Computes a series of masking arrays for the current image (based on
mask input, but not calibration parameters or the image intensities).
See GSASIIimage.MakeMaskMap() for more details. The output from
this is optionally supplied as input to Integrate()).

Note this is not the same as pixel mask
searching (GeneratePixelMask()).

	
IntThetaAzMap()

	Computes the set of blocked arrays for 2theta-azimuth mapping from
the controls settings of the current image for image integration.
The output from this is optionally supplied as input to
Integrate(). Note that if not supplied, image
integration will compute this information as it is needed, but this
is a relatively slow computation so time can be saved by caching and
reusing this computation for other images that have the
same calibration parameters as the current image.

	
Integrate(name=None, MaskMap=None, ThetaAzimMap=None)

	Invokes an image integration (same as Image Controls/Integration/Integrate
menu command). All parameters will have previously been set with Image Controls
so no input is needed here. However, the optional parameters MaskMap
and ThetaAzimMap may be supplied to save computing these items more than
once, speeding integration of multiple images with the same
image/mask parameters.

Note that if integration is performed on an
image more than once, histogram entries may be overwritten. Use the name
parameter to prevent this if desired.

	Parameters:

	
	name (str) – base name for created histogram(s). If None (default),
the histogram name is taken from the image name.

	MaskMap (list) – from IntMaskMap()

	ThetaAzimMap (list) – from G2Image.IntThetaAzMap()

	Returns:

	a list of created histogram (G2PwdrData) objects.

	
MaskFrameMask()

	Computes a Frame mask from map input for the current image to be
used for a pixel mask computation in
GeneratePixelMask().
This is optional, as if not supplied, mask computation will compute
this, but this is a relatively slow computation and the
results computed here can be reused for other images that have the
same calibration parameters.

	
MaskThetaMap()

	Computes the theta mapping matrix from the controls settings
of the current image to be used for pixel mask computation
in GeneratePixelMask().
This is optional, as if not supplied, mask computation will compute
this, but this is a relatively slow computation and the
results computed here can be reused for other images that have the
same calibration parameters.

	
Recalibrate()

	Invokes a recalibration fit (same as Image Controls/Calibration/Recalibrate
menu command). Note that for this to work properly, the calibration
coefficients (center, wavelength, distance & tilts) must be fairly close.
This may produce a better result if run more than once.

	
TestFastPixelMask()

	Tests to see if the fast (C) code for pixel masking is installed.

	Returns:

	A value of True is returned if fast pixel masking is
available. Otherwise False is returned.

	
clearImageCache()

	Clears a cached image, if one is present

	
clearPixelMask()

	Removes a pixel map from an image, to reduce the .gpx file
size & memory use

	
findControl(arg='')

	Finds the Image Controls parameter(s) in the current image
that match the string in arg. Default is ‘’ which returns all
parameters.

Example:

>>> findControl('calib')
[['calibskip', 'int'], ['calibdmin', 'float'], ['calibrant', 'str']]

	Parameters:

	arg (str) – a string containing part of the name of a
parameter (dict entry) in the image’s Image Controls.

	Returns:

	a list of matching entries in form
[[‘item’,’type’], [‘item’,’type’],…] where each ‘item’ string
contains the sting in arg.

	
getControl(arg)

	Return an Image Controls parameter in the current image.
If the parameter is not found an exception is raised.

	Parameters:

	arg (str) – the name of a parameter (dict entry) in the
image.

	Returns:

	the value as a int, float, list,…

	
getControls(clean=False)

	returns current Image Controls as a dict

	Parameters:

	clean (bool) – causes the calbration information to be deleted

	
getMasks()

	load masks from an IMG tree entry

	
getVary(*args)

	Return the refinement flag(s) for calibration of
Image Controls parameter(s) in the current image.
If the parameter is not found, an exception is raised.

	Parameters:

	
	arg (str) – the name of a refinement parameter in the
varyList for the image. The name should be one of
‘dep’, ‘det-X’, ‘det-Y’, ‘dist’, ‘phi’, ‘tilt’, or ‘wave’

	arg1 (str) – the name of a parameter (dict entry) as before,
optional

	Returns:

	a list of bool value(s)

	
initMasks()

	Initialize Masks, including resetting the Thresholds values

	
loadControls(filename=None, imgDict=None)

	load controls from a .imctrl file

	Parameters:

	
	filename (str) – specifies a file to be read, which should end
with .imctrl (defaults to None, meaning parameters are input
with imgDict.)

	imgDict (dict) – contains a set of image parameters (defaults to
None, meaning parameters are input with filename.)

	
loadMasks(filename, ignoreThreshold=False)

	load masks from a .immask file

	Parameters:

	
	filename (str) – specifies a file to be read, which should end
with .immask

	ignoreThreshold (bool) – If True, masks are loaded with
threshold masks. Default is False which means any Thresholds
in the file are ignored.

	
saveControls(filename)

	write current controls values to a .imctrl file

	Parameters:

	filename (str) – specifies a file to write, which should end
with .imctrl

	
setCalibrant(calib)

	Set a calibrant for the current image

	Parameters:

	calib (str) – specifies a calibrant name which must be one of
the entries in file ImageCalibrants.py. This is validated and
an error provides a list of valid choices.

	
setControl(arg, value)

	Set an Image Controls parameter in the current image.
If the parameter is not found an exception is raised.

	Parameters:

	
	arg (str) – the name of a parameter (dict entry) in the
image. The parameter must be found in ControlList
or an exception is raised.

	value – the value to set the parameter. The value is
cast as the appropriate type from ControlList.

	
setControlFile(typ, imageRef, mult=None)

	Set a image to be used as a background/dark/gain map image

	Parameters:

	
	typ (str) – specifies image type, which must be one of:
‘background image’, ‘dark image’, ‘gain map’; N.B. only the first
four characters must be specified and case is ignored.

	imageRef – A reference to the desired image. Either the Image
tree name (str), the image’s index (int) or
a image object (G2Image)

	mult (float) – a multiplier to be applied to the image (not used
for ‘Gain map’; required for ‘background image’, ‘dark image’

	
setControls(controlsDict)

	uses dict from getControls() to set Image Controls for current image

	
setMasks(maskDict, resetThresholds=False)

	load masks dict (from getMasks()) into current IMG record

	Parameters:

	
	maskDict (dict) – specifies a dict with image parameters,
from getMasks()

	resetThresholds (bool) – If True, Threshold Masks in the
dict are ignored. The default is False which means Threshold
Masks are retained.

	
setVary(arg, value)

	Set a refinement flag for Image Controls parameter in the
current image that is used for fitting calibration parameters.
If the parameter is not ‘*’ or found, an exception is raised.

	Parameters:

	
	arg (str) – the name of a refinement parameter in the
varyList for the image. The name should be one of
‘dep’, ‘det-X’, ‘det-Y’, ‘dist’, ‘phi’, ‘tilt’, or ‘wave’,
or it may be a list or tuple of names,
or it may be ‘*’ in which all parameters are set accordingly.

	value – the value to set the parameter. The value is
cast as bool.

	
exception GSASIIscriptable.G2ImportException

	

	
class GSASIIscriptable.G2ObjectWrapper(datadict)

	Base class for all GSAS-II object wrappers.

The underlying GSAS-II format can be accessed as wrapper.data. A number
of overrides are implemented so that the wrapper behaves like a dictionary.

Author: Jackson O’Donnell (jacksonhodonnell .at. gmail.com)

	
class GSASIIscriptable.G2PDF(data, name, proj)

	Wrapper for a PDF tree entry, containing the information needed to
compute a PDF and the S(Q), G(r) etc. after the computation is done.
Note that in a GSASIIscriptable script, instances of G2PDF will be created by
calls to G2Project.add_PDF() or G2Project.pdf().
Scripts should not try to create a G2PDF object directly.

Example use of G2PDF:

gpx.add_PDF('250umSiO2.pdfprm',0)
pdf.set_formula(['Si',1],['O',2])
pdf.set_background('Container',1,-0.21)
for i in range(5):
 if pdf.optimize(): break
pdf.calculate()
pdf.export(gpx.filename,'S(Q), pdfGUI')
gpx.save('pdfcalc.gpx')

See also

G2Project.pdf()
G2Project.pdfs()

	
calculate(xydata=None, limits=None, inst=None)

	Compute the PDF using the current parameters. Results are set
in the PDF object arrays (self.data[‘PDF Controls’][‘G(R)’] etc.).
Note that if xydata, is specified, the background histograms(s)
will not be accessed from the project file associated with the current
PDF entry. If limits and inst are both specified, no histograms
need be in the current project. However, the self.data[‘PDF Controls’]
sections (‘Sample’, ‘Sample Bkg.’,’Container Bkg.’) must be
non-blank for the corresponding items to be used from``xydata``.

	Parameters:

	
	xydata (dict) – an array containing the Sample’s I vs Q, and
any or none of the Sample Background, the Container scattering and
the Container Background. If xydata is None (default), the values are
taken from histograms, as named in the PDF’s self.data[‘PDF Controls’]
entries with keys ‘Sample’, ‘Sample Bkg.’,’Container Bkg.’ &
‘Container’.

	limits (list) – upper and lower Q values to be used for PDF
computation. If None (default), the values are
taken from the Sample histogram’s .data[‘Limits’][1] values.

	inst (dict) – The Sample histogram’s instrument parameters
to be used for PDF computation. If None (default), the values are
taken from the Sample histogram’s .data[‘Instrument Parameters’][0]
values.

	
export(fileroot, formats)

	Write out the PDF-related data (G(r), S(Q),…) into files

	Parameters:

	
	fileroot (str) – name of file(s) to be written. The extension
will be ignored and set to .iq, .sq, .fq or .gr depending
on the formats selected.

	formats (str) – string specifying the file format(s) to be written,
should contain at least one of the following keywords:
I(Q), S(Q), F(Q), G(r) and/or PDFgui (capitalization and
punctuation is ignored). Note that G(r) and PDFgui should not
be specifed together.

	
optimize(showFit=True, maxCycles=5, xydata=None, limits=None, inst=None)

	Optimize the low R portion of G(R) to minimize selected
parameters. Note that this updates the parameters in the settings
(self.data[‘PDF Controls’]) but does not update the PDF object
arrays (self.data[‘PDF Controls’][‘G(R)’] etc.) with the computed
values, use calculate() after a fit to do that.

	Parameters:

	
	showFit (bool) – if True (default) the optimized parameters
are shown before and after the fit, as well as the RMS value
in the minimized region.

	maxCycles (int) – the maximum number of least-squares cycles;
defaults to 5.

	xydata (dict) – an array containing the Sample’s I vs Q, and
any or none of the Sample Background, the Container scattering and
the Container Background. If xydata is None (default), the values are
taken from histograms, as named in the PDF’s self.data[‘PDF Controls’]
entries with keys ‘Sample’, ‘Sample Bkg.’,’Container Bkg.’ &
‘Container’.

	limits (list) – upper and lower Q values to be used for PDF
computation. If None (default), the values are
taken from the Sample histogram’s .data[‘Limits’][1] values.

	inst (dict) – The Sample histogram’s instrument parameters
to be used for PDF computation. If None (default), the values are
taken from the Sample histogram’s .data[‘Instrument Parameters’][0]
values.

	Returns:

	the result from the optimizer as True or False, depending
on if the refinement converged.

	
set_background(btype, histogram, mult=-1.0, refine=False)

	Sets a histogram to be used as the ‘Sample Background’,
the ‘Container’ or the ‘Container Background.’

	Parameters:

	
	btype (str) – Type of background to set, must contain
the string ‘samp’ for Sample Background’, ‘cont’ and ‘back’
for the ‘Container Background’ or only ‘cont’ for the
‘Container’. Note that capitalization and extra characters
are ignored, so the full strings (such as ‘Sample
Background’ & ‘Container Background’) can be used.

	histogram – A reference to a histogram,
which can be reference by object, name, or number.

	mult (float) – a multiplier for the histogram; defaults
to -1.0

	refine (bool) – a flag to enable refinement (only
implemented for ‘Sample Background’); defaults to False

	
set_formula(*args)

	Set the chemical formula for the PDF computation.
Use pdf.set_formula([‘Si’,1],[‘O’,2]) for SiO2.

	Parameters:

	
	item1 (list) – The element symbol and number of atoms in formula for first element

	item2 (list) – The element symbol and number of atoms in formula for second element,…

repeat parameters as needed for all elements in the formula.

	
class GSASIIscriptable.G2Phase(data, name, proj)

	A wrapper object around a given phase.
The object contains these class variables:

	G2Phase.proj: contains a reference to the G2Project
object that contains this phase

	G2Phase.name: contains the name of the phase

	G2Phase.data: contains the phases’s associated data in a dict,
as documented for the Phase Tree items.

Scripts should not try to create a G2Phase object directly as
G2Phase.__init__() should be invoked from inside G2Project.

Author: Jackson O’Donnell (jacksonhodonnell .at. gmail.com)

	
HAPvalue(param=None, newValue=None, targethistlist='all')

	Retrieves or sets individual HAP parameters for one histogram or
multiple histograms.

	Parameters:

	
	param (str) – is a parameter name, which can be ‘Scale’ (phase
fraction), ‘Use’, ‘Extinction’ or ‘LeBail’.
If not specified or invalid
an exception is generated showing the list of valid parameters.
At present, these HAP parameters cannot be access with this function:
‘Pref.Ori.’, ‘Size’, ‘Mustrain’, ‘HStrain’, ‘Babinet’. On request this
might be addressed in the future. Some of these values can be set via
G2Phase.set_HAP_refinements().

	newValue – the value to use when setting the HAP parameter for the
appropriate histogram(s). Will be converted to the proper type or
an exception will be generated if not possible. If not specified,
and only one histogram is selected, the value is retrieved and
returned.

	targethistlist (list) – a list of histograms where each item in the
list can be a histogram object (G2PwdrData),
a histogram name or the index number of the histogram.
The index number is relative to all histograms in the tree, not to
those in the phase.
If the string ‘all’ (default), then all histograms in the phase
are used.

targethistlist must correspond to a single histogram if a value
is to be returned (when argument newValue is not specified).

	Returns:

	the value of the parameter, when argument newValue is not specified.

See also

set_HAP_refinements()

Example:

val = ph0.HAPvalue('Scale')
val = ph0.HAPvalue('Scale',targethistlist=[0])
ph0.HAPvalue('Scale',2.5)

The first command returns the phase fraction if only one histogram
is associated with the current phase, or raises an exception.
The second command returns the phase fraction from the first histogram
associated with the current phase. The third command sets the phase
fraction for all histograms associated with the current phase.

	
addDistRestraint(origin, target, bond, factor=1.1, ESD=0.01)

	Adds bond distance restraint(s) for the selected phase

This works by search for interatomic distances between atoms in the
origin list and the target list (the two lists may be the same but most
frequently will not) with a length between bond/factor and bond*factor.
If a distance is found in that range, it is added to the restraints
if it was not already found.

	Parameters:

	
	origin (list) – a list of atoms, each atom may be an atom
object, an index or an atom label

	target (list) – a list of atoms, each atom may be an atom
object, an index or an atom label

	bond (float) – the target bond length in A for the located atom

	factor (float) – a tolerance factor used when searching for
bonds (defaults to 1.1)

	ESD (float) – the uncertainty for the bond (defaults to 0.01)

	Returns:

	returns the number of new restraints that are found

As an example:

gpx = G2sc.G2Project('restr.gpx')
ph = gpx.phases()[0]
ph.clearDistRestraint()
origin = [a for a in ph.atoms() if a.element == 'Si']
target = [i for i,a in enumerate(ph.atoms()) if a.element == 'O']
c = ph.addDistRestraint(origin, target, 1.64)
print(c,'new restraints found')
ph.setDistRestraintWeight(1000)
gpx.save('restr-mod.gpx')

This example locates the first phase in a project file, clears any previous
restraints. Then it places restraints on bonds between Si and O atoms at
1.64 A. Each restraint is weighted 1000 times in comparison to
(obs-calc)/sigma for a data point. To show how atom selection can
work, the origin atoms are identified here
by atom object while the target atoms are identified by atom index.
The methods are interchangeable. If atom labels are unique, then:

origin = [a.label for a in ph.atoms() if a.element == 'Si']

would also work identically.

	
add_atom(x, y, z, element, lbl, occ=1.0, uiso=0.01)

	Adds an atom to the current phase

	Parameters:

	
	x (float) – atom fractional x coordinate

	y (float) – atom fractional y coordinate

	z (float) – atom fractional z coordinate

	element (str) – an element symbol (capitalization is ignored). Optionally add
a valence (as in Ba+2)

	lbl (str) – A label for this atom

	occ (float) – A fractional occupancy for this atom (defaults to 1).

	uiso (float) – A Uiso value for this atom (defaults to 0.01).

	Returns:

	the G2AtomRecord atom object for the new atom

	
atom(atomlabel)

	Returns the atom specified by atomlabel, or None if it does not
exist.

	Parameters:

	atomlabel (str) – The name of the atom (e.g. “O2”)

	Returns:

	A G2AtomRecord object
representing the atom.

	
atoms()

	Returns a list of atoms present in the current phase.

	Returns:

	A list of G2AtomRecord objects.

See also

atom()
G2AtomRecord

	
clearDistRestraint()

	Deletes any previously defined bond distance restraint(s) for the selected phase

See also

G2Phase.addDistRestraint()

	
clear_HAP_refinements(refs, histograms='all')

	Clears the given HAP refinement parameters between this phase and
the given histograms.

	Parameters:

	
	refs (dict) – A dictionary of the parameters to be cleared.
See the the Histogram-and-phase parameters table for what can be specified.

	histograms – Either ‘all’ (default) or a list of the histograms by index, name
or object.
The index number is relative to all histograms in the tree, not to
those in the phase.
Histograms not associated with the current phase will be ignored.
whose HAP parameters will be set with this phase. Histogram and phase
must already be associated

	Returns:

	None

	
clear_refinements(refs)

	Clears a given set of parameters.

	Parameters:

	refs (dict) – The parameters to clear.
See the Phase parameters table for what can be specified.

	
property composition

	Provides a dict where keys are atom types and values are the number of
atoms of that type in cell (such as {‘H’: 2.0, ‘O’: 1.0})

	
copyHAPvalues(sourcehist, targethistlist='all', skip=[], use=None)

	Copies HAP parameters for one histogram to a list of other histograms.
Use skip or use to select specific entries to be copied or not used.

	Parameters:

	
	sourcehist – is a histogram object (G2PwdrData) or
a histogram name or the index number of the histogram to copy
parameters from.
The index number is relative to all histograms in the tree, not to
those in the phase.

	targethistlist (list) – a list of histograms where each item in the
list can be a histogram object (G2PwdrData),
a histogram name or the index number of the histogram.
If the string ‘all’ (default), then all histograms in the phase
are used.

	skip (list) – items in the HAP dict that should not be
copied. The default is an empty list, which causes all items
to be copied. To see a list of items in the dict, use
getHAPvalues() or use an invalid item, such as ‘?’.

	use (list) – specifies the items in the HAP dict should be
copied. The default is None, which causes all items
to be copied.

examples:

ph0.copyHAPvalues(0,[1,2,3])
ph0.copyHAPvalues(0,use=['HStrain','Size'])

The first example copies all HAP parameters from the first histogram to
the second, third and fourth histograms (as listed in the project tree).
The second example copies only the ‘HStrain’ (Dij parameters and
refinement flags) and the ‘Size’ (crystallite size settings, parameters
and refinement flags) from the first histogram to all histograms.

	
property density

	Provides a scalar with the density of the phase. In case of a
powder this assumes a 100% packing fraction.

	
export_CIF(outputname, quickmode=True)

	Write this phase to a .cif file named outputname

	Parameters:

	
	outputname (str) – The name of the .cif file to write to

	quickmode (bool) – Currently ignored. Carryover from exports.G2export_CIF

	
getHAPentryList(histname=None, keyname='')

	Returns a dict with HAP values. Optionally a histogram
may be selected.

	Parameters:

	
	histname – is a histogram object (G2PwdrData) or
a histogram name or the index number of the histogram.
The index number is relative to all histograms in the tree, not to
those in the phase. If no histogram is specified, all histograms
are selected.

	keyname (str) – an optional string. When supplied only entries
where at least one key contains the specified string are reported.
Case is ignored, so ‘sg’ will find entries where one of the keys
is ‘SGdata’, etc.

	Returns:

	a set of HAP dict keys.

Example:

>>> p.getHAPentryList(0,'Scale')
[(['PWDR test Bank 1', 'Scale'], list, [1.0, False])]

See also

getHAPentryValue()
setHAPentryValue()

	
getHAPentryValue(keylist)

	Returns the HAP value associated with a list of keys. Where the
value returned is a list, it may be used as the target of
an assignment (as in
getHAPentryValue(...)[...] = val)
to set a value inside a list.

	Parameters:

	keylist (list) – a list of dict keys, typically as returned by
getHAPentryList(). Note the first entry is a histogram name.
Example: ['PWDR hist1.fxye Bank 1', 'Scale']

	Returns:

	HAP value

Example:

>>> sclEnt = p.getHAPentryList(0,'Scale')[0]
>>> sclEnt
[(['PWDR test Bank 1', 'Scale'], list, [1.0, False])]
>>> p.getHAPentryValue(sclEnt[0])
[1.0, False]
>>> p.getHAPentryValue(sclEnt[0])[1] = True
>>> p.getHAPentryValue(sclEnt[0])
[1.0, True]

	
getHAPvalues(histname)

	Returns a dict with HAP values for the selected histogram

	Parameters:

	histogram – is a histogram object (G2PwdrData) or
a histogram name or the index number of the histogram.
The index number is relative to all histograms in the tree, not to
those in the phase.

	Returns:

	HAP value dict

	
getPhaseEntryList(keyname='')

	Returns a dict with control values.

	Parameters:

	keyname (str) – an optional string. When supplied only entries
where at least one key contains the specified string are reported.
Case is ignored, so ‘sg’ will find entries where one of the keys
is ‘SGdata’, etc.

	Returns:

	a set of phase dict keys. Note that HAP items, while
technically part of the phase entries, are not included.

See getHAPentryList() for a related example.

See also

getPhaseEntryValue()
setPhaseEntryValue()

	
getPhaseEntryValue(keylist)

	Returns the value associated with a list of keys.
Where the value returned is a list, it may be used as the target of
an assignment (as in
getPhaseEntryValue(...)[...] = val)
to set a value inside a list.

	Parameters:

	keylist (list) – a list of dict keys, typically as returned by
getPhaseEntryList().

	Returns:

	a phase setting; may be a int, float, bool, list,…

See getHAPentryValue() for a related example.

	
get_cell()

	
	Returns a dictionary of the cell parameters, with keys:
	‘length_a’, ‘length_b’, ‘length_c’, ‘angle_alpha’, ‘angle_beta’, ‘angle_gamma’, ‘volume’

	Returns:

	a dict

See also

get_cell_and_esd()

	
get_cell_and_esd()

	Returns a pair of dictionaries, the first representing the unit cell, the second
representing the estimated standard deviations of the unit cell.

	Returns:

	a tuple of two dictionaries

See also

get_cell()

	
histograms()

	Returns a list of histogram names associated with the current phase ordered
as they appear in the tree (see G2Project.histograms()).

	
mu(wave)

	Provides mu values for a phase at the supplied wavelength in A.
Uses GSASIImath.XScattDen which seems to be off by an order of
magnitude, which has been corrected here.

	
setDistRestraintWeight(factor=1)

	Sets the weight for the bond distance restraint(s) to factor

	Parameters:

	factor (float) – the weighting factor for this phase’s restraints. Defaults
to 1 but this value is typically much larger (10**2 to 10**4)

See also

G2Phase.addDistRestraint()

	
setHAPentryValue(keylist, newvalue)

	Sets an HAP value associated with a list of keys.

	Parameters:

	
	keylist (list) – a list of dict keys, typically as returned by
getHAPentryList(). Note the first entry is a histogram name.
Example: ['PWDR hist1.fxye Bank 1', 'Scale']

	newvalue – a new value for the HAP setting. The type must be
the same as the initial value, but if the value is a container
(list, tuple, np.array,…) the elements inside are not checked.

Example:

>>> sclEnt = p.getHAPentryList(0,'Scale')[0]
>>> p.getHAPentryValue(sclEnt[0])
[1.0, False]
>>> p.setHAPentryValue(sclEnt[0], (1, True))
GSASIIscriptable.G2ScriptException: setHAPentryValue error: types do not agree for keys ['PWDR test.fxye Bank 1', 'Scale']
>>> p.setHAPentryValue(sclEnt[0], [1, True])
>>> p.getHAPentryValue(sclEnt[0])
[1, True]

	
setHAPvalues(HAPdict, targethistlist='all', skip=[], use=None)

	Copies HAP parameters for one histogram to a list of other histograms.
Use skip or use to select specific entries to be copied or not used.
Note that HStrain and sometimes Mustrain values can be specific to
a Laue class and should be copied with care between phases of different
symmetry. A “sanity check” on the number of Dij terms is made if HStrain
values are copied.

	Parameters:

	
	HAPdict (dict) – is a dict returned by getHAPvalues() containing
HAP parameters.

	targethistlist (list) – a list of histograms where each item in the
list can be a histogram object (G2PwdrData),
a histogram name or the index number of the histogram.
The index number is relative to all histograms in the tree, not to
those in the phase.
If the string ‘all’ (default), then all histograms in the phase
are used.

	skip (list) – items in the HAP dict that should not be
copied. The default is an empty list, which causes all items
to be copied. To see a list of items in the dict, use
getHAPvalues() or use an invalid item, such as ‘?’.

	use (list) – specifies the items in the HAP dict should be
copied. The default is None, which causes all items
to be copied.

Example:

HAPdict = ph0.getHAPvalues(0)
ph1.setHAPvalues(HAPdict,use=['HStrain','Size'])

This copies the Dij (hydrostatic strain) HAP parameters and the
crystallite size broadening terms from the first histogram in
phase ph0 to all histograms in phase ph1.

	
setPhaseEntryValue(keylist, newvalue)

	Sets a phase control value associated with a list of keys.

	Parameters:

	
	keylist (list) – a list of dict keys, typically as returned by
getPhaseEntryList().

	newvalue – a new value for the phase setting. The type must be
the same as the initial value, but if the value is a container
(list, tuple, np.array,…) the elements inside are not checked.

See setHAPentryValue() for a related example.

	
setSampleProfile(histname, parmType, mode, val1, val2=None, axis=None, LGmix=None)

	Sets sample broadening parameters for a histogram associated with the
current phase. This currently supports isotropic and uniaxial broadening
modes only.

	Parameters:

	
	histogram – is a histogram object (G2PwdrData) or
a histogram name or the index number of the histogram.
The index number is relative to all histograms in the tree, not to
those in the phase.

	parmType (str) – should be ‘size’ or ‘microstrain’ (can be abbreviated to ‘s’ or ‘m’)

	mode (str) – should be ‘isotropic’ or ‘uniaxial’ (can be abbreviated to ‘i’ or ‘u’)

	val1 (float) – value for isotropic size (in \(\mu m\)) or
microstrain (unitless, \(\Delta Q/Q \times 10^6\)) or the equatorial value in the uniaxial case

	val2 (float) – value for axial size (in \(\mu m\)) or
axial microstrain (unitless, \(\Delta Q/Q \times 10^6\))
in uniaxial case; not used for isotropic

	axis (list) – tuple or list with three values indicating the preferred direction
for uniaxial broadening; not used for isotropic

	LGmix (float) – value for broadening type (1=Lorentzian, 0=Gaussian or a value
between 0 and 1. Default value (None) is ignored.

Examples:

phase0.setSampleProfile(0,'size','iso',1.2)
phase0.setSampleProfile(0,'micro','isotropic',1234)
phase0.setSampleProfile(0,'m','u',1234,4567,[1,1,1],.5)
phase0.setSampleProfile(0,'s','uni',1.2,2.3,[0,0,1])

	
set_HAP_refinements(refs, histograms='all')

	Sets the given HAP refinement parameters between the current phase and
the specified histograms.

	Parameters:

	
	refs (dict) – A dictionary of the parameters to be set. See
the Histogram-and-phase parameters table for a description of this
dictionary.

	histograms – Either ‘all’ (default) or a list of the histograms by index, name
or object. The index number is relative to all histograms in the tree, not to
those in the phase.
Histograms not associated with the current phase will be ignored.
whose HAP parameters will be set with this phase. Histogram and phase
must already be associated.

	Returns:

	None

	
set_refinements(refs)

	Sets the phase refinement parameter ‘key’ to the specification ‘value’

	Parameters:

	refs (dict) – A dictionary of the parameters to be set. See the
Phase parameters table for a description of
this dictionary.

	Returns:

	None

	
class GSASIIscriptable.G2Project(gpxfile=None, author=None, filename=None, newgpx=None)

	Represents an entire GSAS-II project. The object contains these
class variables:

	G2Project.filename: contains the .gpx filename

	G2Project.names: contains the contents of the project “tree” as a list
of lists. Each top-level entry in the tree is an item in the list. The
name of the top-level item is the first item in the inner list. Children
of that item, if any, are subsequent entries in that list.

	G2Project.data: contains the entire project as a dict. The keys
for the dict are the top-level names in the project tree (initial items
in the G2Project.names inner lists) and each top-level item is stored
as a dict.

	The contents of Top-level entries will be found in the item
named ‘data’, as an example, G2Project.data['Notebook']['data']

	The contents of child entries will be found in the item
using the names of the parent and child, for example
G2Project.data['Phases']['NaCl']

	Parameters:

	
	gpxfile (str) – Existing .gpx file to be loaded. If nonexistent,
creates an empty project.

	author (str) – Author’s name (not yet implemented)

	newgpx (str) – The filename the project should be saved to in
the future. If both newgpx and gpxfile are present, the project is
loaded from the file named by gpxfile and then when saved will
be written to the file named by newgpx.

	filename (str) – To be deprecated. Serves the same function as newgpx,
which has a somewhat more clear name.
(Do not specify both newgpx and filename).

There are two ways to initialize this object:

>>> # Load an existing project file
>>> proj = G2Project('filename.gpx')

>>> # Create a new project
>>> proj = G2Project(newgpx='new_file.gpx')

Histograms can be accessed easily.

>>> # By name
>>> hist = proj.histogram('PWDR my-histogram-name')

>>> # Or by index
>>> hist = proj.histogram(0)
>>> assert hist.id == 0

>>> # Or by random id
>>> assert hist == proj.histogram(hist.ranId)

Phases can be accessed the same way.

>>> phase = proj.phase('name of phase')

New data can also be loaded via add_phase() and
add_powder_histogram().

>>> hist = proj.add_powder_histogram('some_data_file.chi',
 'instrument_parameters.prm')
>>> phase = proj.add_phase('my_phase.cif', histograms=[hist])

Parameters for Rietveld refinement can be turned on and off at the project level
as well as described in
set_refinement(), iter_refinements() and
do_refinements().

	
ComputeWorstFit()

	Computes the worst-fit parameters in a model.

	Returns:

	(keys, derivCalcs, varyList) where:

	keys is a list of parameter names
where the names are ordered such that first entry in the list
will produce the largest change in the fit if refined and the last
entry will have the smallest change;

	derivCalcs is a dict where the key is a variable name and the
value is a list with three partial derivative values for
d(Chi**2)/d(var) where the derivatives are computed
for values v-d to v; v-d to v+d; v to v+d where v is
the current value for the variable and d is a small delta
value chosen for that variable type;

	varyList is a list of the parameters that are currently set to
be varied.

	
add_EqnConstr(total, varlist, multlist=[], reloadIdx=True)

	Set a constraint equation on a list of variables.

Note that this will cause the project to be saved if not
already done so. It will always save the .gpx file before
creating a constraint if reloadIdx is True.

	Parameters:

	
	total (float) – A value that the constraint must equal

	varlist (list) – A list of variables to use in the equation.
Each value in the list may be one of the following three items:
(A) a GSASIIobj.G2VarObj object,
(B) a variable name (str), or
(C) a list/tuple of arguments for make_var_obj().

	multlist (list) – a list of multipliers for each variable in
varlist. If there are fewer values than supplied for varlist
then missing values will be set to 1. The default is [] which
means that all multipliers are 1.

	reloadIdx (bool) – If True (default) the .gpx file will be
saved and indexed prior to use. This is essential if atoms, phases
or histograms have been added to the project.

Example:

gpx.add_EqnConstr(1.0,('0::Ax:0','0::Ax:1'),[1,1])

	
add_EquivConstr(varlist, multlist=[], reloadIdx=True)

	Set a equivalence on a list of variables.

Note that this will cause the project to be saved if not
already done so. It will always save the .gpx file before
creating a constraint if reloadIdx is True.

	Parameters:

	
	varlist (list) – A list of variables to make equivalent to the
first item in the list.
Each value in the list may be one of the following three items:
(A) a GSASIIobj.G2VarObj object,
(B) a variable name (str), or
(C) a list/tuple of arguments for make_var_obj().

	multlist (list) – a list of multipliers for each variable in
varlist. If there are fewer values than supplied for varlist
then missing values will be set to 1. The default is [] which
means that all multipliers are 1.

	reloadIdx (bool) – If True (default) the .gpx file will be
saved and indexed prior to use. This is essential if atoms, phases
or histograms have been added to the project.

Examples:

gpx.add_EquivConstr(('0::AUiso:0','0::AUiso:1','0::AUiso:2'))
gpx.add_EquivConstr(('0::dAx:0','0::dAx:1'),[1,-1])

	
add_HoldConstr(varlist, reloadIdx=True)

	Set a hold constraint on a list of variables.

Note that this will cause the project to be saved if not
already done so. It will always save the .gpx file before
creating constraint(s) if reloadIdx is True.

	Parameters:

	
	varlist (list) – A list of variables to hold.
Each value in the list may be one of the following three items:
(A) a GSASIIobj.G2VarObj object,
(B) a variable name (str), or
(C) a list/tuple of arguments for make_var_obj().

	reloadIdx (bool) – If True (default) the .gpx file will be
saved and indexed prior to use. This is essential if atoms, phases
or histograms have been added to the project.

Example:

gpx.add_HoldConstr(('0::A4','0:1:D12',':0:Lam'))

	
add_NewVarConstr(varlist, multlist=[], name=None, vary=False, reloadIdx=True)

	Set a new-variable constraint from a list of variables to
create a new parameter from two or more predefined parameters.

Note that this will cause the project to be saved, if not
already done so. It will always save the .gpx file before
creating a constraint if reloadIdx is True.

	Parameters:

	
	varlist (list) – A list of variables to use in the expression.
Each value in the list may be one of the following three items:
(A) a GSASIIobj.G2VarObj object,
(B) a variable name (str), or
(C) a list/tuple of arguments for make_var_obj().

	multlist (list) – a list of multipliers for each variable in
varlist. If there are fewer values than supplied for varlist
then missing values will be set to 1. The default is [] which
means that all multipliers are 1.

	name (str) – An optional string to be supplied as a name for this
new parameter.

	vary (bool) – Determines if the new variable should be flagged to
be refined.

	reloadIdx (bool) – If True (default) the .gpx file will be
saved and indexed prior to use. This is essential if atoms, phases
or histograms have been added to the project.

Examples:

gpx.add_NewVarConstr(('0::AFrac:0','0::AFrac:1'),[0.5,0.5],'avg',True)
gpx.add_NewVarConstr(('0::AFrac:0','0::AFrac:1'),[1,-1],'diff',False,False)

The example above is a way to treat two variables that are closely correlated.
The first variable, labeled as avg, allows the two variables to refine in tandem
while the second variable (diff) tracks their difference. In the initial stages of
refinement only avg would be refined, but in the final stages, it might be possible
to refine diff. The second False value in the second example prevents the
.gpx file from being saved.

	
add_PDF(prmfile, histogram)

	Creates a PDF entry that can be used to compute a PDF.
Note that this command places an entry in the project,
but G2PDF.calculate() must be used to actually perform
the computation.

	Parameters:

	
	datafile (str) – The powder data file to read, a filename.

	histogram – A reference to a histogram,
which can be reference by object, name, or number.

	Returns:

	A G2PDF object for the PDF entry

	
add_constraint_raw(cons_scope, constr)

	Adds a constraint to the project.

	Parameters:

	
	cons_scope (str) – should be one of “Hist”, “Phase”, “HAP”, or “Global”.

	constr (list) – a constraint coded with GSASIIobj.G2VarObj
objects as described in the
constraint definition descriptions.

WARNING this function does not check the constraint is well-constructed.
Please use G2Project.add_HoldConstr() or
G2Project.add_EquivConstr() (etc.) instead, unless you are really
certain you know what you are doing.

	
add_image(imagefile, fmthint=None, defaultImage=None, indexList=None, cacheImage=False)

	Load an image into a project

	Parameters:

	
	imagefile (str) – The image file to read, a filename.

	fmthint (str) – If specified, only importers where the format name
(reader.formatName, as shown in Import menu) contains the
supplied string will be tried as importers. If not specified, all
importers consistent with the file extension will be tried
(equivalent to “guess format” in menu).

	defaultImage (str) – The name of an image to use as a default for
setting parameters for the image file to read.

	indexList (list) – specifies the image numbers (counting from zero)
to be used from the file when a file has multiple images. A value of
[0,2,3] will cause the only first, third and fourth images in the file
to be included in the project.

	cacheImage (bool) – When True, the image is cached to save
in rereading it later. Default is False (no caching).

	Returns:

	a list of G2Image object(s) for the added image(s)

	
add_phase(phasefile=None, phasename=None, histograms=[], fmthint=None, mag=False, spacegroup='P 1', cell=None)

	Loads a phase into the project, usually from a .cif file

	Parameters:

	
	phasefile (str) – The CIF file (or other file type, see fmthint)
that the phase will be read from.
May be left as None (the default) if the phase will be constructed
a step at a time.

	phasename (str) – The name of the new phase, or None for the
default. A phasename must be specified when a phasefile is not.

	histograms (list) – The names of the histograms to associate with
this phase. Use proj.histograms() to add to all histograms.

	fmthint (str) – If specified, only importers where the format name
(reader.formatName, as shown in Import menu) contains the
supplied string will be tried as importers. If not specified, all
importers consistent with the file extension will be tried
(equivalent to “guess format” in menu).

	mag (bool) – Set to True to read a magCIF

	spacegroup (str) – The space group name as a string. The
space group must follow the naming rules used in
GSASIIspc.SpcGroup(). Defaults to ‘P 1’. Note that
this is only used when phasefile is None.

	cell (list) – a list with six unit cell constants
(a, b, c, alpha, beta and gamma in Angstrom/degrees).

	Returns:

	A G2Phase object representing the
new phase.

	
add_powder_histogram(datafile, iparams=None, phases=[], fmthint=None, databank=None, instbank=None, multiple=False)

	Loads a powder data histogram or multiple powder histograms
into the project.

Note that the data type (x-ray/CW neutron/TOF) for the histogram
will be set from the instrument parameter file. The instrument
geometry is assumed to be Debye-Scherrer except for
dual-wavelength x-ray, where Bragg-Brentano is assumed.

	Parameters:

	
	datafile (str) – A filename with the powder data file to read.
Note that in unix fashion, “~” can be used to indicate the
home directory (e.g. ~/G2data/data.fxye).

	iparams (str) – A filenme for an instrument parameters file,
or a pair of instrument parameter dicts from load_iprms().
This may be omitted for readers that provide the instrument
parameters in the file. (Only a few importers do this.)

	phases (list) – A list of phases to link to the new histogram,
phases can be references by object, name, rId or number.
Alternately, use ‘all’ to link to all phases in the project.

	fmthint (str) – If specified, only importers where the format name
(reader.formatName, as shown in Import menu) contains the
supplied string will be tried as importers. If not specified, all
importers consistent with the file extension will be tried
(equivalent to “guess format” in menu).

	databank (int) – Specifies a dataset number to read, if file contains
more than set of data. This should be 1 to read the first bank in
the file (etc.) regardless of the number on the Bank line, etc.
Default is None which means the first dataset in the file is read.
When multiple is True, optionally a list of dataset numbers can
be supplied here.

	instbank (int) – Specifies an instrument parameter set to read, if
the instrument parameter file contains more than set of parameters.
This will match the INS # in an GSAS type file so it will typically
be 1 to read the first parameter set in the file (etc.)
Default is None which means there should only be one parameter set
in the file.

	multiple (bool) – If False (default) only one dataset is read, but if
specified as True, all selected banks of data (see databank)
are read in.

	Returns:

	A G2PwdrData object representing
the histogram, or if multiple is True, a list of G2PwdrData
objects is returned.

	
add_simulated_powder_histogram(histname, iparams, Tmin, Tmax, Tstep=None, wavelength=None, scale=None, phases=[], ibank=None, Npoints=None)

	Create a simulated powder data histogram for the project.

Requires an instrument parameter file.
Note that in unix fashion, “~” can be used to indicate the
home directory (e.g. ~/G2data/data.prm). The instrument parameter file
will determine if the histogram is x-ray, CW neutron, TOF, etc. as well
as the instrument type.

	Parameters:

	
	histname (str) – A name for the histogram to be created.

	iparams (str) – The instrument parameters file, a filename.

	Tmin (float) – Minimum 2theta or TOF (millisec) for dataset to be simulated

	Tmax (float) – Maximum 2theta or TOF (millisec) for dataset to be simulated

	Tstep (float) – Step size in 2theta or deltaT/T (TOF) for simulated dataset.
Default is to compute this from Npoints.

	wavelength (float) – Wavelength for CW instruments, overriding the value
in the instrument parameters file if specified. For single-wavelength histograms,
this should be a single float value, for K alpha 1,2 histograms, this should
be a list or tuple with two values.

	scale (float) – Histogram scale factor which multiplies the pattern. Note that
simulated noise is added to the pattern, so that if the maximum intensity is
small, the noise will mask the computed pattern. The scale needs to be a large
number for neutrons.
The default, None, provides a scale of 1 for x-rays, 10,000 for CW neutrons
and 100,000 for TOF.

	phases (list) – Phases to link to the new histogram. Use proj.phases() to link to
all defined phases.

	ibank (int) – provides a bank number for the instrument parameter file. The
default is None, corresponding to load the first bank.

	Νpoints (int) – the number of data points to be used for computing the
diffraction pattern. Defaults as None, which sets this to 2500. Do not specify
both Npoints and Tstep. Due to roundoff the actual number of points used may differ
by +-1 from Npoints. Must be below 25,000.

	Returns:

	A G2PwdrData object representing the histogram

	
clone_powder_histogram(histref, newname, Y, Yerr=None)

	Creates a copy of a powder diffraction histogram with new Y values.
The X values are not changed. The number of Y values must match the
number of X values.

	Parameters:

	
	histref – The histogram object, the name of the histogram (str), or ranId
or histogram index.

	newname (str) – The name to be assigned to the new histogram

	Y (list) – A set of intensity values

	Yerr (list) – A set of uncertainties for the intensity values (may be None,
sets all weights to unity)

	Returns:

	the new histogram object (type G2PwdrData)

	
copyHistParms(sourcehist, targethistlist='all', modelist='all')

	Copy histogram information from one histogram to others

	Parameters:

	
	sourcehist – is a histogram object (G2PwdrData) or
a histogram name or the index number of the histogram

	targethistlist (list) – a list of histograms where each item in the
list can be a histogram object (G2PwdrData),
a histogram name or the index number of the histogram.
if the string ‘all’ (default value), then all histograms in
the project are used.

	modelist (list) – May be a list of sections to copy, which may
include ‘Background’, ‘Instrument Parameters’, ‘Limits’ and
‘Sample Parameters’ (items may be shortened to uniqueness and
capitalization is ignored, so [‘b’,’i’,’L’,’s’] will work.)
The default value, ‘all’ causes the listed sections to

	
copy_PDF(PDFobj, histogram)

	Creates a PDF entry that can be used to compute a PDF
as a copy of settings in an existing PDF (G2PDF)
object.
This places an entry in the project but G2PDF.calculate()
must be used to actually perform the PDF computation.

	Parameters:

	
	PDFobj – A G2PDF object which may be
in a separate project or the dict associated with the
PDF object (G2PDF.data).

	histogram – A reference to a histogram,
which can be reference by object, name, or number.

	Returns:

	A G2PDF object for the PDF entry

	
do_refinements(refinements=[{}], histogram='all', phase='all', outputnames=None, makeBack=False)

	
	Conducts one or a series of refinements according to the
	input provided in parameter refinements. This is a wrapper
around iter_refinements()

	Parameters:

	
	refinements (list) – A list of dictionaries specifiying changes to be made to
parameters before refinements are conducted.
See the Refinement recipe section for how this is defined.
If not specified, the default value is [{}], which performs a single
refinement step is performed with the current refinement settings.

	histogram (str) – Name of histogram for refinements to be applied
to, or ‘all’; note that this can be overridden for each refinement
step via a “histograms” entry in the dict.

	phase (str) – Name of phase for refinements to be applied to, or
‘all’; note that this can be overridden for each refinement
step via a “phases” entry in the dict.

	outputnames (list) – Provides a list of project (.gpx) file names
to use for each refinement step (specifying None skips the save step).
See save().
Note that this can be overridden using an “output” entry in the dict.

	makeBack (bool) – determines if a backup).bckX.gpx) file is made
before a refinement is performed. The default is False.

To perform a single refinement without changing any parameters, use this
call:

my_project.do_refinements([])

	
classmethod from_dict_and_names(gpxdict, names, filename=None)

	Creates a G2Project directly from
a dictionary and a list of names. If in doubt, do not use this.

	Returns:

	a G2Project

	
get_Constraints(ctype)

	Returns a list of constraints of the type selected.

	Parameters:

	ctype (str) – one of the following keywords: ‘Hist’, ‘HAP’, ‘Phase’, ‘Global’

	Returns:

	a list of constraints, see the
constraint definition descriptions. Note that
if this list is changed (for example by deleting elements or by changing them)
the constraints in the project are changed.

	
get_Controls(control, variable=None)

	Return project controls settings

	Parameters:

	
	control (str) – the item to be returned. See below for allowed values.

	variable (str) – a variable name as a str or
(as a GSASIIobj.G2VarObj object).
Used only with control set to “parmMin” or “parmMax”.

	Returns:

	The value for the control.

Allowed values for parameter control:

	cycles: the maximum number of cycles (returns int)

	sequential: the histograms used for a sequential refinement as a list
of histogram names or an empty list when in non-sequential mode.

	Reverse Seq: returns True or False. True indicates that fitting of the
sequence of histograms proceeds in reversed order.

	seqCopy: returns True or False. True indicates that results from
each sequential fit are used as the starting point for the next
histogram.

	parmMin & parmMax: retrieves a maximum or minimum value for
a refined parameter. Note that variable will be a GSAS-II
variable name, optionally with * specified for a histogram
or atom number. Return value will be a float.
(See Parameter Limits description.)

	Anything else returns the value in the Controls dict, if present. An
exception is raised if the control value is not present.

See also

set_Controls()

	
get_Covariance(varList)

	Returns the values and covariance matrix for a series of variable
parameters. as defined in the last refinement cycle

	Parameters:

	varList (tuple) – a list of variable names of form ‘<p>:<h>:<name>’

	Returns:

	(valueList,CovMatrix) where valueList contains the (n) values
in the same order as varList (also length n) and CovMatrix is a
(n x n) matrix. If any variable name is not found in the varyList
then None is returned.

Use this code, where sig provides standard uncertainties for
parameters and where covArray provides the correlation between
off-diagonal terms:

sig = np.sqrt(np.diag(covMatrix))
xvar = np.outer(sig,np.ones_like(sig))
covArray = np.divide(np.divide(covMatrix,xvar),xvar.T)

	
get_Frozen(histogram=None)

	Gets a list of Frozen variables.
(See Parameter Limits description.)
Note that use of this
will cause the project to be saved if not already done so.

	Parameters:

	histogram – A reference to a histogram,
which can be reference by object, name, or number. Used
for sequential fits only. If left as the default (None)
for a sequential fit, all Frozen variables in all
histograms are returned.

	Returns:

	a list containing variable names, as str values

	
get_ParmList()

	Returns a list of all the parameters defined in the
last refinement cycle

	Returns:

	a list of parameters or None if no refinement has been
performed.

	
get_Variable(var)

	Returns the value and standard uncertainty (esd) for a variable
parameters, as defined in the last refinement cycle

	Parameters:

	var (str) – a variable name of form ‘<p>:<h>:<name>’, such as
‘:0:Scale’

	Returns:

	(value,esd) if the parameter is refined or
(value, None) if the variable is in a constraint or is not
refined or None if the parameter is not found.

	
get_VaryList()

	Returns a list of the refined variables in the
last refinement cycle

	Returns:

	a list of variables or None if no refinement has been
performed.

	
histogram(histname)

	Returns the histogram named histname, or None if it does not exist.

	Parameters:

	histname – The name of the histogram (str), or ranId or index.

	Returns:

	A G2PwdrData object, or None if
the histogram does not exist

See also

histograms()
phase()
phases()

	
histograms(typ=None)

	Return a list of all histograms, as G2PwdrData objects

For now this only finds Powder/Single Xtal histograms, since that is all that is
currently implemented in this module.

	Parameters:

	typ (ste) – The prefix (type) the histogram such as ‘PWDR ‘. If None
(the default) all known histograms types are found.

	Returns:

	a list of objects

See also

histogram()
phase()
phases()

	
hold_many(vars, ctype)

	Apply holds for all the variables in vars, for constraint of a given type.
This routine has been superceeded by add_Hold()

	Parameters:

	
	vars (list) – A list of variables to hold. Each may be a
GSASIIobj.G2VarObj object, a variable name (str), or a
list/tuple of arguments for make_var_obj().

	ctype (str) – A string constraint type specifier, passed directly to
add_constraint_raw() as consType. Should be one of “Hist”, “Phase”,
or “HAP” (“Global” not implemented).

	
image(imageRef)

	Gives an object representing the specified image in this project.

	Parameters:

	imageRef (str) – A reference to the desired image. Either the Image
tree name (str), the image’s index (int) or
a image object (G2Image)

	Returns:

	A G2Image object

	Raises:

	KeyError

See also

images()

	
imageMultiDistCalib(imageList=None, verbose=False)

	Invokes a global calibration fit (same as Image Controls/Calibration/Multi-distance Recalibrate
menu command) with images as multiple distance settings.
Note that for this to work properly, the initial calibration parameters
(center, wavelength, distance & tilts) must be close enough to converge.
This may produce a better result if run more than once.

See Image Calibration for example code.

	Parameters:

	imageList (str) – the images to include in the fit, if not specified
all images in the project will be included.

	Returns:

	parmDict,covData where parmDict has the refined parameters
and their values and covData is a dict containing the covariance matrix (‘covMatrix’),
the number of ring picks (‘obs’) the reduced Chi-squared (‘chisq’),
the names of the variables (‘varyList’) and their values (‘variables’)

	
images()

	Returns a list of all the images in the project.

	Returns:

	A list of G2Image objects

	
iter_refinements(refinements, histogram='all', phase='all', outputnames=None, makeBack=False)

	Conducts a series of refinements, iteratively. Stops after every
refinement and yields this project, to allow error checking or
logging of intermediate results. Parameter use is the same as for
do_refinements() (which calls this method).

>>> def checked_refinements(proj):
... for p in proj.iter_refinements(refs):
... # Track intermediate results
... log(p.histogram('0').residuals)
... log(p.phase('0').get_cell())
... # Check if parameter diverged, nonsense answer, or whatever
... if is_something_wrong(p):
... raise Exception("I need a human!")

	
link_histogram_phase(histogram, phase)

	Associates a given histogram and phase.

See also

histogram()
phase()

	
make_var_obj(phase=None, hist=None, varname=None, atomId=None, reloadIdx=True)

	Wrapper to create a G2VarObj. Takes either a string representation (“p:h:name:a”)
or individual names of phase, histogram, varname, and atomId.

Automatically converts string phase, hist, or atom names into the ID required
by G2VarObj.

Note that this will cause the project to be saved if not
already done so.

	
pdf(pdfRef)

	Gives an object representing the specified PDF entry in this project.

	Parameters:

	pdfRef – A reference to the desired image. Either the PDF
tree name (str), the pdf’s index (int) or
a PDF object (G2PDF)

	Returns:

	A G2PDF object

	Raises:

	KeyError

See also

pdfs()
G2PDF

	
pdfs()

	Returns a list of all the PDFs in the project.

	Returns:

	A list of G2PDF objects

	
phase(phasename)

	Gives an object representing the specified phase in this project.

	Parameters:

	phasename (str) – A reference to the desired phase. Either the phase
name (str), the phase’s ranId, the phase’s index (both int) or
a phase object (G2Phase)

	Returns:

	A G2Phase object

	Raises:

	KeyError

See also

histograms()
phase()
phases()

	
phases()

	Returns a list of all the phases in the project.

	Returns:

	A list of G2Phase objects

See also

histogram()
histograms()
phase()

	
refine(newfile=None, printFile=None, makeBack=False)

	Invoke a refinement for the project. The project is written to
the currently selected gpx file and then either a single or sequential refinement
is performed depending on the setting of ‘Seq Data’ in Controls
(set in get_Controls()).

	
reload()

	Reload self from self.filename

	
save(filename=None)

	Saves the project, either to the current filename, or to a new file.

Updates self.filename if a new filename provided

	
seqref()

	Returns a sequential refinement results object, if present

	Returns:

	A G2SeqRefRes object or None if not present

	
set_Controls(control, value, variable=None)

	Set project controls.

Note that use of this with control set to parmMin or parmMax
will cause the project to be saved if not already done so.

	Parameters:

	
	control (str) – the item to be set. See below for allowed values.

	value – the value to be set.

	variable (str) – used only with control set to “parmMin” or “parmMax”

Allowed values for control parameter:

	'cycles': sets the maximum number of cycles (value must be int)

	'sequential': sets the histograms to be used for a sequential refinement.
Use an empty list to turn off sequential fitting.
The values in the list may be the name of the histogram (a str), or
a ranId or index (int values), see histogram().

	'seqCopy': when True, the results from each sequential fit are used as
the starting point for the next. After each fit is is set to False.
Ignored for non-sequential fits.

	'Reverse Seq': when True, sequential refinement is performed on the
reversed list of histograms.

	'parmMin' & 'parmMax': set a maximum or minimum value for a refined
parameter. Note that variable will be a GSAS-II variable name,
optionally with * specified for a histogram or atom number and
value must be a float.
(See Parameter Limits description.)

See also

get_Controls()

	
set_Frozen(variable=None, histogram=None, mode='remove')

	Removes one or more Frozen variables (or adds one)
(See Parameter Limits description.)
Note that use of this
will cause the project to be saved if not already done so.

	Parameters:

	
	variable (str) – a variable name as a str or
(as a GSASIIobj.G2VarObj object). Should
not contain wildcards.
If None (default), all frozen variables are deleted
from the project, unless a sequential fit and
a histogram is specified.

	histogram – A reference to a histogram,
which can be reference by object, name, or number.
Used for sequential fits only.

	mode (str) – The default mode is to remove variables
from the appropriate Frozen list, but if the mode
is specified as ‘add’, the variable is added to the
list.

	Returns:

	True if the variable was added or removed, False
otherwise. Exceptions are generated with invalid requests.

	
set_refinement(refinement, histogram='all', phase='all')

	Apply specified refinements to a given histogram(s) or phase(s).

	Parameters:

	
	refinement (dict) – The refinements to be conducted

	histogram – Specifies either ‘all’ (default), a single histogram or
a list of histograms. Histograms may be specified as histogram objects
(see G2PwdrData), the histogram name (str) or the index number (int)
of the histogram in the project, numbered starting from 0.
Omitting the parameter or the string ‘all’ indicates that parameters in
all histograms should be set.

	phase – Specifies either ‘all’ (default), a single phase or
a list of phases. Phases may be specified as phase objects
(see G2Phase), the phase name (str) or the index number (int)
of the phase in the project, numbered starting from 0.
Omitting the parameter or the string ‘all’ indicates that parameters in
all phases should be set.

Note that refinement parameters are categorized as one of three types:

	Histogram parameters

	Phase parameters

	Histogram-and-Phase (HAP) parameters

See also

G2PwdrData.set_refinements()
G2PwdrData.clear_refinements()
G2Phase.set_refinements()
G2Phase.clear_refinements()
G2Phase.set_HAP_refinements()
G2Phase.clear_HAP_refinements()

	
update_ids()

	Makes sure all phases and histograms have proper hId and pId

	
class GSASIIscriptable.G2PwdrData(data, proj, name)

	Wraps a Powder Data Histogram.
The object contains these class variables:

	G2PwdrData.proj: contains a reference to the G2Project
object that contains this histogram

	G2PwdrData.name: contains the name of the histogram

	G2PwdrData.data: contains the histogram’s associated data in a dict,
as documented for the Powder Diffraction Tree.
The actual histogram values are contained in the ‘data’ dict item,
as documented for Data.

Scripts should not try to create a G2PwdrData object directly as
G2PwdrData.__init__() should be invoked from inside G2Project.

	
property Background

	Provides a list with with the Background parameters
for this histogram.

	Returns:

	list containing a list and dict with background values

	
EditSimulated(Tmin, Tmax, Tstep=None, Npoints=None)

	Change the parameters for an existing simulated powder histogram.
This will reset the previously computed “observed” pattern.

	Parameters:

	
	Tmin (float) – Minimum 2theta or TOF (microsec) for dataset to be simulated

	Tmax (float) – Maximum 2theta or TOF (usec) for dataset to be simulated

	Tstep (float) – Step size in 2theta or TOF (usec) for dataset to be simulated
Default is to compute this from Npoints.

	Νpoints (int) – the number of data points to be used for computing the
diffraction pattern. Defaults as None, which sets this to 2500. Do not specify
both Npoints and Tstep. Due to roundoff the actual nuber of points used may differ
by +-1 from Npoints. Must be below 25,000.

	
Export(fileroot, extension, fmthint=None)

	Write the histogram into a file. The path is specified by fileroot and
extension.

	Parameters:

	
	fileroot (str) – name of the file, optionally with a path (extension is
ignored)

	extension (str) – includes ‘.’, must match an extension in global
exportersByExtension[‘powder’] or a Exception is raised.

	fmthint (str) – If specified, the first exporter where the format
name (obj.formatName, as shown in Export menu) contains the
supplied string will be used. If not specified, an error
will be generated showing the possible choices.

	Returns:

	name of file that was written

	
Export_peaks(filename)

	Write the peaks file. The path is specified by filename
extension.

	Parameters:

	filename (str) – name of the file, optionally with a path,
includes an extension

	Returns:

	name of file that was written

	
property InstrumentParameters

	Provides a dictionary with with the Instrument Parameters
for this histogram.

	
LoadProfile(filename, bank=0)

	Reads a GSAS-II (new style) .instprm file and overwrites the current
parameters

	Parameters:

	
	filename (str) – instrument parameter file name, extension ignored if not
.instprm

	bank (int) – bank number to read, defaults to zero

	
property PeakList

	Provides a list of peaks parameters
for this histogram.

	Returns:

	a list of peaks, where each peak is a list containing
[pos,area,sig,gam]
(position, peak area, Gaussian width, Lorentzian width)

	
property Peaks

	Provides a dict with the Peak List parameters
for this histogram.

	Returns:

	dict with two elements where item
‘peaks’ is a list of peaks where each element is
[pos,pos-ref,area,area-ref,sig,sig-ref,gam,gam-ref],
where the -ref items are refinement flags and item
‘sigDict’ is a dict with possible items ‘Back;#’,
‘pos#’, ‘int#’, ‘sig#’, ‘gam#’

	
property SampleParameters

	Provides a dictionary with with the Sample Parameters
for this histogram.

	
SaveProfile(filename)

	Writes a GSAS-II (new style) .instprm file

	
add_back_peak(pos, int, sig, gam, refflags=[])

	Adds a background peak to the Background parameters

	Parameters:

	
	pos (float) – position of peak, a 2theta or TOF value

	int (float) – integrated intensity of background peak, usually large

	sig (float) – Gaussian width of background peak, usually large

	gam (float) – Lorentzian width of background peak, usually unused (small)

	refflags (list) – a list of 1 to 4 boolean refinement flags for
pos,int,sig & gam, respectively (use [0,1] to refine int only).
Defaults to [] which means nothing is refined.

	
add_peak(area, dspace=None, Q=None, ttheta=None)

	Adds a single peak to the peak list
:param float area: peak area
:param float dspace: peak position as d-space (A)
:param float Q: peak position as Q (A-1)
:param float ttheta: peak position as 2Theta (deg)

Note: only one of the parameters: dspace, Q or ttheta may be specified.
See Peak Fitting for an example.

	
calc_autobkg(opt=0, logLam=None)

	
	Sets fixed background points using the pybaselines Whittaker
	algorithm.

	Parameters:

	
	opt (int) – 0 for ‘arpls’ or 1 for ‘iarpls’. Default is 0.

	logLam (float) – log_10 of the Lambda value used in the
pybaselines.whittaker.arpls/.iarpls computation. If None (default)
is provided, a guess is taken for an appropriate value based
on the number of points.

	Returns:

	the array of computed background points

	
clear_refinements(refs)

	Clears the refinement parameter ‘key’ and its associated value.

	Parameters:

	refs (dict) – A dictionary of parameters to clear.
See the Histogram parameters table for what can be specified.

	
del_back_peak(peaknum)

	Removes a background peak from the Background parameters

	Parameters:

	peaknum (int) – the number of the peak (starting from 0)

	
fit_fixed_points()

	Attempts to apply a background fit to the fixed points currently specified.

	
getHistEntryList(keyname='')

	Returns a dict with histogram setting values.

	Parameters:

	keyname (str) – an optional string. When supplied only entries
where at least one key contains the specified string are reported.
Case is ignored, so ‘sg’ will find entries where one of the keys
is ‘SGdata’, etc.

	Returns:

	a set of histogram dict keys.

See G2Phase.getHAPentryList() for a related example.

See also

getHistEntryValue()
setHistEntryValue()

	
getHistEntryValue(keylist)

	Returns the histogram control value associated with a list of keys.
Where the value returned is a list, it may be used as the target of
an assignment (as in
getHistEntryValue(...)[...] = val)
to set a value inside a list.

	Parameters:

	keylist (list) – a list of dict keys, typically as returned by
getHistEntryList().

	Returns:

	a histogram setting; may be a int, float, bool, list,…

See G2Phase.getHAPentryValue() for a related example.

	
get_wR()

	returns the overall weighted profile R factor for a histogram

	Returns:

	a wR value as a percentage or None if not defined

	
getdata(datatype)

	Provides access to the histogram data of the selected data type

	Parameters:

	datatype (str) – must be one of the following values (case is ignored)

	’X’: the 2theta or TOF values for the pattern

	’Yobs’: the observed intensity values

	’Yweight’: the weights for each data point (1/sigma**2)

	’Ycalc’: the computed intensity values

	’Background’: the computed background values

	’Residual’: the difference between Yobs and Ycalc (obs-calc)

	Returns:

	an numpy MaskedArray with data values of the requested type

	
ref_back_peak(peaknum, refflags=[])

	Sets refinement flag for a background peak

	Parameters:

	
	peaknum (int) – the number of the peak (starting from 0)

	refflags (list) – a list of 1 to 4 boolean refinement flags for
pos,int,sig & gam, respectively. If a flag is not specified
it defaults to False (use [0,1] to refine int only).
Defaults to [] which means nothing is refined.

	
refine_peaks(mode='useIP')

	Causes a refinement of peak position, background and instrument parameters

	Parameters:

	mode (str) – this determines how peak widths are determined. If
the value is ‘useIP’ (the default) then the width parameter values (sigma, gamma,
alpha,…) are computed from the histogram’s instrument parameters. If the
value is ‘hold’, then peak width parameters are not overridden. In
this case, it is not possible to refine the instrument parameters
associated with the peak widths and an attempt to do so will result in
an error.

	Returns:

	a list of dicts with refinement results. Element 0 has uncertainties
on refined values (also placed in self.data[‘Peak List’][‘sigDict’])
element 1 has the peak fit result, element 2 has the peak fit uncertainties
and element 3 has r-factors from the fit.
(These are generated in GSASIIpwd.DoPeakFit()).

	
reflections()

	Returns a dict with an entry for every phase in the
current histogram. Within each entry is a dict with keys
‘RefList’ (reflection list, see
Powder Reflections),
‘Type’ (histogram type), ‘FF’
(form factor information), ‘Super’ (True if this is superspace
group).

	
property residuals

	Provides a dictionary with with the R-factors for this histogram.
Includes the weighted and unweighted profile terms (R, Rb, wR, wRb, wRmin)
as well as the Bragg R-values for each phase (ph:H:Rf and ph:H:Rf^2).

	
setHistEntryValue(keylist, newvalue)

	Sets a histogram control value associated with a list of keys.

See G2Phase.setHAPentryValue() for a related example.

	Parameters:

	keylist (list) –
	a list of dict keys, typically as returned by
	getHistEntryList().

	param newvalue:

	a new value for the hist setting. The type must be
the same as the initial value, but if the value is a container
(list, tuple, np.array,…) the elements inside are not checked.

	
set_background(key, value)

	Set background parameters (this serves a similar function as in
set_refinements(), but with a simplified interface).

	Parameters:

	
	key (str) – a string that defines the background parameter that will
be changed. Must appear in the table below.

	key name

	type of value

	meaning of value

	fixedHist

	int, str,
None or
G2PwdrData

	reference to a histogram in the current
project or None to remove the reference.

	fixedFileMult

	float

	multiplier applied to intensities in
the background histogram where a value
of -1.0 means full subtraction of
the background histogram.

	value – a value to set the selected background parameter. The meaning
and type for this parameter is listed in the table above.

	
set_peakFlags(peaklist=None, area=None, pos=None, sig=None, gam=None, alp=None, bet=None)

	Set refinement flags for peaks

	Parameters:

	
	peaklist (list) – a list of peaks to change flags. If None (default), changes
are made to all peaks.

	area (bool) – Sets or clears the refinement flag for the peak area value.
If None (the default), no change is made.

	pos (bool) – Sets or clears the refinement flag for the peak position value.
If None (the default), no change is made.

	sig (bool) – Sets or clears the refinement flag for the peak sigma (Gaussian width) value.
If None (the default), no change is made.

	gam (bool) – Sets or clears the refinement flag for the peak gamma (Lorentzian width) value.
If None (the default), no change is made.

	alp (bool) – Sets or clears the refinement flag for the peak alpha (TOF width) value.
If None (the default), no change is made.

	bet (bool) – Sets or clears the refinement flag for the peak beta (TOF width) value.
If None (the default), no change is made.

Note that when peaks are first created the area flag is on and the other flags are
initially off.

Example:

set_peakFlags(sig=False,gam=True)

causes the sig refinement flag to be cleared and the gam flag to be set, in both cases for
all peaks. The position and area flags are not changed from their previous values.

	
set_refinements(refs)

	Sets the histogram refinement parameter ‘key’ to the specification ‘value’.

	Parameters:

	refs (dict) – A dictionary of the parameters to be set. See the
Histogram parameters table for a description of
what these dictionaries should be.

	Returns:

	None

	
y_calc()

	Returns the calculated intensity values; better to
use getdata()

	
exception GSASIIscriptable.G2ScriptException

	

	
class GSASIIscriptable.G2SeqRefRes(data, proj)

	Wrapper for a Sequential Refinement Results tree entry, containing the
results for a refinement

Scripts should not try to create a G2SeqRefRes object directly as
this object will be created when a .gpx project file is read.

As an example:

from __future__ import division, print_function
import os,sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII')
PathWrap = lambda fil: os.path.join('/Users/toby/Scratch/SeqTut2019Mar',fil)
import GSASIIscriptable as G2sc
gpx = G2sc.G2Project(PathWrap('scr4.gpx'))
seq = gpx.seqref()
lbl = ('a','b','c','alpha','beta','gamma','Volume')
for j,h in enumerate(seq.histograms()):
 cell,cellU,uniq = seq.get_cell_and_esd(1,h)
 print(h)
 print([cell[i] for i in list(uniq)+[6]])
 print([cellU[i] for i in list(uniq)+[6]])
 print('')
print('printed',[lbl[i] for i in list(uniq)+[6]])

See also

G2Project.seqref()

	
RefData(hist)

	Provides access to the output from a particular histogram

	Parameters:

	hist – Specify a histogram or using the histogram name (str)
or the index number (int) of the histogram in the sequential
refinement (not the project), numbered as in the project tree
starting from 0.

	Returns:

	a list of dicts where the first element has sequential
refinement results and the second element has the contents of
the histogram tree items.

	
get_Covariance(hist, varList)

	Returns the values and covariance matrix for a series of variable
parameters, as defined for the selected histogram
in the last sequential refinement cycle

	Parameters:

	
	hist – Specify a histogram or using the histogram name (str)
or the index number (int) of the histogram in the sequential
refinement (not the project), numbered as in the project tree
starting from 0.

	varList (tuple) – a list of variable names of form ‘<p>:<h>:<name>’

	Returns:

	(valueList,CovMatrix) where valueList contains the (n) values
in the same order as varList (also length n) and CovMatrix is a
(n x n) matrix. If any variable name is not found in the varyList
then None is returned.

Use this code, where sig provides standard uncertainties for
parameters and where covArray provides the correlation between
off-diagonal terms:

sig = np.sqrt(np.diag(covMatrix))
xvar = np.outer(sig,np.ones_like(sig))
covArray = np.divide(np.divide(covMatrix,xvar),xvar.T)

	
get_ParmList(hist)

	Returns a list of all the parameters defined in the
last refinement cycle for the selected histogram

	Parameters:

	hist – Specify a histogram or using the histogram name (str)
or the index number (int) of the histogram in the sequential
refinement (not the project), numbered as in the project tree
starting from 0.

	Returns:

	a list of parameters or None if no refinement has been
performed.

	
get_Variable(hist, var)

	Returns the value and standard uncertainty (esd) for a variable
parameters, as defined for the selected histogram
in the last sequential refinement cycle

	Parameters:

	
	hist – Specify a histogram or using the histogram name (str)
or the index number (int) of the histogram in the sequential
refinement (not the project), numbered as in the project tree
starting from 0.

	var (str) – a variable name of form ‘<p>:<h>:<name>’, such as
‘:0:Scale’

	Returns:

	(value,esd) if the parameter is refined or
(value, None) if the variable is in a constraint or is not
refined or None if the parameter is not found.

	
get_VaryList(hist)

	Returns a list of the refined variables in the
last refinement cycle for the selected histogram

	Parameters:

	hist – Specify a histogram or using the histogram name (str)
or the index number (int) of the histogram in the sequential
refinement (not the project), numbered starting from 0.

	Returns:

	a list of variables or None if no refinement has been
performed.

	
get_cell_and_esd(phase, hist)

	Returns a vector of cell lengths and esd values

	Parameters:

	
	phase – A phase, which may be specified as a phase object
(see G2Phase), the phase name (str) or the index number (int)
of the phase in the project, numbered starting from 0.

	hist – Specify a histogram or using the histogram name (str)
or the index number (int) of the histogram in the sequential
refinement (not the project), numbered as in in the project tree
starting from 0.

	Returns:

	cell,cellESD,uniqCellIndx where cell (list)
with the unit cell parameters (a,b,c,alpha,beta,gamma,Volume);
cellESD are the standard uncertainties on the 7 unit cell
parameters; and uniqCellIndx is a tuple with indicies for the
unique (non-symmetry determined) unit parameters (e.g.
[0,2] for a,c in a tetragonal cell)

	
histograms()

	returns a list of histograms in the squential fit

	
GSASIIscriptable.GenerateReflections(spcGrp, cell, Qmax=None, dmin=None, TTmax=None, wave=None)

	Generates the crystallographically unique powder diffraction reflections
for a lattice and space group (see GSASIIlattice.GenHLaue()).

	Parameters:

	
	spcGrp (str) – A GSAS-II formatted space group (with spaces between
axial fields, e.g. ‘P 21 21 21’ or ‘P 42/m m c’). Note that non-standard
space groups, such as ‘P 21/n’ or ‘F -1’ are allowed (see
GSASIIspc.SpcGroup()).

	cell (list) – A list/tuple with six unit cell constants,
(a, b, c, alpha, beta, gamma) with values in Angstroms/degrees.
Note that the cell constants are not checked for consistency
with the space group.

	Qmax (float) – Reflections up to this Q value are computed
(do not use with dmin or TTmax)

	dmin (float) – Reflections with d-space above this value are computed
(do not use with Qmax or TTmax)

	TTmax (float) – Reflections up to this 2-theta value are computed
(do not use with dmin or Qmax, use of wave is required.)

	wave (float) – wavelength in Angstroms for use with TTmax (ignored
otherwise.)

	Returns:

	a list of reflections, where each reflection contains four items:
h, k, l, d, where d is the d-space (Angstroms)

Example:

>>> import os,sys
>>> sys.path.insert(0,'/Users/toby/software/G2/GSASII')
>>> import GSASIIscriptable as G2sc
GSAS-II binary directory: /Users/toby/software/G2/GSASII/bin
17 values read from config file /Users/toby/software/G2/GSASII/config.py
>>> refs = G2sc.GenerateReflections('P 1',
... (5.,6.,7.,90.,90.,90),
... TTmax=20,wave=1)
>>> for r in refs: print(r)
...
[0, 0, 1, 7.0]
[0, 1, 0, 6.0]
[1, 0, 0, 5.0]
[0, 1, 1, 4.55553961419178]
[0, 1, -1, 4.55553961419178]
[1, 0, 1, 4.068667356033675]
[1, 0, -1, 4.068667356033674]
[1, 1, 0, 3.8411063979868794]
[1, -1, 0, 3.8411063979868794]

	
GSASIIscriptable.IPyBrowse(args)

	Load a .gpx file and then open a IPython shell to browse it:

usage: GSASIIscriptable.py browse [-h] files [files ...]

positional arguments:

files list of files to browse

optional arguments:

-h, --help show this help message and exit

	
GSASIIscriptable.LoadDictFromProjFile(ProjFile)

	Read a GSAS-II project file and load items to dictionary

	Parameters:

	ProjFile (str) – GSAS-II project (name.gpx) full file name

	Returns:

	Project,nameList, where

	Project (dict) is a representation of gpx file following the GSAS-II tree structure
for each item: key = tree name (e.g. ‘Controls’,’Restraints’,etc.), data is dict
data dict = {‘data’:item data whch may be list, dict or None,’subitems’:subdata (if any)}

	nameList (list) has names of main tree entries & subentries used to reconstruct project file

Example for fap.gpx:

Project = { #NB:dict order is not tree order
 'Phases':{'data':None,'fap':{phase dict}},
 'PWDR FAP.XRA Bank 1':{'data':[histogram data list],'Comments':comments,'Limits':limits, etc},
 'Rigid bodies':{'data': {rigid body dict}},
 'Covariance':{'data':{covariance data dict}},
 'Controls':{'data':{controls data dict}},
 'Notebook':{'data':[notebook list]},
 'Restraints':{'data':{restraint data dict}},
 'Constraints':{'data':{constraint data dict}}]
 }
nameList = [#NB: reproduces tree order
 ['Notebook',],
 ['Controls',],
 ['Covariance',],
 ['Constraints',],
 ['Restraints',],
 ['Rigid bodies',],
 ['PWDR FAP.XRA Bank 1',
 'Comments',
 'Limits',
 'Background',
 'Instrument Parameters',
 'Sample Parameters',
 'Peak List',
 'Index Peak List',
 'Unit Cells List',
 'Reflection Lists'],
 ['Phases', 'fap']
]

	
GSASIIscriptable.LoadG2fil()

	Setup GSAS-II importers.
Delay importing this module when possible, it is slow.
Multiple calls are not. Only the first does anything.

	
GSASIIscriptable.PreSetup(data)

	Create part of an initial (empty) phase dictionary

from GSASIIphsGUI.py, near end of UpdatePhaseData

Author: Jackson O’Donnell (jacksonhodonnell .at. gmail.com)

	
GSASIIscriptable.Readers = {'Image': [], 'Phase': [], 'Pwdr': []}

	Readers by reader type

	
GSASIIscriptable.SaveDictToProjFile(Project, nameList, ProjFile)

	Save a GSAS-II project file from dictionary/nameList created by LoadDictFromProjFile

	Parameters:

	
	Project (dict) – representation of gpx file following the GSAS-II
tree structure as described for LoadDictFromProjFile

	nameList (list) – names of main tree entries & subentries used to reconstruct project file

	ProjFile (str) – full file name for output project.gpx file (including extension)

	
GSASIIscriptable.SetDefaultDData(dType, histoName, NShkl=0, NDij=0)

	Create an initial Histogram dictionary

Author: Jackson O’Donnell (jacksonhodonnell .at. gmail.com)

	
GSASIIscriptable.SetPrintLevel(level)

	Set the level of output from calls to GSASIIfiles.G2Print(),
which should be used in place of print() where possible. This is a
wrapper for GSASIIfiles.G2SetPrintLevel() so that this routine is
documented here.

	Parameters:

	level (str) – a string used to set the print level, which may be
‘all’, ‘warn’, ‘error’ or ‘none’.
Note that capitalization and extra letters in level are ignored, so
‘Warn’, ‘warnings’, etc. will all set the mode to ‘warn’

	
GSASIIscriptable.SetupGeneral(data, dirname)

	Initialize phase data.

	
GSASIIscriptable.add(args)

	Implements the add command-line subcommand. This adds histograms and/or phases to GSAS-II project:

usage: GSASIIscriptable.py add [-h] [-d HISTOGRAMS [HISTOGRAMS ...]]
 [-i IPARAMS [IPARAMS ...]]
 [-hf HISTOGRAMFORMAT] [-p PHASES [PHASES ...]]
 [-pf PHASEFORMAT] [-l HISTLIST [HISTLIST ...]]
 filename

positional arguments:

filename the project file to open. Should end in .gpx

optional arguments:

-h, --help show this help message and exit
-d HISTOGRAMS [HISTOGRAMS ...], --histograms HISTOGRAMS [HISTOGRAMS ...]
 list of datafiles to add as histograms
-i IPARAMS [IPARAMS ...], --iparams IPARAMS [IPARAMS ...]
 instrument parameter file, must be one for every
 histogram
-hf HISTOGRAMFORMAT, --histogramformat HISTOGRAMFORMAT
 format hint for histogram import. Applies to all
 histograms
-p PHASES [PHASES ...], --phases PHASES [PHASES ...]
 list of phases to add. phases are automatically
 associated with all histograms given.
-pf PHASEFORMAT, --phaseformat PHASEFORMAT
 format hint for phase import. Applies to all phases.
 Example: -pf CIF
-l HISTLIST [HISTLIST ...], --histlist HISTLIST [HISTLIST ...]
 list of histgram indices to associate with added
 phases. If not specified, phases are associated with
 all previously loaded histograms. Example: -l 2 3 4

	
GSASIIscriptable.blkSize = 128

	Integration block size; 128 or 256 seems to be optimal for CPU use, but 128 uses
less memory, must be <=1024 (for polymask/histogram3d)

	
GSASIIscriptable.calcMaskMap(imgprms, mskprms)

	Computes a set of blocked mask arrays for a set of image controls and mask parameters.
This capability is also provided with G2Image.IntMaskMap().

	
GSASIIscriptable.calcThetaAzimMap(imgprms)

	Computes the set of blocked arrays for theta-azimuth mapping from
a set of image controls, which can be cached and reused for
integration of multiple images with the same calibration parameters.
This capability is also provided with G2Image.IntThetaAzMap().

	
GSASIIscriptable.create(args)

	Implements the create command-line subcommand. This creates a GSAS-II project, optionally adding histograms and/or phases:

usage: GSASIIscriptable.py create [-h] [-d HISTOGRAMS [HISTOGRAMS ...]]
 [-i IPARAMS [IPARAMS ...]]
 [-p PHASES [PHASES ...]]
 filename

positional arguments:

filename the project file to create. should end in .gpx

optional arguments:

-h, --help show this help message and exit
-d HISTOGRAMS [HISTOGRAMS ...], --histograms HISTOGRAMS [HISTOGRAMS ...]
 list of datafiles to add as histograms
-i IPARAMS [IPARAMS ...], --iparams IPARAMS [IPARAMS ...]
 instrument parameter file, must be one for every
 histogram
-p PHASES [PHASES ...], --phases PHASES [PHASES ...]
 list of phases to add. phases are automatically
 associated with all histograms given.

	
GSASIIscriptable.dictDive(d, search='', keylist=[], firstcall=True, l=None)

	Recursive routine to scan a nested dict. Reports a list of keys
and the associated type and value for that key.

	Parameters:

	
	d (dict) – a dict that will be scanned

	search (str) – an optional search string. If non-blank,
only entries where one of the keys constains search (case ignored)

	keylist (list) – a list of keys to apply to the dict.

	firstcall (bool) – do not specify

	l (list) – do not specify

	Returns:

	a list of keys located by this routine
in form [([keylist], type, value),…] where if keylist is [‘a’,’b’,’c’]
then d[[‘a’][‘b’][‘c’] will have the value.

This routine can be called in a number of ways, as are shown in a few
examples:

>>> for i in G2sc.dictDive(p.data['General'],'paw'): print(i)
...
(['Pawley dmin'], <class 'float'>, 1.0)
(['doPawley'], <class 'bool'>, False)
(['Pawley dmax'], <class 'float'>, 100.0)
(['Pawley neg wt'], <class 'float'>, 0.0)
>>>
>>> for i in G2sc.dictDive(p.data,'paw',['General']): print(i)
...
(['General', 'Pawley dmin'], <class 'float'>, 1.0)
(['General', 'doPawley'], <class 'bool'>, False)
(['General', 'Pawley dmax'], <class 'float'>, 100.0)
(['General', 'Pawley neg wt'], <class 'float'>, 0.0)
>>>
>>> for i in G2sc.dictDive(p.data,'',['General','doPawley']): print(i)
...
(['General', 'doPawley'], <class 'bool'>, False)

	
GSASIIscriptable.dump(args)

	Implements the dump command-line subcommand, which shows the contents of a GSAS-II project:

usage: GSASIIscriptable.py dump [-h] [-d] [-p] [-r] files [files ...]

positional arguments:

files

optional arguments:

-h, --help show this help message and exit
-d, --histograms list histograms in files, overrides --raw
-p, --phases list phases in files, overrides --raw
-r, --raw dump raw file contents, default

	
GSASIIscriptable.export(args)

	Implements the export command-line subcommand: Exports phase as CIF:

usage: GSASIIscriptable.py export [-h] gpxfile phase exportfile

positional arguments:

gpxfile the project file from which to export
phase identifier of phase to export
exportfile the .cif file to export to

optional arguments:

-h, --help show this help message and exit

	
GSASIIscriptable.exportersByExtension = {}

	Specifies the list of extensions that are supported for Powder data export

	
GSASIIscriptable.import_generic(filename, readerlist, fmthint=None, bank=None)

	Attempt to import a filename, using a list of reader objects.

Returns the first reader object which worked.

	
GSASIIscriptable.installScriptingShortcut()

	Creates a file named G2script in the current Python site-packages directory.
This is equivalent to the “Install GSASIIscriptable shortcut” command in the GUI’s
File menu. Once this is done, a shortcut for calling GSASIIscriptable is created,
where the command:

>>> import G2script as G2sc

will provide access to GSASIIscriptable without changing the sys.path; also see
Shortcut for Scripting Access.

Note that this only affects the current Python installation. If more than one
Python installation will be used with GSAS-II (for example because different
conda environments are used), this command should be called from within each
Python environment.

If more than one GSAS-II installation will be used with a Python installation,
this shortcut can only be used with one of them.

	
GSASIIscriptable.load_iprms(instfile, reader, bank=None)

	Loads instrument parameters from a file, and edits the
given reader.

Returns a 2-tuple of (Iparm1, Iparm2) parameters

	
GSASIIscriptable.load_pwd_from_reader(reader, instprm, existingnames=[], bank=None)

	Loads powder data from a reader object, and assembles it into a GSASII data tree.

	Returns:

	(name, tree) - 2-tuple of the histogram name (str), and data

Author: Jackson O’Donnell (jacksonhodonnell .at. gmail.com)

	
GSASIIscriptable.main()

	The command-line interface for calling GSASIIscriptable as a shell command,
where it is expected to be called as:

python GSASIIscriptable.py <subcommand> <file.gpx> <options>

The following subcommands are defined:

	create, see create()

	add, see add()

	dump, see dump()

	refine, see refine()

	export, export()

	browse, see IPyBrowse()

See also

create()
add()
dump()
refine()
export()
IPyBrowse()

	
GSASIIscriptable.make_empty_project(author=None, filename=None)

	Creates an dictionary in the style of GSASIIscriptable, for an empty
project.

If no author name or filename is supplied, ‘no name’ and
<current dir>/test_output.gpx are used , respectively.

Returns: project dictionary, name list

Author: Jackson O’Donnell (jacksonhodonnell .at. gmail.com)

	
GSASIIscriptable.patchControls(Controls)

	patch routine to convert variable names used in parameter limits
to G2VarObj objects
(See Parameter Limits description.)

	
GSASIIscriptable.refine(args)

	
	Implements the refine command-line subcommand:
	conducts refinements on GSAS-II projects according to a JSON refinement dict:

usage: GSASIIscriptable.py refine [-h] gpxfile [refinements]

positional arguments:

gpxfile the project file to refine
refinements json file of refinements to apply. if not present refines file
 as-is

optional arguments:

-h, --help show this help message and exit

 \(\renewcommand\AA{\text{Å}}\)

17. GSAS-II Misc Scripts

17.1. testDeriv: Check derivative computation

Use this to check derivatives used in structure least squares
refinement against numerical values computed in this script.

To use set DEBUG=True in GSASIIstrMain.py (line 40, as of version
2546); run the least squares - zero cycles is sufficient. Do the “Save
Results”; this will write the file testDeriv.dat in the local
directory.

Then run this program to see plots of derivatives for all
parameters refined in the last least squares. Shown will be numerical
derivatives generated over all observations (including penalty terms)
and the corresponding analytical ones produced in the least
squares. They should match. Profiling is also done for function
calculation & for the 1st selected derivative (rest should be the same).

	
testDeriv.main()

	Starts main application to compute and plot derivatives

	
class testDeriv.testDeriv(parent)

	

17.2. GSASIItestplot: Plotting for testDeriv

Plotting module used for script testDeriv.

	
class GSASIItestplot.Plot(parent, id=-1, dpi=None, **kwargs)

	Creates a plotting window

	
class GSASIItestplot.PlotNotebook(id=-1)

	creates a Wx application and a plotting notebook

	
Show(show=True) → bool

	Shows or hides the window.

17.3. scanCCD: reduce data from scanning CCD

Quickly prototyped routine for reduction of data from detector described in
B.H. Toby, T.J. Madden, M.R. Suchomel, J.D. Baldwin, and R.B. Von Dreele,
“A Scanning CCD Detector for Powder Diffraction Measurements”.
Journal of Applied Crystallography. 46(4): p. 1058-63 (2013). This is
no longer being updated.

	
scanCCD.main()

	starts main application to merge data from scanning CCD

	
class scanCCD.scanCCD(parent)

	
	
PlotXY(XY, newPlot=False, type='')

	simple plot of xy data, used for diagnostic purposes

	
class scanCCD.scanCCDmain(redirect=False, filename=None, useBestVisual=False, clearSigInt=True)

	
	
OnInit(self) → bool

	

17.4. makeMacApp: Create Mac Applet

This script creates an AppleScript app bundle to launch GSAS-II. It is
called by bootstrap.py during the GSAS-II installation process. It
creates a “copy” of Python that is able to run wx.Python programs and
names this version of Python as GSAS-II so that items in the menus are
named correctly.

This routine creates an app bundle named GSAS-II.app. Inside the
bundle is a symbolic link to the Python executable named “GSAS-II”
that will be used to run GSAS-II. Having this link named that
way causes the name of the app to shows in the menu bar as
“GSAS-II” rather than “Python”. Also used by the app, is another
symbolic link named GSAS-II.py, which must be placed in the same
directory as the app bundle. This file is linked to the GSASII.py
script and the link is run using the link to Python. This also
causes other items in the app to be labeled as GSAS-II (but not
with the right capitalization, alas).

The original contents of the app bundle was created interactively
and, after some manual edits, the contents of that was placed into
a tar file distributed with GSAS-II, and is expanded in this script.
This method seems to be needed for MacOS 11.0+ (Big Sur and later)
where Apple’s security constraints seem to prevent creation of the
app directly. Older code (not currently in use) created the
app from “scratch” using the osacompile utility, but that no longer
seems to work.

Three different paths are needed to run this script:

path2GSAS: The location where the GSASII.py (and other GSAS-II
 Python files) are found.
installLoc: The location where the GSAS-II.app app bundle and
 the GSAS-II.py will be placed.
pythonLoc: The location of the Python executable.

Under normal circumstances, the locations for all of these paths
can be determined from the location of the makeMacApp.py file.
Note that when GSAS-II is installed from git using gitstrap.py,
the git repository is placed at <loc>/GSAS-II and the GSAS-II
Python scripts are placed at the GSASII child directory, so that
GSAS-II is started from the GSASII.py script at <loc>/GSAS-II/GSASII/
and the current script (makeMacApp.py) will be found in
<loc>/GSAS-II/GSASII/install/.

When the GSAS-II conda installers
are used, the git repository is placed at $CONDA_HOME/GSAS-II so that
<loc> above is $CONDA_HOME. Also, the Python executable will be found
in $CONDA_HOME/bin/Python. Thus, if this file is in makePath (typically
<loc>/GSAS-II/GSASII/install), then

	path2GSAS will be makePath/.. and

	installLoc will be path2GSAS/.. and

	pythonLoc will be installLoc/../bin/python,

but these locations can be overridden from the command-line arguments.
If a Python location is not supplied and is not at the default location
(installLoc/../bin/python) then the Python executable currently
running this script (from sys.executable) is used.

Run this script with no arguments or with one or two arguments.

The first argument, if supplied, provides the path to be used for the
app bundle will be created. Note that GSAS-II.app and GSAS-II.py will
be created in this directory.

The second argument, if supplied, is path2GSAS, a path to the
location GSASII.py script, which can be a relative path
(the absolute path is determined). If not supplied, the GSASII.py script
is expected to be located in the directory above where this
(makeMacApp.py) script is found.

The third argument, if supplied, provides the full path for the Python
installation to be used inside the app bundle that will be created. If not
supplied, and Python exists at installLoc/../bin/python, that will be used.
If that does not exist, then the location of the current Python executable
(from sys.executable) will be used.

	
makeMacApp.AppleScript = ''

	Will be set to contain an AppleScript to start GSAS-II by launching
Python and the GSAS-II Python script. Not currently used.

17.5. makeBat: Create GSAS-II Batch File

This script performs Windows specific installation steps to allow for
easy launching of GSAS-II. It is
called by bootstrap.py during the GSAS-II installation process.

This script creates a file named RunGSASII.bat and a desktop shortcut to that file.
It registers the filetype .gpx so that the GSAS-II project files exhibit the
GSAS-II icon and so that double-clicking on them opens them in GSAS-II.

Run this script with no arguments; the path to the GSASII.py file
is assumed to be in the parent directory to the one where this file
(makeBat.py) is found.

The contents of this file may also be run from inside the gitstrap.py
installation script. In that case, the following variables are already
defined:

	path2GSAS2 is the directory with all GSAS-II Python code

	G2script has the location of the GSASII.py file

	path2repo is the location of the GSAS-II git repository

The path to Python is determined from the version of Python used to
run this script.

17.6. makeLinux: Create Linux Shortcuts

This script performs Linux specific installation steps that
allowscreates files allowing
GSAS-II to be launched from a desktop icon or desktop manager menu.
Not all desktop managers will recognize these files.
It is called by bootstrap.py during the GSAS-II installation process.

This script creates a menu entry and dektop shortcut for Gnome
(and perhaps KDE) desktop managers. The most recent testing
has been on Raspberry Pi OS.
My hope is to improve this further to work conveniently with a wider
range of Linux desktop managers.

Run this script with one optional argument, the location of the GSASII.py
file. That location may be specified relative to the current path or given
an absolute path, but will be accessed via an absolute path.
If no arguments are supplied, the path to the GSASII.py file
is assumed to be in the parent directory to the one where this file
(makeLinux.py) is found.

The contents of this file may also be run from inside the gitstrap.py
installation script. In that case, the following variables are already
defined:

	path2GSAS2 is the directory with all GSAS-II Python code

	G2script has the location of the GSASII.py file

	path2repo is the location of the GSAS-II git repository

The path to Python is determined from the version of Python used to
run this script.

17.7. makeVarTbl: Make Table of Variable Names

This creates a table of variable names from the definitions supplied
in GSASIIobj.CompileVarDesc(). This table is used in the
Sphinx documentation as the GSAS-II Variable Names table.
This is run as part of the Sphinx build from inside docs/source/conf.py.

17.8. unit_tests: Self-test Module

A script that can be run to test a series of self-tests in GSAS-II.

At present,
only modules GSASIIspc and GSASIIlattice have self-tests
and these have not been tested or updated in many, many years.

	
unit_tests.test_GSASIIlattice()

	Test registered self-tests in GSASIIlattice.
Takes no input and returns nothing. Throws an Exception if a test fails.

	
unit_tests.test_GSASIIspc()

	Test registered self-tests in GSASIIspc.
Takes no input and returns nothing. Throws an Exception if a test fails.

17.9. testSytSym: Test Site Symmetry

A GUI program for testing the site symmetry generation routines.

	
testSytSym.main()

	Starts main application to compute and plot derivatives

	
class testSytSym.testSytSmain(redirect=False, filename=None, useBestVisual=False, clearSigInt=True)

	
	
OnInit(self) → bool

	

	
class testSytSym.testSytSym(parent)

	

17.10. testSSymbols: Test Superspace Group Symbols

A GUI program for testing the 3+1 superspace group symmetry generation routines.

	
testSSymbols.main()

	Starts main application to compute and plot derivatives

	
class testSSymbols.testSSmain(redirect=False, filename=None, useBestVisual=False, clearSigInt=True)

	
	
OnInit(self) → bool

	

	
class testSSymbols.testSSymbols(parent)

	

17.11. Other scripts

A few scripts are also placed in the GSAS-II auxiliary repositories

GSASII-buildtools/install/gitstrap.py

Used to install the GSAS-II package, including the appropriate
binary files. May be used directly to install GSAS-II from inside
Python in an appropriately configured Python installation, or
is also used to obtain or update the GSAS-II files in a conda
installation.

GSASII-buildtools/install/setgitversion.py

Used during the gsas2full (& gsas2complete) build process
to modify the g2complete & g2full .template files to reflect the
versions of Python & packages that should be used for builds.

GSASII-tutorials/scripts/makeGitTutorial.py

Provides a script to creates the HTML page
(GSASII/help/Tutorials.html) that lists all the tutorials defined in
variable GSASIIctrlGUI.tutorialIndex. Run this after adding
new tutorials to that catalog.

 \(\renewcommand\AA{\text{Å}}\)

18. GSAS-II Web Modules

These modules are used to access external web sites.

18.1. SUBGROUPS: Interface Bilbao SUBGROUPS & k-SUBGROUPSMAG web pages

Extraction of space subgroups for a given space group and a propagation vector
from the GSAS version of SUBGROUPS & k-SUBGROUPSMAG web page on the Bilbao Crystallographic server. Note that the web pages are special to GSAS-II.
This uses the GSASIIIO.postURL() function for web access.

	
SUBGROUPS.BilbaoLowSymSea1(valsdict, row, savedcookies, pagelist=None)

	Using a candidate higher symmetry unit cell from
BilbaoSymSearch1() for monoclinic and triclinic cells,
create a list of possible supergroups.
Those that match the possible lattice types
are marked for potential follow-up to see if coordinates can be
are consistent with that symmetry.

	Returns:

	latticeList,valsdict,tbl where

	latticeList: a list of the possible Bravais lattice types

	valsdict: a dict with values needed for the next web form

	
	tbl a list of supergroups with four values per entry,
	True/False if the lattice type matches,
a label with the space group number and the index (sg@ind),
the space group number and a lattice type (cell & centering)

	
SUBGROUPS.BilbaoLowSymSea2(num, valsdict, row, savedcookies, pagelist=None)

	For a selected cell & supergroup from BilbaoLowSymSea1(),
see if the coordinates are consistent with the supergroup

	
SUBGROUPS.BilbaoReSymSearch(key, postdict, pagelist=None)

	Perform a supergroup search on a result from previously
identified supergroup that was found in find2SearchAgain()
from the returned web pages. Provides results about the same as from
BilbaoSymSearch1()

	Returns:

	valsdict,csdict,rowdict,savedcookies where valsdict
will contain values to be used in the next call to Bilbao and
savedcookies will contain a cookie needed for this as well.

csdict will be used to select
which entries will be used in the next search and rowdict
contains possible supergroup settings.

	
SUBGROUPS.BilbaoSymSearch1(sgnum, phase, maxdelta=2, angtol=None, pagelist=None, keepCell=False)

	Perform a search for a supergroup consistent with a phase
using the Bilbao Pseudosymmetry search (PSEUDO) program, see
C. Capillas, E.S. Tasci, G. de la Flor, D. Orobengoa, J.M. Perez-Mato
and M.I. Aroyo. “A new computer tool at the Bilbao Crystallographic
Server to detect and characterize pseudosymmetry”. Z. Krist. (2011),
226(2), 186-196 DOI:10.1524/zkri.2011.1321.

The phase must be in a standard setting.

	Parameters:

	
	sgnum (int) – A space group number (1-230)

	phase (dict) – a GSAS-II phase object (see
Phase Information). Note that the
phase must be in a standard setting (see GetStdSGset()).

	maxdelta (float) – Allowed distance tolerance in pseudosym search (default 2)

	angtol (float) – Allowed tolerance for cell angles, used for finding
possible unit cells in from triclinic or monoclinic cells, ignored
otherwise. Defaults to None, which will cause 5 degrees to be used.

	pagelist (list) – a list to contain references to the text of web
pages created by the Bilbao web site. If None (default) the web
pages are not saved.

	keepCell (bool) – if False (default) and the cell is monoclinic
or triclinic, a search is made for higher symmetry cells. If True,
the search is made with the current cell.

	Returns:

	valsdict,csdict,rowdict,savedcookies where the contents
will change depending on the space group, but valsdict
will contain values to be used in the next call to Bilbao and
savedcookies will contain a cookie needed for this as well.

	For monoclinic and triclinic unit cells: csdict will be None and
rowdict (rowlist) will be a list containing unit cells of higher
symmetry matching the input unit cell to be used for searching
for supergroups.

	For higher symmetry unit cells, csdict will be used to select
which entries will be used in the next search and rowdict
contain possible supergroup settings.

	
SUBGROUPS.BilbaoSymSearch2(valsdict, csdict, rowdict, savedcookies, pagelist=None, dlg=None, ophsnam='?')

	Perform a supergroup search from the list of identified supergroups
found in BilbaoSymSearch1 (typically where the cell is higher symmetry
than monoclinic or triclinic; see BilbaoLowSymSea1() and
BilbaoLowSymSea2() for the low symmetry case.)

	
SUBGROUPS.GetNonStdSubgroups(SGData, kvec, star=False, landau=False, maximal=False)

	Run Bilboa’s SUBGROUPS for a non-standard space group.
This requires doing a post to the Bilboa site, which returns all
subgroups of the entered space group as the text of a web page
with a table containing the space group symbol, the
transformation matrix and index for each subgroup.

	Params list kvec:

	propogation vector as a list of nine string fractions or blank

	Params SGData:

	space group object (see Space Group object)

	Returns:

	(error,text) error: if True no error or False; where
text containts a possible web page text

	
SUBGROUPS.GetNonStdSubgroupsmag(SGData, kvec, star=False, landau=False, maximal=False)

	Run Bilboa’s k-Subgroupsmag for a non-standard space group.
This requires doing a post to the Bilboa site, which returns all
magnetic subgroups of the entered subgroup as the text of a web page
with a table containing the BNS magnetic space group symbol, the
transformation matrix and index for each subgroup.

	Params list kvec:

	propogation vector as a list of three numbers

	Params SGData:

	space group object (see Space Group object)

	Returns:

	(error,text) error: if True no error or False; where
text containts a possible web page text

	
SUBGROUPS.GetStdSGset(SGData=None, oprList=[])

	Determine the standard setting for a space group from either
a list of symmetry operators or a space group object using the
Bilbao Crystallographic Server utility IDENTIFY GROUP

	Parameters:

	
	oprList (list) – a list of symmetry operations (example:
[‘x,y,z’, ‘-x,-y,-z’]). Supply either this or SGData, not both.

	SGData – from GSASIIspc.SpcGroup()
Supply either this or oprList, not both.

	Returns:

	(sgnum, sgnam, xformM, offsetV) where:

	sgnum is the space group number,

	sgnam is the space group short H-M name (as used in GSAS-II)

	xformM is 3x3 numpy matrix relating the old cell & coordinates to the new

	offsetV is the vector of offset to be applied to the coordinates

Note that the new cell is given by G2lat.TransformCell([a,b,…],xformM)

	
SUBGROUPS.GetSupergroup(SGnum, dlg=None)

	Get supergroups for a space group in a standard setting
using the Bilbao Crystallographic Server utility “Minimal
Supergroups of Space Groups” (minsup)

This routine is not fully tested and is not currently implemented.

	Parameters:

	SGnum (int) – a space group number (1-230)

	Returns:

	a list of supergroups where each entry in the list contains
[sgnum, sgnam, index, xtype, url, xformlist) where:

	sgnum is the space group number,

	sgnam is the space group short H-M name (no spacing, not GSAS-II usage)

	index (int) is the change in asymmetric unit size

	xtype (char) is the transformation type (t,k)

	url is a link to compute the subgroup transformations

	xformlist is a list containing all the subgroup transformations.
xformlist contains [(M,V), (M,V),…] where:

	M is 3x3 numpy matrix relating the old cell & coordinates to the new

	V is the vector of offset to be applied to the coordinates

Note that the new cell is given by G2lat.TransformCell([a,b,…],M)

	
SUBGROUPS.applySym(xform, cell)

	Determine a unit cell according to a supergroup transformation
computed with the Bilbao Crystallographic Server utility “Minimal
Supergroups of Space Groups” (minsup) utility.

The required symmetry is applied to the cell and the cell is
scaled so that the unit cell volume is unchanged beyond the
scaling in the transformation matrix.

This is not used in GSAS-II at present. Some additional
thought is likely needed to to drop unit cells that are too
far from the required lattice symmetry.

	Parameters:

	
	xform (list) – a list of transformations from GetSupergroup()

	cell (list) – the unit cell to be transformmed.

	Returns:

	a list of two cells for each transformation matrix in xform.
The first cell in each pair is the scaled cell where lattice
symmetry has been applied, while the second cell is the direct
transform of the input cell.

	
SUBGROUPS.find2SearchAgain(pagelist, req='@')

	Scan through web pages from supergroup tests and pull out
where coordinates pass the tests to be potentially used to search
entries to be used to search for a higher symmetry setting.

	
SUBGROUPS.parseBilbaoCheckLattice(page)

	find the cell options from the web page returned by Bilbao PseudoLattice

	
SUBGROUPS.saveNewPhase(G2frame, phData, newData, phlbl, msgs, orgFilName)

	create a .gpx file from a structure from the BilbaoSite pseudosym site
saved in newData

	
SUBGROUPS.subBilbaoCheckLattice(spgNum, cell, tol=5)

	submit a unit cell to Bilbao PseudoLattice

	
SUBGROUPS.test()

	This tests that routines in Bilbao Crystallographic Server
are accessible and produce output that we can parse. The output
is displayed but not checked to see that it agrees with what
has been provided previously.

18.2. ISODISTORT: Interface to BYU ISODISTORT web pages

Uses the BYU ISODISTORT web site to search over all k-points for a structure or to relate a parent and child structure by irreps.
This uses the mod:requests package.

	
ISODISTORT.GetISODISTORT(Phase)

	Run Stokes & Campbell ISODISTORT.
This requires doing a post to the BYU upload site with a cif file, which returns a BYU local
copy. This is then sent to the BYU form site with various options, which returns all
subgroups of the entered space group as the text of a web page with a table containing the space
group symbol, the transformation matrix and index for each subgroup. Selection of one of these is
returned to the BYU form site which returns the text of a cif file to be used to create the new phase
which can apply the distortion mode constraints

	Params dict Phase:

	GSAS-II phase data

	Returns:

	radio: dict of possible distortion structures

	Returns:

	data2: list of str input for next run of isositortform for extracting cif file

	
ISODISTORT.GetISODISTORTcif(Phase)

	Run Stokes & Campbell ISODISTORT.
Selection of one of the order parameter disrections is returned to the BYU
form site which returns the text of a cif file to be used to create the new phase
which can apply the distortion mode constraints

	Params dict Phase:

	GSAS-II phase data; contains result of GetISODISTORT above & selection

	Returns:

	CIFfile str: name of cif file created by this in local directory

 \(\renewcommand\AA{\text{Å}}\)

19. GSAS-II Import Modules

Imports are implemented by deriving a class from
GSASIIobj.ImportPhase, GSASIIobj.ImportStructFactor,
GSASIIobj.ImportPowderData ,
GSASIIobj.ImportSmallAngleData,
GSASIIobj.ImportReflectometryData,
GSASIIobj.ImportPDFData,
or GSASIIobj.ImportImage. These classes are in turn
derived from GSASIIobj.ImportBaseclass.

Module file names (G2phase_, G2pwd_ and G2sfact_, etc.) are used to
determine which menu an import routine should be placed into. (N.B. this
naming was an unnecessary choice; importer types could have been determined
from the base class.)
To implement import of
a phase, a single crystal or a powder dataset, respectively, name the
file with the appropriate file name and place the file anywhere in the
path defined in sys.path and the next time GSAS-II is started,
the file should be read by Python and the new format will appear in
the appropriate import menu.
Importers are documented below, separated by type. Importers tend to
be fairly simple files, where many are in the range of 50-100 lines,
and where more than half of those lines are directly copied from other
importers without any changes. Details on this are given in the
Writing a Import Routine section, below.

19.1. Phase Import Routines

Phase import routines are classes derived from
GSASIIobj.ImportPhase.
They must be found in files named G2phase*.py that are in the Python path
and the class must override the __init__ method and add a Reader method.
The distributed routines are:

19.1.1. Module G2phase: PDB, .EXP & JANA m40,m50

A set of short routines to read in phases using routines that were
previously implemented in GSAS-II: PDB, GSAS .EXP and JANA m40-m50 file formats

	
class G2phase.EXP_ReaderClass

	Routine to import Phase information from GSAS .EXP files

	
ContentsValidator(filename)

	Look for a VERSION tag in 1st line

	
ReadEXPPhase(G2frame, filepointer)

	Read a phase from a GSAS .EXP file.

	
Reader(filename, ParentFrame=None, usedRanIdList=[], **unused)

	Read a phase from a GSAS .EXP file using ReadEXPPhase()

	
class G2phase.JANA_ReaderClass

	Routine to import Phase information from a JANA2006 file

	
ContentsValidator(filename)

	Taking a stab a validating a .m50 file
(look for cell & at least one atom)

	
ReadJANAPhase(filename, parent=None)

	Read a phase from a JANA2006 m50 & m40 files.

	
Reader(filename, ParentFrame=None, **unused)

	Read a m50 file using ReadJANAPhase()

	
class G2phase.PDB_ReaderClass

	Routine to import Phase information from a PDB file

	
ContentsValidator(filename)

	Taking a stab a validating a PDB file
(look for cell & at least one atom)

	
ReadPDBPhase(filename, parent=None)

	Read a phase from a PDB file.

	
Reader(filename, ParentFrame=None, **unused)

	Read a PDF file using ReadPDBPhase()

	
class G2phase.PDF_ReaderClass

	Routine to import Phase information from ICDD PDF Card files

	
ContentsValidator(filename)

	Look for a str tag in 1st line

	
ReadPDFPhase(G2frame, fp)

	Read a phase from a ICDD .str file.

	
Reader(filename, ParentFrame=None, **unused)

	Read phase from a ICDD .str file using ReadPDFPhase()

19.1.2. Module G2phase_GPX: Import phase from GSAS-II project

Copies a phase from another GSAS-II project file into the
current project.

	
class G2phase_GPX.PhaseReaderClass

	Opens a .GPX file and pulls out a selected phase

	
ContentsValidator(filename)

	Test if the 1st section can be read as a cPickle block, if not it can’t be .GPX!

	
Reader(filename, ParentFrame=None, **unused)

	Read a phase from a .GPX file. Does not (yet?) support selecting and reading
more than one phase at a time.

19.1.3. Module G2phase_CIF: Coordinates from CIF

Parses a CIF using PyCifRW from James Hester (https://github.com/jamesrhester/pycifrw) and pulls out the
structural information.

If a CIF generated by ISODISTORT is encountered, extra information is
added to the phase entry and constraints are generated.

	
class G2phase_CIF.CIFPhaseReader

	Implements a phase importer from a possibly multi-block CIF file

	
ContentsValidator(filename)

	This routine will attempt to determine if the file can be read
with the current format.
This will typically be overridden with a method that
takes a quick scan of [some of]
the file contents to do a “sanity” check if the file
appears to match the selected format.
the file must be opened here with the correct format (binary/text)

	
ISODISTORT_proc(blk, atomlbllist, ranIdlookup, filename)

	Process ISODISTORT items to create constraints etc.
Constraints are generated from information extracted from
loops beginning with _iso_ and are placed into
self.Constraints, which contains a list of
constraints tree items
and one dict.
The dict contains help text for each generated ISODISTORT variable

At present only _iso_displacivemode… and _iso_occupancymode… are
processed. Not yet processed: _iso_magneticmode…,
_iso_rotationalmode… & _iso_strainmode…

	
ISODISTORT_test(blk)

	Test if there is any ISODISTORT information in CIF

At present only _iso_displacivemode… and _iso_occupancymode… are
tested.

	
G2phase_CIF.ISODISTORT_shortLbl(lbl, shortmodelist)

	Shorten model labels and remove special characters

19.1.4. Module G2phase_INS: Import phase from SHELX INS file

Copies a phase from SHELX ins file into the current project.

	
class G2phase_INS.PhaseReaderClass

	Opens a .INS file and pulls out a selected phase

	
ContentsValidator(filename)

	Test if the ins file has a CELL record

	
ReadINSPhase(filename, parent=None)

	Read a phase from a INS file.

	
Reader(filename, filepointer, ParentFrame=None, **unused)

	Read a ins file using ReadINSPhase()

19.1.5. Module G2phase_rmc6f: Import phase from RMCProfile

Copies a phase from a file written by RMCProfile into the current GSAS-II project.

	
class G2phase_rmc6f.PhaseReaderClass

	Opens a .rmc6f file and pulls out the phase

	
ContentsValidator(filename)

	Test if the rmc6f file has a CELL record

	
Reader(filename, filepointer, ParentFrame=None, **unused)

	Read a rmc6f file using ReadINSPhase()

	
Readrmc6fPhase(filename, parent=None)

	Read a phase from a rmc6f file.

19.1.6. Module G2phase_xyz: read coordinates from an xyz file

A short routine to read in a phase from an xyz Cartesian coordinate file

	
class G2phase_xyz.XYZ_ReaderClass

	Routine to import Phase information from a XYZ file

	
ContentsValidator(filename)

	Taking a stab a validating: 1st line should be a number

	
Reader(filename, ParentFrame=None, **unused)

	Read a PDF file using ReadPDBPhase()

19.2. Powder Data Import Routines

Powder data import routines are classes derived from
GSASIIobj.ImportPowderData.
They must be found in files named G2pwd*.py that are in the Python path
and the class must override the __init__ method and add a
Reader method.

The distributed powder data importers are:

19.2.1. Module G2pwd_GPX: GSAS-II projects

Routine to import powder data from GSAS-II .gpx files

	
class G2pwd_GPX.GSAS2_ReaderClass

	Routines to import powder data from a GSAS-II file
This should work to pull data out from a out of date .GPX file
as long as the details of the histogram data itself don’t change

	
ContentsValidator(filename)

	Test if the 1st section can be read as a cPickle block, if not it can’t be .GPX!

	
Reader(filename, ParentFrame=None, **kwarg)

	Read a dataset from a .GPX file.
If multiple datasets are requested, use self.repeat and buffer caching.

19.2.2. Module G2pwd_fxye: GSAS data files

Routine to read in powder data in a variety of formats
that were defined in the original GSAS/EXPGUI software suite.

	
class G2pwd_fxye.GSAS_ReaderClass

	Routines to import powder data from a GSAS files

	
ContentsValidator(filename)

	Validate by checking to see if the file has BANK lines & count them

	
Reader(filename, ParentFrame=None, **kwarg)

	Read a GSAS (old formats) file of type FXY, FXYE, ESD or STD types.
If multiple datasets are requested, use self.repeat and buffer caching.

EDS data is only in the STD format (10 values per line separated by spaces);
the 1st line contains at col 60 the word “Two-Theta “ followed by the appropriate value.
The BANK record contains the 3 values (4th not used) after ‘EDS’ for converting MCA
channel number (c) to keV via E = A + Bc + Cc^2; these coefficients are
generally predetermined by calibration of the MCA. They & 2-theta are transferred to
the Instrument parameters data.

	
G2pwd_fxye.sfloat(S)

	convert a string to a float, treating an all-blank string as zero

	
G2pwd_fxye.sint(S)

	convert a string to an integer, treating an all-blank string as zero

19.2.3. Module G2pwd_xye: Topas & Fit2D data

Routine to read in powder data from a number of related formats
including ones used in Topas and Fit2D. Typical file extensions are
.xye, .qye, .chi, and .qchi.

	
class G2pwd_xye.xye_ReaderClass

	Routines to import powder data from a .xye/.chi file

	
ContentsValidator(filename)

	Look through the file for expected types of lines in a valid Topas
Fit2D or BNL/pyFAI file. Alas the latter two formats are somewhat in
conflict.

	
Reader(filename, ParentFrame=None, **unused)

	Read a Topas file

19.2.4. Module G2pwd_CIF: CIF powder data

Routine to read in powder data from a CIF.
Parses a CIF using PyCifRW from James Hester
(https://github.com/jamesrhester/pycifrw).

	
class G2pwd_CIF.CIFpwdReader

	Routines to import powder data from a CIF file

	
ContentsValidator(filename)

	Use standard CIF validator

	
Reader(filename, ParentFrame=None, **kwarg)

	Read powder data from a CIF.
If multiple datasets are requested, use self.repeat and buffer caching.

19.2.5. Module G2pwd_BrukerRAW: Bruker .raw & .brml

Routine to read in powder data from a Bruker versions 1, 2, or 3 .raw
or a .brml file.
Alas, we have not been able to get documentation for the version 4
.raw file, so this is not yet supported.

	
class G2pwd_BrukerRAW.brml_ReaderClass

	Routines to import powder data from a zip Bruker .brml file

	
ContentsValidator(filename)

	This routine will attempt to determine if the file can be read
with the current format.
This will typically be overridden with a method that
takes a quick scan of [some of]
the file contents to do a “sanity” check if the file
appears to match the selected format.
the file must be opened here with the correct format (binary/text)

	
Reader(filename, ParentFrame=None, **kwarg)

	Read a Bruker brml file

	
class G2pwd_BrukerRAW.raw_ReaderClass

	Routines to import powder data from a binary Bruker .RAW file

	
ContentsValidator(filename)

	Look through the file for expected types of lines in a valid Bruker RAW file

	
Reader(filename, ParentFrame=None, **kwarg)

	Read a Bruker RAW file

19.2.6. Module G2pwd_FP: FullProf .dat data

Routine to read in powder data from a FullProf .dat file

	
class G2pwd_FP.fp_ReaderClass

	Routines to import powder data from a FullProf 1-10 column .dat file

	
ContentsValidator(filename)

	Look through the file for expected types of lines in a valid FullProf file

	
Reader(filename, ParentFrame=None, **unused)

	Read a FullProf file

19.2.7. Module G2pwd_Panalytical: Panalytical .xrdml data

Routines to import powder data from a Pananalytical (XML) .xrdm file.

	
class G2pwd_Panalytical.Panalytical_ReaderClass

	Routines to import powder data from a Pananalytical.xrdm (xml) file.

	
ContentsValidator(filename)

	This routine will attempt to determine if the file can be read
with the current format.
This will typically be overridden with a method that
takes a quick scan of [some of]
the file contents to do a “sanity” check if the file
appears to match the selected format.
the file must be opened here with the correct format (binary/text)

	
Reader(filename, ParentFrame=None, **kwarg)

	Read a Panalytical .xrdml (.xml) file; already in self.root

19.2.8. Module G2pwd_csv: Read Excel .csv data

Routine to read in powder data from Excel type comma separated variable
column-oriented variable. The only allowed extensions for this are
.csv, .xy, or .XY.

	
class G2pwd_csv.csv_ReaderClass

	Routines to import powder data from a .xye file

	
ContentsValidator(filename)

	This routine will attempt to determine if the file can be read
with the current format.
This will typically be overridden with a method that
takes a quick scan of [some of]
the file contents to do a “sanity” check if the file
appears to match the selected format.
the file must be opened here with the correct format (binary/text)

	
Reader(filename, ParentFrame=None, **unused)

	Read a csv file

19.2.9. Module G2pwd_rigaku: powder data from a Rigaku .txt file

	
class G2pwd_rigaku.Rigaku_rasReaderClass

	Routines to import powder data from a Rigaku .ras file with multiple scans.
All scans will be imported as individual PWDR entries

	
ContentsValidator(filename)

	This routine will attempt to determine if the file can be read
with the current format.
This will typically be overridden with a method that
takes a quick scan of [some of]
the file contents to do a “sanity” check if the file
appears to match the selected format.
the file must be opened here with the correct format (binary/text)

	
Reader(filename, ParentFrame=None, **kwarg)

	Read a Rigaku .ras/.rasx file

	
class G2pwd_rigaku.Rigaku_txtReaderClass

	Routines to import powder data from a Rigaku .txt file with an angle and
then 1 or 11(!) intensity values on the line. The example file is proceeded
with 10 of blank lines, but I have assumed they could be any sort of text.
This code should work with an angle and any number of intensity values/line
as long as the number is the same on each line. The step size may not change. The
number of comment lines can also change, but should not appear to be intensity
values (numbers only).

	
ContentsValidator(filename)

	This routine will attempt to determine if the file can be read
with the current format.
This will typically be overridden with a method that
takes a quick scan of [some of]
the file contents to do a “sanity” check if the file
appears to match the selected format.
the file must be opened here with the correct format (binary/text)

	
Reader(filename, ParentFrame=None, **kwarg)

	Read a Rigaku .txt file

19.3. Single Crystal Data Import Routines

Single crystal data import routines are classes derived from
, GSASIIobj.ImportStructFactor.
They must be found in files named G2sfact*.py that are in the Python path
and the class must override the __init__ method and add a Reader method.
The distributed routines are:

19.3.1. Module G2sfact: simple HKL import

Read structure factors from a number of hkl file types. Routines are
provided to read from files containing F or F2 values from a
number of sources.

	
G2sfact.ColumnValidator(parent, filepointer, nCol=5)

	Validate a file to check that it contains columns of numbers

	
class G2sfact.HKLF_ReaderClass

	Routines to import F, sig(F) reflections from a HKLF file

	
ContentsValidator(filename)

	Make sure file contains the expected columns on numbers

	
Reader(filename, ParentFrame=None, **unused)

	Read the file

	
class G2sfact.HKLMF_ReaderClass

	Routines to import F, reflections from a REMOS HKLMF file

	
ContentsValidator(filename)

	Make sure file contains the expected columns on numbers

	
Reader(filename, ParentFrame=None, **unused)

	Read the file

	
class G2sfact.M90_ReaderClass

	Routines to import F**2, sig(F**2) reflections from a JANA M90 file

	
ContentsValidator(filename)

	Discover how many columns are in the m90 file - could be 9-12 depending on satellites

	
Reader(filename, filepointer, ParentFrame=None, **unused)

	Read the file

	
class G2sfact.NIST_hb3a_INT_ReaderClass

	Routines to import neutron CW F**2, sig(F**2) reflections from a NIST hb3a int file

	
ContentsValidator(filename)

	Make sure file contains the expected columns on numbers & count number of data blocks - “Banks”

	
Reader(filename, filepointer, ParentFrame=None, **unused)

	Read the file

	
class G2sfact.NT_HKLF2_ReaderClass

	Routines to import neutron TOF F**2, sig(F**2) reflections from a HKLF file

	
ContentsValidator(filename)

	Make sure file contains the expected columns on numbers & count number of data blocks - “Banks”

	
Reader(filename, ParentFrame=None, **unused)

	Read the file

	
class G2sfact.NT_JANA2K_ReaderClass

	Routines to import neutron TOF F**2, sig(F**2) reflections from a JANA2000 file

	
ContentsValidator(filename)

	Make sure file contains the expected columns on numbers & count number of data blocks - “Banks”

	
Reader(filename, filepointer, ParentFrame=None, **unused)

	Read the file

	
class G2sfact.SHELX4_ReaderClass

	Routines to import F**2, sig(F**2) reflections from a Shelx HKLF 4 file

	
ContentsValidator(filename)

	Make sure file contains the expected columns on numbers

	
Reader(filename, ParentFrame=None, **unused)

	Read the file

	
class G2sfact.SHELX5_ReaderClass

	Routines to import F**2, sig(F**2) twin/incommensurate reflections from a fixed format SHELX HKLF5 file

	
ContentsValidator(filename)

	Discover how many columns before F^2 are in the SHELX HKL5 file
- could be 3-6 depending on satellites

	
Reader(filename, ParentFrame=None, **unused)

	Read the file

	
class G2sfact.SHELX6_ReaderClass

	Routines to import F**2, sig(F**2) twin/incommensurate reflections from a fixed format SHELX HKLF6 file

	
ContentsValidator(filename)

	Discover how many columns before F^2 are in the SHELX HKL6 file
- could be 3-6 depending on satellites

	
Reader(filename, ParentFrame=None, **unused)

	Read the file

19.3.2. Module G2sfact_CIF: CIF import

Read structure factors from a CIF reflection table CIF using
PyCifRW from James Hester (https://github.com/jamesrhester/pycifrw).

	
class G2sfact_CIF.CIFhklReader

	Routines to import Phase information from a CIF file

	
ContentsValidator(filename)

	Use standard CIF validator

	
Reader(filename, ParentFrame=None, **kwarg)

	Read single crystal data from a CIF.
If multiple datasets are requested, use self.repeat and buffer caching.

19.4. Small Angle Scattering Data Import Routines

Small angle scattering data import routines are classes derived from
, GSASIIobj.ImportSmallAngle.
They must be found in files named G2sad*.py that are in the Python path
and the class must override the __init__ method and add a Reader method.
The distributed routines are in:

19.4.1. Module G2sad_xye: read small angle data

Routines to read in small angle data from an .xye type file, with
two-theta or Q steps. Expected extensions are .xsad, .xdat, .nsad, or .ndat.

	
class G2sad_xye.txt_NeutronReaderClass

	Routines to import neutron q SAXD data from a .nsad or .ndat file

	
ContentsValidator(filename)

	Look through the file for expected types of lines in a valid q-step file

	
class G2sad_xye.txt_XRayReaderClass

	Routines to import X-ray q SAXD data from a .xsad or .xdat file

	
ContentsValidator(filename)

	Look through the file for expected types of lines in a valid q-step file

	
class G2sad_xye.txt_nmNeutronReaderClass

	Routines to import neutron q in nm-1 SAXD data from a .nsad or .ndat file

	
ContentsValidator(filename)

	Look through the file for expected types of lines in a valid q-step file

	
class G2sad_xye.txt_nmXRayReaderClass

	Routines to import X-ray q SAXD data from a .xsad or .xdat file, q in nm-1

	
ContentsValidator(filename)

	Look through the file for expected types of lines in a valid q-step file

19.5. Image Import Routines

Image import routines are classes derived from
GSASIIobj.ImportImage.
See Writing a Import Routine for general
information on importers and the GSASIIobj.ImportImage for
information on what class variables a reader should set.
Image importers must be found in files named G2img*.py that are in the Python path
and the class must override the __init__ method and add a
Reader method.

The distributed routines are:

19.5.1. Module G2img_ADSC: .img image file

	
class G2img_ADSC.ADSC_ReaderClass

	Reads an ADSC .img file

	
ContentsValidator(filename)

	no test at this time

	
G2img_ADSC.GetImgData(filename, imageOnly=False)

	Read an ADSC image file

19.5.2. Module G2img_EDF: .edf image file

	
class G2img_EDF.EDF_ReaderClass

	Routine to read a Read European detector data .edf file.
This is a particularly nice standard.

	
ContentsValidator(filename)

	no test used at this time

	
G2img_EDF.GetEdfData(filename, imageOnly=False)

	Read European detector data edf file

19.5.3. Module G2img_SumG2: Python pickled image

Routine to read an image from GSAS-II that has been pickled in Python. Images
in this format are created by the “Sum image data” command. At least for
now, only one image is permitted per file.

	
class G2img_SumG2.G2_ReaderClass

	Routine to read an image that has been pickled in Python. Images
in this format are created by the “Sum image data” command. At least for
now, only one image is permitted per file.

	
ContentsValidator(filename)

	test by trying to unpickle (should be quick)

	
Reader(filename, ParentFrame=None, **unused)

	Read using cPickle

19.5.4. Module G2img_GE: summed GE image file

Read data from General Electric angiography x-ray detectors,
primarily as used at APS 1-ID.
This shows an example of an importer that will handle files with
more than a single image.

	
class G2img_GE.GE_ReaderClass

	Routine to read a GE image, typically from APS Sector 1.

The image files may be of form .geX (where X is ‘ ‘, 1, 2, 3, 4 or 5),
which is a raw image from the detector. These files may contain more
than one image and have a rudimentary header.
Files with extension .sum or .cor are 4 byte integers/pixel, one image/file.
Files with extension .avg are 2 byte integers/pixel, one image/file.

	
ContentsValidator(filename)

	just a test on file size

	
Reader(filename, ParentFrame=None, **kwarg)

	Read using GE file reader, GetGEsumData()

	
class G2img_GE.GEsum_ReaderClass

	Routine to read multiple GE images & sum them, typically from APS Sector 1.

The image files may be of form .geX (where X is ‘ ‘, 1, 2, 3, 4 or 5),
which is a raw image from the detector. These files may contain more
than one image and have a rudimentary header.
Files with extension .sum or .cor are 4 byte integers/pixel, one image/file.
Files with extension .avg are 2 byte integers/pixel, one image/file.

	
ContentsValidator(filename)

	just a test on file size

	
Reader(filename, ParentFrame=None, **kwarg)

	Read using GE file reader, GetGEsumData()

	
G2img_GE.GetGEsumData(self, filename, imagenum=1, sum=False)

	Read G.E. detector images from various files as produced at 1-ID and
with Detector Pool detector. Also sums multiple image files if desired

19.5.5. Module G2img_MAR: MAR image files

	
G2img_MAR.GetMAR345Data(filename, imageOnly=False)

	Read a MAR-345 image plate image

	
class G2img_MAR.MAR_ReaderClass

	Routine to read several MAR formats, .mar3450,.mar2300,.mar2560

	
ContentsValidator(filename)

	no test at this time

19.5.6. Module G2img_Rigaku: .stl image file

	
G2img_Rigaku.GetRigaku(filename, imageOnly=False)

	Read Rigaku R-Axis IV image file

	
class G2img_Rigaku.Rigaku_ReaderClass

	Routine to read a Rigaku R-Axis IV image file.

	
ContentsValidator(filename)

	Test by checking if the file size makes sense.

19.5.7. Module G2img_1TIF: Tagged-image File images

Routine to read an image in Tagged-image file (TIF) format as well as a variety
of slightly incorrect pseudo-TIF formats used at instruments around the world.
This uses a custom reader that attempts to determine the instrument and detector
parameters from various aspects of the file, not always successfully alas.

Note that the name G2img_1TIF is used so that this file will
sort to the top of the image formats and thus show up first in the menu.
(It is the most common, alas).

	
G2img_1TIF.GetTifData(filename)

	Read an image in a pseudo-tif format,
as produced by a wide variety of software, almost always
incorrectly in some way.

	
G2img_1TIF.TIFValidator(filename)

	Does the header match the required TIF header?

	
class G2img_1TIF.TIF_ReaderClass

	Reads TIF files using a routine (GetTifData()) that looks
for files that can be identified from known instruments and will
correct for slightly incorrect TIF usage.

	
ContentsValidator(filename)

	Does the header match the required TIF header?

	
Reader(filename, ParentFrame=None, **unused)

	Read the TIF file using GetTifData() which attempts to
recognize the detector type and set various parameters

19.5.8. Module G2img_PILTIF: Std Tagged-image File images

Routine to read an image in Tagged-image file (TIF) format using a standard
image library function in Pillow or the now obsolete PIL package.
This means that parameters such as the pixel size
(which is in the TIFF header but is almost never correct)
and distance to sample, etc. are not correct unless specified in a
separate metadata file. See below for more information on metadata
files.

The metadata can be specified in a file with the same name and path as
the TIFF file except that the the extension is .metadata.

The contents of that file are a series of lines of form:

keyword = value

Note that capitalization of keywords is ignored. Defined keywords are in table below. Any line
without one of these keywords will be ignored.

	keyword

	explanation

	wavelength

	Wavelength in \(\AA\)

	distance

	Distance to sample in mm

	polarization

	Percentage polarized in horizontal plane

	sampleChangerCoordinate

	Used for sample changers to track sample

	pixelSizeX

	Pixel size in X direction (microns)

	pixelSizeY

	Pixel size in Y direction (microns)

	CenterPixelX

	Location of beam center as a pixel number (in X)

	CenterPixelY

	Location of beam center as a pixel number (in X)

	
class G2img_PILTIF.TIF_LibraryReader

	Reads TIF files using a standard library routine. Metadata (such as pixel
size) must be specified by user, either in GUI or via a metadata file.
The library TIF reader can handle compression and other things that are not
commonly used at beamlines.

	
ContentsValidator(filename)

	Does the header match the required TIF header?

	
Reader(filename, ParentFrame=None, **unused)

	Read the TIF file using the PIL/Pillow reader and give the
user a chance to edit the likely wrong default image parameters.

19.5.9. Module G2img_png: png image file

Routine to read an image in .png (Portable Network Graphics) format.
For now, the only known use of this is with converted Mars Rover (CheMin)
tif files, so default parameters are for that.

	
class G2img_CheMin.png_ReaderClass

	Reads standard PNG images; parameters are set to those of the
Mars Rover (CheMin) diffractometer.

	
ContentsValidator(filename)

	no test at this time

	
Reader(filename, ParentFrame=None, **unused)

	Reads using standard scipy PNG reader

19.5.10. Module G2img_CBF: .cbf cif image file

	
class G2img_CBF.CBF_ReaderClass

	Routine to read a Read cif image data .cbf file.
This is used by Pilatus.

	
ContentsValidator(filename)

	no test used at this time

	
Reader(filename, ParentFrame=None, **unused)

	Read using Bob’s routine GetCbfData()

	
G2img_CBF.GetCbfData(self, filename)

	Read cif binarydetector data cbf file

19.5.11. Module G2img_HDF5: summed HDF5 image file

Reads images found in a HDF5 file. If the file contains multiple
images, all are read.

	
class G2img_HDF5.HDF5_Reader

	Routine to read a HD5 image, typically from APS Sector 6.
B. Frosik/SDM.

	
ContentsValidator(filename)

	Test if valid by seeing if the HDF5 library recognizes the file.

	
Reader(filename, ParentFrame=None, **kwarg)

	Scan file structure using visit() and map out locations of image(s)
then read one image using readDataset(). Save map of file structure in
buffer arg, if used.

	
readDataset(fp, imagenum=1)

	Read a specified image number from a file

	
visit(fp)

	Recursively visit each node in an HDF5 file. For nodes
ending in ‘data’ look at dimensions of contents. If the shape is
length 2 or 4 assume an image and index in self.buffer[‘imagemap’]

19.5.12. Module G2img_SFRM: Brucker .sfrm image file

	
G2img_SFRM.GetGFRMData(self, filename)

	Read Bruker compressed binary detector data gfrm file

	
G2img_SFRM.GetSFRMData(self, filename)

	Read cbf compressed binarydetector data sfrm file

	
class G2img_SFRM.SFRM_ReaderClass

	Routine to read a Read Bruker Advance image data .sfrm/.grfm file.

	
ContentsValidator(filename)

	GFRM files always begin with FORMAT, should also contain VERSION
(also HDRBLKS, but not checked)
No check for SRFM files

	
Reader(filename, ParentFrame=None, **unused)

	Read using Bob’s routine GetSFRMData()

19.6. PDF Import Routines

PDF import routines are classes derived from
GSASIIobj.ImportPDFData.
See Writing a Import Routine for general information on importers.

The distributed routines are in:

19.6.1. Module G2pdf_gr: read PDF G(R) data

Routines to read in G(R) data from a pdfGet/GSAS-II .gr or gudrun .dat
file (with \(\AA\) steps) or S(Q) data from a .fq file.

	
class G2pdf_gr.txt_FSQReaderClass

	Routines to import S(Q) data from a .fq file

	
ContentsValidator(filename)

	Look through the file for expected types of lines in a valid r-step file

	
class G2pdf_gr.txt_PDFReaderClass

	Routines to import PDF G(R) data from a .gr file

	
ContentsValidator(filename)

	Look through the file for expected types of lines in a valid r-step file

	
class G2pdf_gr.txt_PDFReaderClassG

	Routines to import PDF G(R) data from a .dat file

	
ContentsValidator(filename)

	Look through the file for expected types of lines in a valid r-step file

19.7. Reflectometry Import Routines

Reflectometry import routines are classes derived from
GSASIIobj.ImportReflectometryData.
See Writing a Import Routine for general information on importers.

The distributed routines are:

19.7.1. Module G2rfd_xye: read reflectometry data

Routines to read in reflectometry data from an
.xrfd, .xdat, .xtrfd, .xtdat, .nrfd or .ndat type file, with
two-theta or Q steps.

	
class G2rfd_xye.txt_NeutronReaderClass

	Routines to import neutron q REFD data from a .nrfd or .ndat file

	
ContentsValidator(filename)

	Look through the file for expected types of lines in a valid q-step file

	
class G2rfd_xye.txt_XRayReaderClass

	Routines to import X-ray q REFD data from a .xrfd or .xdat file

	
ContentsValidator(filename)

	Look through the file for expected types of lines in a valid q-step file

	
class G2rfd_xye.txt_XRayThetaReaderClass

	Routines to import X-ray theta REFD data from a .xtrfd or .xtdat file

	
ContentsValidator(filename)

	Look through the file for expected types of lines in a valid q-step file

19.7.2. Module G2rfd_Panalytical: read Panalytical reflectometry data

Routine to import reflectivity data from a Panalytical .xrdm (xml)
file.

	
class G2rfd_Panalytical.Panalytical_ReaderClass

	Routines to import reflectivity data from a Panalytical.xrdm (xml) file.

	
ContentsValidator(filename)

	This routine will attempt to determine if the file can be read
with the current format.
This will typically be overridden with a method that
takes a quick scan of [some of]
the file contents to do a “sanity” check if the file
appears to match the selected format.
the file must be opened here with the correct format (binary/text)

	
Reader(filename, ParentFrame=None, **kwarg)

	Read a Panalytical .xrdml (.xml) file; already in self.root

19.8. Writing an Import Routine

When writing a import routine, one should create a new class derived
from
GSASIIobj.ImportPhase, GSASIIobj.ImportStructFactor,
GSASIIobj.ImportPowderData ,
GSASIIobj.ImportSmallAngleData,
GSASIIobj.ImportReflectometryData,
GSASIIobj.ImportPDFData,
or GSASIIobj.ImportImage. As described below,
all these classes will implement
an __init__() and a Reader() method, and most will supply a
ContentsValidator() method, too.
See the appropriate class documentation
for details on what values each type of Reader() should
set. General principles on how an importer works are described below.

19.8.1. __init__()

The __init__ method will follow standard boilerplate:

def __init__(self):
 super(self.__class__,self).__init__(# fancy way to self-reference
 extensionlist=('.ext1','ext2'),
 strictExtension=True,
 formatName = 'example image',
 longFormatName = 'A longer description that this is an example image format'
)

The first line in the __init__ method calls the parent class
__init__ method with the following parameters:

	extensionlist: a list of extensions that may be used for this type of file.

	strictExtension: Should be True if only files with extensions in
extensionlist are allows; False if all file types should be offered
in the file browser. Also if False, the import class will be
used on all files when “guess from format” is tried, though
readers with matching extensions will be tried first.
It is a very good idea to supply a ContentsValidator
method when strictExtension is False.

	formatName: a string to be used in the menu. Should be short.

	longFormatName: a longer string to be used to describe the
format in help.

Note that if an importer detects a condition which prevents its use,
for example because a required Python package is not present, it can
set the value of self.UseReader to False. Another possible use for
this would be an importer that requires a network connection to a
remote site. Setting self.UseReader to False must be done in the
__init__ method and will prevent the
importer from being used or included in the expected menu.

19.8.2. Reader()

The class must supply a Reader method that actually performs the
reading. All readers must have at a minimum these arguments:

def Reader(self, filename, filepointer, ParentFrame, **unused):

where the arguments have the following uses:

	filename: a string with the name of the file being read

	filepointer: a file object (created by open()) that accesses
the file and is points to the beginning of the file when Reader is
called.

	ParentFrame: a reference to the main GSAS-II (tree) windows, for
the unusual Reader routines that will create GUI windows to ask
questions. The Reader should do something reasonable such as take a
reasonable default if ParentFrame is None, which indicates that
GUI should not be accessed.

In addition, the following keyword parameters are defined that Reader
routines may optionally use:

	buffer: a dict that can be used to retain information between repeated calls of the routine

	blocknum: counts the number of times that a reader is called, to
be used with files that contain more than one set of data (e.g. GSAS
.gsa/.fxye files with multiple banks or image files with multiple images.)

	usedRanIdList: a list of previously used random Id values that can be checked to determine that a value is unique.

As an example, the buffer dict is used in CIF reading to hold the parsed CIF file
so that it can be reused without having to reread the file from
scratch.

19.8.2.1. Reader return values

The Reader routine should return the value of True if the file has been
read successfully. Optionally, use self.warnings to indicate any
problems.

If the file cannot be read, the Reader routine should
return False or raise an GSASIIobj.ImportBaseclass.ImportException
exception. (Why either? Sometimes an exception is the easiest way to
bail out of a called routine.) Place text in self.errors and/or use:

ImportException('Error message')

to give the user information on what went wrong during the
reading. The following variables are used to indicate results from the reader:

self.warnings

Use self.warnings to indicate any information
that should be displayed to the user if the file is read successfully,
but perhaps not completely or additional settings will need to be
made.

self.errors

Use self.errors to give the user information on where and why a read
error occurs in the file. Note that text supplied with the raise
statement will be appended to self.errors.

self.repeat

Set self.repeat to True (the default is False) if a Reader should be
called again to after reading to indicate that more data may exist in
the file to be read. This is used for reading multiple powder
histograms or multiple images from a single file. Variable
self.repeatcount is used to keep track of the block numbers.

19.8.2.2. Reader support routines

Note that GSASIIIO supplies three routines,
BlockSelector()
MultipleBlockSelector() and
MultipleChoiceSelector() that are useful for
selecting amongst one or more datasets (and perhaps phases) or data items for
Reader() routines that may encounter more than one set of information
in a file.

19.8.3. ContentsValidator()

Defining a ContentsValidator method is optional, but is usually a
good idea, particularly if the file extension is not a reliable
identifier for the file type. The intent of this routine is to take a
superficial look at the file to see if it has the expected
characteristics of the expected file type. For example, are there
numbers in the expected places?

This routine is passed a single argument:

	filepointer: a file object (created by open()) that accesses
the file and is points to the beginning of the file when ContentsValidator is
called.

Note that GSASIIobj.ImportBaseclass.CIFValidator() is a ContentsValidator
for validating CIF files.

19.8.3.1. ContentsValidator return values

The ContentsValidator routine should return the value of True if
the file appears to match the type expected for the class.

If the file cannot be read by this class, the routine should
return False. Preferably one will also place text in self.errors
to give the user information on what went wrong during the reading.

19.8.4. ReInitialize()

Import classes are substantiated only once and are used as needed.
This means that if something needs to be initialized before the
Reader() will be called to read a new file, the initialization step must be coded. The
ReInitialize() method is provided for this and it is always called
before the ContentsValidator method is called. Use care to call
the parent class ReInitialize() method, if this is overridden.

 \(\renewcommand\AA{\text{Å}}\)

20. GSAS-II Export Modules

Exports are implemented by deriving a class from
GSASIIIO.ExportBaseclass. Initialization of
self.exporttype determines the type of export that will be performed
(‘project’, ‘phase’, ‘single’, ‘powder’, ‘image’, ‘map’ or (someday)
‘pdf’) and of self.multiple
determines if only a single phase, data set, etc. can be exported at a
time (when False) or more than one can be selected.

Powder export routines may optionally define a Writer()
method that accepts the histogram tree name as well as a file name to
be written. This allows GSASIIIO.ExportPowder() to use the exporter
independent of the GUI, for example from GSASIIscriptable.

20.1. Module G2export_examples: Examples

Code to demonstrate how GSAS-II data export routines are created. The
classes defined here, ExportPhaseText,
ExportSingleText, ExportPowderReflText,
and ExportPowderText each demonstrate a different type
of export. Also see G2export_map.ExportMapASCII for an
example of a map export.

20.1.1. G2export_examples Classes and Routines

Classes in G2export_examples follow:

	
class G2export_examples.ExportPhaseText(G2frame)

	Used to create a text file for a phase

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export a phase as a text file

	
class G2export_examples.ExportPowderReflText(G2frame)

	Used to create a text file of reflections from a powder data set

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export a set of powder reflections as a text file

	
class G2export_examples.ExportPowderText(G2frame)

	Used to create a text file for a powder data set

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export a set of powder data as a text file

	
class G2export_examples.ExportSingleText(G2frame)

	Used to create a text file with single crystal reflection data
skips user rejected & space group extinct reflections

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export a set of single crystal data as a text file

20.2. Module G2export_csv: Spreadsheet export

Code to create .csv (comma-separated variable) files for
GSAS-II data export to a spreadsheet program, etc. Defines a number of
.csv exports:

	ExportPhaseCSV: phases

	ExportPowderCSV: powder data, includes instrument parameters as well as obs & calc patterns, etc.

	ExportMultiPowderCSV: multiple powder datasets in a single spreadsheet

	ExportPowderReflCSV: reflections from a powder fit

	ExportSASDCSV: small angle data set

	ExportREFDCSV: reflectometry data set

	ExportSingleCSV: single crystal reflection data

	ExportStrainCSV: reflectometry datasets

20.2.1. G2export_csv Classes and Routines

Classes in G2export_csv follow:

	
class G2export_csv.ExportMultiPowderCSV(G2frame)

	Used to create a csv file for a stack of powder data sets suitable for display
purposes only; no y-calc or weights are exported only x & y-obs
:param wx.Frame G2frame: reference to main GSAS-II frame

	
Exporter(event=None)

	Export a set of powder data as a single csv file

	
class G2export_csv.ExportPhaseCSV(G2frame)

	Used to create a csv file for a phase

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export a phase as a csv file

	
class G2export_csv.ExportPowderCSV(G2frame)

	Used to create a csv file for a powder data set

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export a set of powder data as a csv file

	
class G2export_csv.ExportPowderReflCSV(G2frame)

	Used to create a csv file of reflections from a powder data set

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export a set of powder reflections as a csv file

	
class G2export_csv.ExportREFDCSV(G2frame)

	Used to create a csv file for a reflectometry data set

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export a set of reflectometry data as a csv file

	
class G2export_csv.ExportSASDCSV(G2frame)

	Used to create a csv file for a small angle data set

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export a set of small angle data as a csv file

	
class G2export_csv.ExportSingleCSV(G2frame)

	Used to create a csv file with single crystal reflection data

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export a set of single crystal data as a csv file

	
class G2export_csv.ExportStrainCSV(G2frame)

	Used to create a csv file with single crystal reflection data

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export a set of single crystal data as a csv file

	
G2export_csv.WriteList(obj, headerItems)

	Write a CSV header

	Parameters:

	
	obj (object) – Exporter object

	headerItems (list) – items to write as a header

20.3. Module G2export_PDB: Macromolecular export

Code to export a phase into the venerated/obsolete (pick one)
ASCII PDB format. Also defines exporter ExportPhaseCartXYZ
which writes atom positions in orthogonal coordinates for a phase.

20.3.1. G2export_PDB Classes and Routines

Classes in G2export_PDB follow:

	
class G2export_PDB.ExportPhaseCartXYZ(G2frame)

	Used to create a Cartesian XYZ file for a phase

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export as a XYZ file

	
class G2export_PDB.ExportPhasePDB(G2frame)

	Used to create a PDB file for a phase

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export as a PDB file

20.4. Module G2export_image: 2D Image data export

Demonstrates how an image is retrieved and written. Uses
a SciPy routine to write a PNG format file.

20.4.1. G2export_image Classes and Routines

Classes in G2export_image follow:

	
class G2export_image.ExportImagePNG(G2frame)

	Used to create a PNG file for a GSAS-II image

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export an image

20.5. Module G2export_map: Map export

Code to write Fourier/Charge-Flip atomic density maps out in formats that
can be read by external programs. At present a GSAS format
that is supported by FOX and DrawXTL
(ExportMapASCII) and the CCP4 format that
is used by COOT (ExportMapCCP4) are implemented.

20.5.1. G2export_map Classes and Routines

Classes in G2export_map follow:

	
class G2export_map.ExportMapASCII(G2frame)

	Used to create a text file for a phase

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export a map as a text file

	
class G2export_map.ExportMapCCP4(G2frame)

	Used to create a text file for a phase

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export a map as a text file

	
Write(data, dtype)

	write a line of output, attaching a line-end character

	Parameters:

	line (str) – the text to be written.

20.6. Module G2export_shelx: Examples

Code to export coordinates in the SHELX .ins format
(as best as I can makes sense of it).

20.6.1. G2export_shelx Classes and Routines

Classes in G2export_shelx follow:

	
class G2export_shelx.ExportPhaseShelx(G2frame)

	Used to create a SHELX .ins file for a phase

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export as a SHELX .ins file

20.7. Module G2export_CIF: CIF Exports

This implements a complex set of CIF (Crystallographic Information
Framework) exporters. The base class, ExportCIF, implement a
variety of export capabilities,
where extra parameters for ExportCIF:MasterExporter() determine if a project,
single phase or data set are written. The subclasses of
ExportCIF, as listed below, supply these different parameters
when calling that method.

	ExportProjectCIF: writes an entire project in a complete
CIF intended for submission as a publication,

	ExportPhaseCIF: writes a single phase in CIF

	ExportPwdrCIF: writes a one powder diffraction dataset CIF

	ExportHKLFCIF: writes a single crystal dataset

20.7.1. G2export_CIF Classes and Routines

Classes in G2export_CIF follow:

	
G2export_CIF.CIF2dict(cf)

	copy the contents of a CIF out from a PyCifRW block object
into a dict

	Returns:

	cifblk, loopstructure where cifblk is a dict with
CIF items and loopstructure is a list of lists that defines
which items are in which loops.

	
class G2export_CIF.CIFdefHelp(parent, msg, helpwin, helptxt)

	Create a help button that displays help information on
the current data item

	Parameters:

	
	parent – the panel which will be the parent of the button

	msg (str) – the help text to be displayed

	helpwin (wx.Dialog) – Frame for CIF editing dialog

	helptxt (wx.TextCtrl) – TextCtrl where help text is placed

	
class G2export_CIF.CIFtemplateSelect(frame, panel, tmplate, G2dict, repaint, title, defaultname='', cifKey='CIF_template')

	Create a set of buttons to show, select and edit a CIF template

	Parameters:

	
	frame – wx.Frame object of parent

	panel – wx.Panel object where widgets should be placed

	tmplate (str) – one of ‘publ’, ‘phase’, or ‘instrument’ to determine
the type of template

	G2dict (dict) – GSAS-II dict where CIF should be placed. The key
specified in cifKey (defaults to “CIF_template”) will be used to
store either a list or a string.
If a list, it will contain a dict and a list defining loops. If
an str, it will contain a file name.

	repaint (function) – reference to a routine to be called to repaint
the frame after a change has been made

	title (str) – A line of text to show at the top of the window

	defaultname (str) – specifies the default file name to be used for
saving the CIF.

	cifKey (str) – key to be used for saving the CIF information in
G2dict. Defaults to “CIF_template”

	
class G2export_CIF.EditCIFpanel(parent, cifblk, loopstructure, cifdic={}, OKbuttons=[], **kw)

	Creates a scrolled panel for editing CIF template items

	Parameters:

	
	parent (wx.Frame) – parent frame where panel will be placed

	cifblk – dict or PyCifRW block containing values for each CIF item

	loopstructure (list) – a list of lists containing the contents of
each loop, as an example:

[["_a","_b"], ["_c"], ["_d_1","_d_2","_d_3"]]

this describes a CIF with this type of structure:

loop_ _a _b <a1> <b1> <a2> ...
loop_ _c <c1> <c2>...
loop _d_1 _d_2 _d_3 ...

Note that the values for each looped CIF item, such as _a,
are contained in a list, for example as cifblk[“_a”]

	cifdic (dict) – optional CIF dictionary definitions

	OKbuttons (list) – A list of wx.Button objects that should
be disabled when information in the CIF is invalid

	(other) – optional keyword parameters for wx.ScrolledPanel

	
CIFEntryWidget(dct, item, dataname)

	Create an entry widget for a CIF item. Use a validated entry for numb values
where int is required when limits are integers and floats otherwise.
At present this does not allow entry of the special CIF values of “.” and “?” for
numerical values and highlights them as invalid.
Use a selection widget when there are specific enumerated values for a string.

	
ControlOKButton(setvalue)

	Enable or Disable the OK button(s) for the dialog. Note that this is
passed into the ValidatedTxtCtrl for use by validators.

	Parameters:

	setvalue (bool) – if True, all entries in the dialog are
checked for validity. The first invalid control triggers
disabling of buttons.
If False then the OK button(s) are disabled with no checking
of the invalid flag for each control.

	
DoLayout()

	Update the Layout and scroll bars for the Panel. Clears
self.LayoutCalled so that next change to panel can
request a new update

	
OnAddRow(event)

	add a row to a loop

	
OnLayoutNeeded(event)

	Called when an update of the panel layout is needed. Calls
self.DoLayout after the current operations are complete using
CallAfter. This is called only once, according to flag
self.LayoutCalled, which is cleared in self.DoLayout.

	
class G2export_CIF.EditCIFtemplate(parent, cifblk, loopstructure, defaultname)

	Create a dialog for editing a CIF template. The edited information is
placed in cifblk. If the CIF is saved as a file, the name of that file
is saved as self.newfile.

	Parameters:

	
	parent (wx.Frame) – parent frame or None

	cifblk – dict or PyCifRW block containing values for each CIF item

	loopstructure (list) – a list of lists containing the contents of
each loop, as an example:

[["_a","_b"], ["_c"], ["_d_1","_d_2","_d_3"]]

this describes a CIF with this type of structure:

loop_ _a _b <a1> <b1> <a2> ...
loop_ _c <c1> <c2>...
loop _d_1 _d_2 _d_3 ...

Note that the values for each looped CIF item, such as _a,
are contained in a list, for example as cifblk[“_a”]

	defaultname (str) – specifies the default file name to be used for
saving the CIF.

	
Post()

	Display the dialog

	Returns:

	True unless Cancel has been pressed.

	
class G2export_CIF.ExportCIF(G2frame, formatName, extension, longFormatName=None)

	Base class for CIF exports. Not used directly. Exporters are defined
in subclasses that call MasterExporter().

	
MasterExporter(event=None, phaseOnly=None, histOnly=None)

	Basic code to export a CIF. Export can be full or simple, as set by
phaseOnly and histOnly which skips distances & angles, etc.

	Parameters:

	
	phaseOnly (bool) – used to export only one phase

	histOnly (bool) – used to export only one histogram

	
ShowHstrainCells(phasenam, datablockidDict)

	Displays the unit cell parameters for phases where Dij values create
mutiple sets of lattice parameters. At present there is no way defined for this in
CIF, so local data names are used.

	
ValidateAscii(checklist)

	Validate items as ASCII

	
class G2export_CIF.ExportHKLCIF(G2frame)

	Used to create a simple CIF containing diffraction data only. Uses exact same code as
ExportCIF except that histOnly is set for the Exporter
Shows up in menu as Quick CIF.

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
class G2export_CIF.ExportPhaseCIF(G2frame)

	Used to create a simple CIF with one phase. Uses exact same code as
ExportCIF except that phaseOnly is set for the Exporter
Shows up in menu as Quick CIF.

also called directly in OnISOSearch in GSASIIphsGUI

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
class G2export_CIF.ExportProjectCIF(G2frame)

	Used to create a CIF of an entire project

also called directly in GSASIIIO.ExportSequentialFullCIF()

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
class G2export_CIF.ExportPwdrCIF(G2frame)

	Used to create a simple CIF containing diffraction data only. Uses exact same code as
ExportCIF except that histOnly is set for the Exporter
Shows up in menu as Quick CIF.

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Writer(hist, mode='w')

	Used for histogram CIF export of a sequential fit.

	
G2export_CIF.FmtAtomType(sym)

	Reformat a GSAS-II atom type symbol to match CIF rules

	
G2export_CIF.HillSortElements(elmlist)

	Sort elements in “Hill” order: C, H, others, (where others
are alphabetical).

	Params list elmlist:

	a list of element strings

	Returns:

	a sorted list of element strings

	
G2export_CIF.LoadCIFdic()

	Create a composite core+powder CIF lookup dict containing
information about all items in the CIF dictionaries, loading
pickled files if possible. The routine looks for files
named cif_core.cpickle and cif_pd.cpickle in every
directory in the path and if they are not found, files
cif_core.dic and/or cif_pd.dic are read.

	Returns:

	the dict with the definitions

	
G2export_CIF.PickleCIFdict(fil)

	Loads a CIF dictionary, cherry picks out the items needed
by local code and sticks them into a python dict and writes
that dict out as a pickle file for later reuse.
If the write fails a warning message is printed,
but no exception occurs.

	Parameters:

	fil (str) – file name of CIF dictionary, will usually end
in .dic

	Returns:

	the dict with the definitions

	
G2export_CIF.WriteAtomsMM(fp, phasedict, phasenam, parmDict, sigDict, RBparms={})

	Write atom positions to CIF using mmCIF items

	
G2export_CIF.WriteAtomsMagnetic(fp, phasedict, phasenam, parmDict, sigDict, labellist)

	Write atom positions to CIF

	
G2export_CIF.WriteAtomsNuclear(fp, phasedict, phasenam, parmDict, sigDict, labellist, RBparms={})

	Write atom positions to CIF

	
G2export_CIF.WriteCIFitem(fp, name, value='')

	Helper function for writing CIF output.
This gets used in different ways. The simplest use will be:

>>> WriteCIFitem(fp, '_some_cif_name', valstr)

For loops it will be used like this:

>>> WriteCIFitem(fp, 'loop_ _cif_name1 _cif_name2')
>>> for v1,v2 in values:
>>> WriteCIFitem(fp, value=v1)
>>> WriteCIFitem(fp, value=v2)

or if items will be aligned in a table (no spaces or new
lines in the items)

>>> WriteCIFitem(fp, 'loop_ _cif_name1 _cif_name2')
>>> for v1,v2 in values:
>>> s = PutInCol("{:.4f}".format(v1),10)
>>> s += PutInCol(str(v2),8)
>>> WriteCIFitem(fp, value=s)

It is occasionally used where a CIF value is passed as the name
parameter. This works if no quoting is needed, but is not a good
practice.

	Parameters:

	
	fp – file access object

	name (str) – a CIF data name

	value (str) – the value associated with the CIF data name.
Written in different ways depending on what the contents contain,
with respect to quoting.

	
G2export_CIF.WriteComposition(fp, phasedict, phasenam, parmDict, quickmode=True, keV=None)

	determine the composition for the unit cell, crudely determine Z and
then compute the composition in formula units.

If quickmode is False, then scattering factors are added to the element loop.

If keV is specified, then resonant scattering factors are also computed and included.

	
G2export_CIF.WriteCompositionMM(fp, phasedict, phasenam, parmDict, quickmode=True, keV=None)

	determine the composition for the unit cell, crudely determine Z and
then compute the composition in formula units.

If quickmode is False, then scattering factors are added to the element loop.

If keV is specified, then resonant scattering factors are also computed and included.

	
G2export_CIF.WriteSeqAtomsNuclear(fp, cell, phasedict, phasenam, hist, seqData, RBparms)

	Write atom positions to CIF

	
G2export_CIF.dict2CIF(dblk, loopstructure, blockname='Template')

	Create a PyCifRW CIF object containing a single CIF
block object from a dict and loop structure list.

	Parameters:

	
	dblk – a dict containing values for each CIF item

	loopstructure (list) – a list of lists containing the contents of
each loop, as an example:

[["_a","_b"], ["_c"], ["_d_1","_d_2","_d_3"]]

this describes a CIF with this type of structure:

loop_ _a _b <a1> <b1> <a2> ...
loop_ _c <c1> <c2>...
loop _d_1 _d_2 _d_3 ...

Note that the values for each looped CIF item, such as _a,
are contained in a list, for example as cifblk[“_a”]

	blockname (str) – an optional name for the CIF block.
Defaults to ‘Template’

	Returns:

	the newly created PyCifRW CIF object

	
G2export_CIF.getCellwStrain(phasedict, seqData, pId, histname)

	Get cell parameters and their errors for a sequential fit

	
G2export_CIF.mkSeqResTable(mode, seqHistList, seqData, Phases, Histograms, Controls)

	Setup sequential results table (based on code from
GSASIIseqGUI.UpdateSeqResults)

TODO: This should be merged with the table build code in
GSASIIseqGUI.UpdateSeqResults and moved to somewhere non-GUI
like GSASIIstrIO to create a single routine that can be used
in both places, but this means returning some
of the code that has been removed from there

	
G2export_CIF.striphist(var, insChar='')

	strip a histogram number from a var name

20.8. Module G2export_pwdr: Export powder input files

Creates files used by GSAS (FXYE) & TOPAS (XYE) as input

20.8.1. G2export_pwdr Classes and Routines

Classes in G2export_pwdr follow:

	
class G2export_pwdr.ExportPowderFXYE(G2frame)

	Used to create a FXYE file for a powder data set

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export one or more sets of powder data as FXYE file(s)

	
WriteInstFile(hist, Inst)

	Write an instrument parameter file

	
Writer(TreeName, filename=None, prmname='')

	Write a single PWDR entry to a FXYE file

	
class G2export_pwdr.ExportPowderXYE(G2frame)

	Used to create a Topas XYE file for a powder data set

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export one or more sets of powder data as XYE file(s)

20.9. Module G2export_FIT2D: Fit2D “Chi” export

Code to create .chi (Fit2D like) files for GSAS-II powder data export

20.9.1. G2export_FIT2d Classes and Routines

Classes in G2export_FIT2D follow:

	
class G2export_FIT2D.ExportPowderCHI(G2frame)

	Used to create a CHI file for a powder data set

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export a set of powder data as a Fit2D .qchi file

	
class G2export_FIT2D.ExportPowderQCHI(G2frame)

	Used to create a q-binned CHI file for a powder data set

	Parameters:

	G2frame (wx.Frame) – reference to main GSAS-II frame

	
Exporter(event=None)

	Export a set of powder data as a q-bin Fit2D .qchi file

20.10. Module G2export_JSON: ASCII .gpx Export

This implements a fairly simple exporter, ExportJSON, that can export the
contents of an entire project as a sort-of human readable (JSON) ASCII file.
This provides a way to see the contents of a GSAS-II project
file. This does not provide a mechanism to change the contents of a .gpx file,
since there are no provisions to read this file back into GSAS-II, as
the likelihood of breaking a data structure is too high.
If you want to change the contents of a .gpx file, use GSASIIscriptable
where you can access the native Python data structures and change things,
with a good chance of getting things to work.

20.10.1. G2export_JSON Classes and Routines

Classes in G2export_JSON follow:

This code is to honor my friend Robert Papoular, who wants to see what is
inside a .gpx file.

	
class G2export_JSON.ExportJSON(G2frame)

	Implement JSON export of entire projects

	
class G2export_JSON.JsonEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	This provides the ability to turn np arrays and masked arrays
into something that json can handle.

	
default(obj)

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

20.11. Module G2export_Bracket: ASCII .gpx Export

This provides to methods for tabulating GSAS-II parameters from a
project for use in manuscript preparation into an ASCII .csv
(spreadsheet) file.
The first, Exportbracket, provides standard uncertainties for values in
crystallographic (e.g. “bracket”) notation: i.e.: 1.234(5), which
indicates a value of 1.234 with a standard uncertainty of 0.005. The
second method, Export3col, provides the standard uncertainties
as a separate column.

This module initially written by Conrad Gillard. For any enquiries please contact conrad.gillard@gmail.com.

20.11.1. G2export_Bracket Classes and Routines

	
class G2export_Bracket.Export3col(G2frame)

	Enables export of parameters that are commonly needed for publications, with esds
in a separate column

	
ValEsd2col(param, param_sig)

	Return two values with the formated value as the first number and the
standard uncertainty (if provided) as the second value.

	
class G2export_Bracket.Exportbracket(G2frame)

	Enables export of parameters that are commonly needed for publications, in bracket notation

 \(\renewcommand\AA{\text{Å}}\)

21. GSAS-II Independent Tools

The modules here are used for independent programs to be used as
tools within the GSAS-II package and run
independently of the main GSAS-II program.

	GSASIIIntPDFtool: Parallelized auto-integration/PDF program

	G2compare: Project Comparison program

Both are under development.

21.1. GSASIIIntPDFtool: autointegration routines

An auto-integration program based on GSAS-II but with
a minimal GUI and no visualization that runs independently from
the main GSAS-II program . This is intended to implement
significant levels of parallelization and require less of a memory footprint.

	
class GSASIIIntPDFtool.AutoIntFrame(G2frame, PollTime=30.0)

	Creates a wx.Frame window for the Image AutoIntegration.
The intent is that this will be used as a non-modal dialog window.

Implements a Start button that morphs into a pause and resume button.
This button starts a processing loop that is repeated every
PollTime() seconds.

	Parameters:

	
	G2frame (wx.Frame) – main GSAS-II frame

	PollTime (float) – frequency in seconds to repeat calling the
processing loop. (Default is 30.0 seconds.)

	
ArgGen(PDFobj, imgprms, mskprms, xydata)

	generator for arguments for integration/PDF calc

	
OnPause()

	Respond to Pause, changes text on button/Status line, if needed
Stops timer
self.Pause should already be True

	
OnTimerLoop(event)

	A method that is called every PollTime() seconds that is
used to check for new files and process them. Integrates new images.
Also optionally sets up and computes PDF.
This is called only after the “Start” button is pressed (then its label reads “Pause”).

	
SetSourceDir(event)

	Use a dialog to get a directory for image files

	
ShowMatchingFiles(value, invalid=False, **kwargs)

	Find and image files matching the image
file directory (self.params[‘readdir’]) and the image file filter
(self.params[‘filter’]) and add this information to the GUI list box

	
StartLoop()

	Prepare to start autointegration timer loop.
Save current Image params for use in future integrations
also label the window so users understand what is being used

	
GSASIIIntPDFtool.LookupFromTable(dist, parmList)

	Interpolate image parameters for a supplied distance value

	Parameters:

	dist (float) – distance to use for interpolation

	Returns:

	a list with 2 items:
* a dict with interpolated parameter values,
* the closest imctrl

	
GSASIIIntPDFtool.MapCache = {'ThetaAzimMap': {}, 'distanceList': [], 'maskMap': {}}

	caches for TA and Mask maps

	
GSASIIIntPDFtool.ProcessImage(newImage, imgprms, mskprms, xydata, PDFdict, InterpVals, calcModes, outputModes)

	Process one image that is read from file newImage and is integrated into
one or more diffraction patterns and optionally each diffraction pattern can
be transformed into a pair distribution function.

	Parameters:

	
	newImage (str) – file name (full path) for input image

	imgprms (dict) – dict with some nested lists & dicts describing the image
settings and integration parameters

	mskprms (dict) – dict with areas of image to be masked

	xydata (dict) – contains histogram information with about background
contributions, used for PDF computation (used if ComputePDF is True)

	PDFdict – contains PDF parameters (used if ComputePDF is True)

	InterpVals – contains interpolation table (used if TableMode is True)

	calcModes (tuple) – set of values for which computations are
performed and how

	outputModes (tuple) – determines which files are written and where

	
GSASIIIntPDFtool.SetupInterpolation(dlg)

	Creates an object for interpolating image parameters at a given distance value

21.2. G2compare: Tool for project comparison

This is intended to read in multiple GSAS-II projects and provide
graphics, tables of information and so on. Not much of this has been
written at present.

	
class G2compare.MakeTopWindow(parent)

	Define the main frame and its associated menu items

	
LoadPhase(fil)

	Load Phase entries from a .GPX file to the tree.
see GSASIIIO.ProjFileOpen()

	
LoadProject(fil)

	Load the Covariance entry from a .GPX file to the tree.
see GSASIIIO.ProjFileOpen()

	
LoadPwdr(fil)

	Load PWDR entries from a .GPX file to the tree.
see GSASIIIO.ProjFileOpen()

	
SelectGPX()

	Select a .GPX file to be read

	
SelectMultGPX()

	Select multiple .GPX files to be read

	
SetModeMenu()

	Create the mode-specific menu and its contents

	
getMode()

	returns the display mode (one of “Histogram”,”Phase”,”Project”).
Could return ‘?’ in case of an error.

	
loadFile(fil)

	read or reread a file

	
onHistFilter(event)

	Load a filter string via a dialog in response to a menu event

	
onHistPrinceTest(event)

	Compare two histograms (selected here if more than two are present)
using the statistical test proposed by Ted Prince in
Acta Cryst. B35 1099-1100. (1982). Also see Int. Tables Vol. C
(1st Ed.) chapter 8.4, 618-621 (1995).

	
onLoadGPX(event)

	Initial load of GPX file in response to a menu command

	
onLoadMultGPX(event)

	Initial load of multiple GPX files in response to a menu command

	
onLoadWildGPX(event, wildcard=None)

	Initial load of GPX file in response to a menu command

	
onProjFtest(event)

	Compare two projects (selected here if more than two are present)
using the statistical F-test (aka Hamilton R-factor test), see:

	Hamilton, R. W. (1965), Acta Crystallogr. 18, 502-510.

	Prince, E., Mathematical Techniques in Crystallography and Materials Science, Second ed. (Springer-Verlag, New York, 1994).

	
onRefresh(event)

	reread all files, in response to a change in mode, etc.

	
G2compare.RC2Ftest(npts, RChiSq0, nvar0, RChiSq1, nvar1)

	Compute the F-test probability that a model expanded with added
parameters (relaxed model) is statistically more likely than the
constrained (base) model
:param int npts: number of observed diffraction data points
:param float RChiSq0: Reduced Chi**2 for the base model
:param int nvar0: number of refined variables in the base model
:param float RChiSq0: Reduced Chi**2 for the relaxed model
:param int nvar1: number of refined variables in the relaxed model

	
G2compare.RwFtest(npts, Rwp0, nvar0, Rwp1, nvar1)

	Compute the F-test probability that a model expanded with added
parameters (relaxed model) is statistically more likely than the
constrained (base) model
:param int npts: number of observed diffraction data points
:param float Rwp0: Weighted profile R-factor or GOF for the base model
:param int nvar0: number of refined variables in the base model
:param float Rwp1: Weighted profile R-factor or GOF for the relaxed model
:param int nvar1: number of refined variables in the relaxed model

	
G2compare.main(application)

	Start up the GSAS-II GUI

 \(\renewcommand\AA{\text{Å}}\)

22. Indices

22.1. General Index

22.2. Module Index

 Python Module Index

 a |
 c |
 d |
 e |
 f |
 g |
 i |
 m |
 n |
 r |
 s |
 t |
 u

 		 	

 		
 a	

 	
 	
 Absorb	

 	
 	
 atmdata	

 		 	

 		
 c	

 	
 	
 config_example	

 		 	

 		
 d	

 	
 	
 defaultIparms	

 		 	

 		
 e	

 	
 	
 ElementTable	

 		 	

 		
 f	

 	
 	
 FormFactors	

 	
 	
 fprime	

 		 	

 		
 g	

 	
 	
 G2compare	

 	
 	
 G2export_Bracket	

 	
 	
 G2export_CIF	
 Export a project in CIF format

 	
 	
 G2export_csv	
 Exports a phase or dataset to a spreadsheet via a
comma-separated-variable (csv) format file.

 	
 	
 G2export_examples	
 Demonstrates sample code that exports a phase or dataset to
a text file.

 	
 	
 G2export_FIT2D	
 Export powder data in Fit2D (.chi) format

 	
 	
 G2export_image	
 Exports images

 	
 	
 G2export_JSON	

 	
 	
 G2export_map	
 Export Fourier and charge-flip atomic density maps

 	
 	
 G2export_PDB	
 Cartesian coordinate export, including PDB format

 	
 	
 G2export_pwdr	
 Export powder data in GSAS and Topas formats

 	
 	
 G2export_shelx	
 Export a phase in Shelx format

 	
 	
 G2img_1TIF	

 	
 	
 G2img_ADSC	

 	
 	
 G2img_CBF	

 	
 	
 G2img_CheMin	

 	
 	
 G2img_EDF	

 	
 	
 G2img_GE	

 	
 	
 G2img_HDF5	

 	
 	
 G2img_MAR	

 	
 	
 G2img_PILTIF	

 	
 	
 G2img_Rigaku	

 	
 	
 G2img_SFRM	

 	
 	
 G2img_SumG2	

 	
 	
 G2pdf_gr	

 	
 	
 G2phase	
 Uses previously implemented code: PDB and GSAS .EXP

 	
 	
 G2phase_CIF	
 Reads phase information from a CIF

 	
 	
 G2phase_GPX	
 Reads phase information from a GSAS-II project (.gpx) file
a text file.

 	
 	
 G2phase_INS	

 	
 	
 G2phase_rmc6f	

 	
 	
 G2phase_xyz	

 	
 	
 G2pwd_BrukerRAW	
 Reads powder data from a Brucker .raw file

 	
 	
 G2pwd_CIF	
 Reads powder data from a CIF

 	
 	
 G2pwd_csv	

 	
 	
 G2pwd_FP	

 	
 	
 G2pwd_fxye	
 Reads powder data in all of the GSAS formats

 	
 	
 G2pwd_GPX	
 Reads powder data from from a GSAS-II project (.gpx) file

 	
 	
 G2pwd_Panalytical	

 	
 	
 G2pwd_rigaku	

 	
 	
 G2pwd_xye	
 Reads powder data from a Topas format file

 	
 	
 G2rfd_Panalytical	

 	
 	
 G2rfd_xye	

 	
 	
 G2sad_xye	
 Reads small angle scattering data from simple files

 	
 	
 G2sfact	
 Reads single crystal data from simple hkl files

 	
 	
 G2sfact_CIF	
 Reads single crystal data from CIF files

 	
 	
 G2shapes	

 	
 	
 gltext	

 	
 	
 GSASII	

 	
 	
 GSASIIconstrGUI	

 	
 	
 GSASIIctrlGUI	

 	
 	
 GSASIIdata	

 	
 	
 GSASIIdataGUI	

 	
 	
 GSASIIddataGUI	

 	
 	
 GSASIIElem	

 	
 	
 GSASIIElemGUI	

 	
 	
 GSASIIexprGUI	

 	
 	
 GSASIIfiles	

 	
 	
 GSASIIfpaGUI	

 	
 	
 GSASIIimage	

 	
 	
 GSASIIimgGUI	

 	
 	
 GSASIIindex	

 	
 	
 GSASIIIntPDFtool	

 	
 	
 GSASIIIO	

 	
 	
 GSASIIlattice	

 	
 	
 GSASIIlog	

 	
 	
 GSASIImapvars	

 	
 	
 GSASIImath	

 	
 	
 GSASIImpsubs	

 	
 	
 GSASIIobj	

 	
 	
 GSASIIpath	

 	
 	
 GSASIIphsGUI	

 	
 	
 GSASIIplot	

 	
 	
 GSASIIpwd	

 	
 	
 GSASIIpwdGUI	

 	
 	
 GSASIIrestrGUI	

 	
 	
 GSASIIsasd	

 	
 	
 GSASIIscriptable	

 	
 	
 GSASIIseqGUI	

 	
 	
 GSASIIspc	

 	
 	
 GSASIIstrIO	

 	
 	
 GSASIIstrMain	

 	
 	
 GSASIIstrMath	

 	
 	
 GSASIItestplot	

 		 	

 		
 i	

 	
 	
 ImageCalibrants	

 	
 	
 ISODISTORT	

 		 	

 		
 m	

 	
 	
 makeBat	

 	
 	
 makeLinux	

 	
 	
 makeMacApp	

 	
 	
 makeVarTbl	

 		 	

 		
 n	

 	
 	
 nistlat	

 		 	

 		
 r	

 	
 	
 ReadMarCCDFrame	

 		 	

 		
 s	

 	
 	
 scanCCD	

 	
 	
 SUBGROUPS	

 	
 	
 Substances	

 		 	

 		
 t	

 	
 	
 testDeriv	

 	
 	
 testSSymbols	

 	
 	
 testSytSym	

 		 	

 		
 u	

 	
 	
 unit_tests	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

_

 	
 	__eq__() (GSASIIobj.G2VarObj method)

 	__hash__() (GSASIIobj.G2VarObj method)

 	__init__() (GSASIIobj.ExpressionCalcObj method)

 	(GSASIIobj.ExpressionObj method)

 	(GSASIIobj.G2Exception method)

 	(GSASIIobj.G2RefineCancel method)

 	(GSASIIobj.G2VarObj method)

 	(GSASIIobj.ImportBaseclass method)

 	(GSASIIobj.ImportImage method)

 	(GSASIIobj.ImportPDFData method)

 	(GSASIIobj.ImportPhase method)

 	(GSASIIobj.ImportPowderData method)

 	(GSASIIobj.ImportReflectometryData method)

 	(GSASIIobj.ImportSmallAngleData method)

 	(GSASIIobj.ImportStructFactor method)

 	(GSASIIobj.ShowTiming method)

 	(GSASIIplot._tabPlotWin method)

 	(GSASIIplot.G2Plot3D method)

 	(GSASIIplot.G2PlotMpl method)

 	(GSASIIplot.G2PlotNoteBook method)

 	(GSASIIplot.G2PlotOgl method)

 	(GSASIIplot.GSASIItoolbar method)

 	__repr__() (GSASIIobj.G2VarObj method)

 	
 	__str__() (GSASIIobj.G2Exception method)

 	(GSASIIobj.G2RefineCancel method)

 	(GSASIIobj.G2VarObj method)

 	__weakref__ (GSASIImapvars.ConstraintException attribute)

 	(GSASIImath.G2NormException attribute)

 	(GSASIIobj.ExpressionCalcObj attribute)

 	(GSASIIobj.ExpressionObj attribute)

 	(GSASIIobj.G2Exception attribute)

 	(GSASIIobj.G2RefineCancel attribute)

 	(GSASIIobj.G2VarObj attribute)

 	(GSASIIobj.ImportBaseclass attribute)

 	(GSASIIobj.ImportBaseclass.ImportException attribute)

 	(GSASIIobj.ShowTiming attribute)

 	_addPage() (GSASIIplot.G2PlotNoteBook method)

 	_FillArray() (in module GSASIImapvars)

 	_FormatConstraint() (in module GSASIImapvars)

 	_lookup() (in module GSASIIobj)

 	_Old_Paired_data (in module GSASIIplot)

 	_RowEchelon() (in module GSASIImapvars)

 	_show() (GSASIIobj.G2VarObj method)

 	_showEquiv() (in module GSASIImapvars)

 	_SwapColumns() (in module GSASIImapvars)

 	_tabPlotWin (class in GSASIIplot)

 	_update_view() (GSASIIplot.GSASIItoolbar method)

A

 	
 	A2cell() (in module GSASIIlattice)

 	A2Gmat() (in module GSASIIlattice)

 	A2invcell() (in module GSASIIlattice)

 	A2values() (in module GSASIIindex)

 	abeles() (in module GSASIIpwd)

 	
 Absorb

 	module

 	Absorb (class in Absorb)

 	Absorb() (in module GSASIIpwd)

 	AbsorbDerv() (in module GSASIIpwd)

 	add() (in module GSASIIscriptable)

 	add3D() (GSASIIplot.G2PlotNoteBook method)

 	add_atom() (GSASIIscriptable.G2Phase method)

 	add_back_peak() (GSASIIscriptable.G2PwdrData method)

 	add_constraint_raw() (GSASIIscriptable.G2Project method)

 	add_EqnConstr() (GSASIIscriptable.G2Project method)

 	add_EquivConstr() (GSASIIscriptable.G2Project method)

 	add_HoldConstr() (GSASIIscriptable.G2Project method)

 	add_image() (GSASIIscriptable.G2Project method)

 	add_NewVarConstr() (GSASIIscriptable.G2Project method)

 	add_PDF() (GSASIIscriptable.G2Project method)

 	add_peak() (GSASIIscriptable.G2PwdrData method)

 	add_phase() (GSASIIscriptable.G2Project method)

 	add_powder_histogram() (GSASIIscriptable.G2Project method)

 	add_simulated_powder_histogram() (GSASIIscriptable.G2Project method)

 	addAutoBack() (in module GSASIIpwdGUI)

 	addCondaPkg() (in module GSASIIpath)

 	addDistRestraint() (GSASIIscriptable.G2Phase method)

 	AddHatomDialog (class in GSASIIphsGUI)

 	addMpl() (GSASIIplot.G2PlotNoteBook method)

 	addOgl() (GSASIIplot.G2PlotNoteBook method)

 	AddPhase2Index() (in module GSASIIobj)

 	addPrevGPX() (in module GSASIIpath)

 	AddSimulatedPowder() (GSASIIdataGUI.GSASII method)

 	AddToNotebook() (GSASIIdataGUI.GSASII method)

 	adjHKLmax() (in module GSASIImath)

 	ADP (GSASIIscriptable.G2AtomRecord property)

 	adp_flag (GSASIIscriptable.G2AtomRecord property)

 	ADSC_ReaderClass (class in G2img_ADSC)

 	AdvanceCycle() (GSASIIctrlGUI.G2RefinementProgress method)

 	AllOps() (in module GSASIIspc)

 	AllPrmDerivs() (in module GSASIIstrMain)

 	altSettingOrtho (in module GSASIIspc)

 	
 	AngleDialog (class in GSASIIexprGUI)

 	anneal() (in module GSASIImath)

 	AplusDij() (in module GSASIIlattice)

 	AppendRows() (GSASIIctrlGUI.Table method)

 	AppleScript (in module makeMacApp)

 	ApplyEdit() (GSASIIconstrGUI.G2BoolEditor method)

 	(GSASIIctrlGUI.GridFractionEditor method)

 	ApplyModeDisp() (in module GSASIImath)

 	ApplyModulation() (in module GSASIImath)

 	ApplyRBModelDervs() (in module GSASIIstrMath)

 	ApplyRBModels() (in module GSASIIstrMath)

 	ApplySeqData() (in module GSASIImath)

 	ApplyStringOps() (in module GSASIIspc)

 	ApplyStringOpsMom() (in module GSASIIspc)

 	applySym() (in module SUBGROUPS)

 	ApplyXYZshifts() (in module GSASIIstrMath)

 	Arc_mask_azimuth (in module config_example)

 	ArgGen() (GSASIIIntPDFtool.AutoIntFrame method)

 	arrayList (in module GSASIImapvars)

 	ASCIIValidator (class in GSASIIctrlGUI)

 	askSaveDirectory() (GSASIIIO.ExportBaseclass method)

 	(in module GSASIIctrlGUI)

 	askSaveFile() (GSASIIIO.ExportBaseclass method)

 	(in module GSASIIctrlGUI)

 	assgnVars (GSASIIobj.ExpressionObj attribute)

 	
 atmdata

 	module

 	atom() (GSASIIscriptable.G2Phase method)

 	AtomDxSymFix() (in module GSASIIspc)

 	AtomIdLookup (in module GSASIIobj)

 	AtomRanIdLookup (in module GSASIIobj)

 	Atoms record description

 	atoms() (GSASIIscriptable.G2Phase method)

 	AtomsCollect() (in module GSASIImath)

 	AtomTLS2UIJ() (in module GSASIImath)

 	autoBackground (class in GSASIIpwdGUI)

 	autoBkgCalc() (in module GSASIIpwd)

 	Autoint_PollTime (in module config_example)

 	AutoIntFrame (class in GSASIIimgGUI)

 	(class in GSASIIIntPDFtool)

 	AutoPixelMask() (in module GSASIIimage)

 	Autoscale_ParmNames (in module config_example)

 	AV2Q() (in module GSASIImath)

 	AVdeg2Q() (in module GSASIImath)

B

 	
 	Background (GSASIIscriptable.G2PwdrData property)

 	Banks (GSASIIobj.ImportStructFactor attribute)

 	BBPointDetector (in module GSASIIfpaGUI)

 	BBPSDDetector (in module GSASIIfpaGUI)

 	BeginEdit() (GSASIIconstrGUI.G2BoolEditor method)

 	(GSASIIctrlGUI.GridFractionEditor method)

 	BessIn() (in module GSASIImath)

 	BessJn() (in module GSASIImath)

 	BestPlane() (in module GSASIIstrMain)

 	betaij2Uij() (in module GSASIIlattice)

 	BilbaoLowSymSea1() (in module SUBGROUPS)

 	BilbaoLowSymSea2() (in module SUBGROUPS)

 	
 	BilbaoReSymSearch() (in module SUBGROUPS)

 	BilbaoSymSearch1() (in module SUBGROUPS)

 	BilbaoSymSearch2() (in module SUBGROUPS)

 	bind() (gltext.TextElement method)

 	BlenResCW() (in module GSASIIElem)

 	BlenResTOF() (in module GSASIIElem)

 	blkSize (in module GSASIIscriptable)

 	BlockSelector() (in module GSASIIctrlGUI)

 	BondDialog (class in GSASIIexprGUI)

 	BraggBrentanoParms (in module GSASIIfpaGUI)

 	brml_ReaderClass (class in G2pwd_BrukerRAW)

 	ButtonBindingLookup (in module GSASIIlog)

 	ButtonLogEntry (class in GSASIIlog)

C

 	
 	calc_autobkg() (GSASIIscriptable.G2PwdrData method)

 	calc_M20() (in module GSASIIindex)

 	calc_M20SS() (in module GSASIIindex)

 	calc_rDsq() (in module GSASIIlattice)

 	calc_rDsq2() (in module GSASIIlattice)

 	calc_rDsqSS() (in module GSASIIlattice)

 	calc_rDsqT() (in module GSASIIlattice)

 	calc_rDsqTSS() (in module GSASIIlattice)

 	calc_rDsqZ() (in module GSASIIlattice)

 	calc_rDsqZSS() (in module GSASIIlattice)

 	calc_rV() (in module GSASIIlattice)

 	calc_rVsq() (in module GSASIIlattice)

 	calc_V() (in module GSASIIlattice)

 	calcFij() (in module GSASIIimage)

 	CalcFPPS() (Absorb.Absorb method)

 	(fprime.Fprime method)

 	calcIncident() (in module GSASIIpwd)

 	CalcIsoCoords() (in module GSASIImath)

 	CalcIsoDisp() (in module GSASIImath)

 	calcMaskMap() (in module GSASIIscriptable)

 	calcMassFracs() (in module GSASIIstrMath)

 	CalcPDF() (in module GSASIIpwd)

 	calcRamaEnergy() (in module GSASIImath)

 	calcThetaAzimMap() (in module GSASIIscriptable)

 	calcTorsionEnergy() (in module GSASIImath)

 	calculate() (GSASIIscriptable.G2PDF method)

 	CallScrolledMultiEditor() (in module GSASIIctrlGUI)

 	CanGetValueAs() (GSASIIctrlGUI.Table method)

 	CanSetValueAs() (GSASIIctrlGUI.Table method)

 	Cart2Polar() (in module GSASIImath)

 	cauchy_gen (class in GSASIIpwd)

 	CBF_ReaderClass (class in G2img_CBF)

 	cell2A() (in module GSASIIlattice)

 	cell2AB() (in module GSASIIlattice)

 	cell2Gmat() (in module GSASIIlattice)

 	cell2GS() (in module GSASIIlattice)

 	CellAbsorption() (in module GSASIIlattice)

 	cellAlbl (in module GSASIIlattice)

 	CellBlock() (in module GSASIIlattice)

 	CellDijCorr() (in module GSASIIlattice)

 	cellDijFill() (in module GSASIIlattice)

 	cellFill() (in module GSASIIstrIO)

 	CellSymSearch() (in module nistlat)

 	cellUlbl (in module GSASIIlattice)

 	cellUnique() (in module GSASIIlattice)

 	cellVary() (in module GSASIIstrIO)

 	cellXformRelations (in module GSASIIlattice)

 	cellZeros() (in module GSASIIlattice)

 	CentCheck() (in module GSASIIlattice)

 	centered (gltext.Text property)

 	(gltext.TextElement property)

 	changePlotSettings() (in module GSASIIplot)

 	ChangeSelection() (GSASIIctrlGUI.GSNoteBook method)

 	ChargeFlip() (in module GSASIImath)

 	CheckAllScalePhaseFractions() (in module GSASIIconstrGUI)

 	CheckConstraints() (in module GSASIIconstrGUI)

 	CheckElement() (in module GSASIIElem)

 	checkEllipse() (in module GSASIIimage)

 	CheckEquivalences() (in module GSASIImapvars)

 	checkHKLextc() (in module GSASIIspc)

 	CheckInput() (GSASIIctrlGUI.NumberValidator method)

 	CheckLeBail() (in module GSASIIstrMain)

 	checkMagextc() (in module GSASIIspc)

 	CheckNotebook() (GSASIIdataGUI.GSASII method)

 	checkPDFfit() (in module GSASIIphsGUI)

 	checkPDFprm() (GSASIIimgGUI.AutoIntFrame method)

 	CheckScalePhaseFractions() (in module GSASIIconstrGUI)

 	CheckSpin() (in module GSASIIspc)

 	CheckVars() (GSASIIexprGUI.ExpressionDialog method)

 	(GSASIIobj.ExpressionObj method)

 	ChooseTutorial() (GSASIIctrlGUI.OpenSvnTutorial method)

 	ChooseTutorial2() (GSASIIctrlGUI.OpenGitTutorial method)

 	(GSASIIctrlGUI.OpenSvnTutorial method)

 	CIF2dict() (in module G2export_CIF)

 	CIFdefHelp (class in G2export_CIF)

 	CIFEntryWidget() (G2export_CIF.EditCIFpanel method)

 	CIFhklReader (class in G2sfact_CIF)

 	CIFPhaseReader (class in G2phase_CIF)

 	CIFpwdReader (class in G2pwd_CIF)

 	CIFtemplateSelect (class in G2export_CIF)

 	CIFValidator() (GSASIIobj.ImportBaseclass method)

 	CleanupMasks() (in module GSASIIimgGUI)

 	clear() (GSASIIplot.G2PlotNoteBook method)

 	clear_HAP_refinements() (GSASIIscriptable.G2Phase method)

 	clear_refinements() (GSASIIscriptable.G2Phase method)

 	(GSASIIscriptable.G2PwdrData method)

 	ClearData() (GSASIIdataGUI.G2DataWindow method)

 	clearDistRestraint() (GSASIIscriptable.G2Phase method)

 	clearImageCache() (GSASIIscriptable.G2Image method)

 	clearPixelMask() (GSASIIscriptable.G2Image method)

 	ClearStartup() (GSASII.G2App method)

 	Clip_on (in module config_example)

 	Clone() (GSASIIconstrGUI.G2BoolEditor method)

 	(GSASIIctrlGUI.ASCIIValidator method)

 	(GSASIIctrlGUI.GridFractionEditor method)

 	(GSASIIctrlGUI.NumberValidator method)

 	clone_powder_histogram() (GSASIIscriptable.G2Project method)

 	ClosedFormFF() (in module GSASIIElem)

 	CloseFile() (GSASIIIO.ExportBaseclass method)

 	Column_Metadata_directory (in module config_example)

 	ColumnValidator() (in module G2sfact)

 	combinations() (in module GSASIIlattice)

 	commonPath() (in module GSASIIpath)

 	CompareCell() (in module nistlat)

 	compareVersions() (in module GSASIIdataGUI)

 	compiledExpr (GSASIIobj.ExpressionCalcObj attribute)

 	CompileVarDesc() (in module GSASIIobj)

 	completeEdits() (GSASIIconstrGUI.DragableRBGrid method)

 	(GSASIIctrlGUI.GSGrid method)

 	composition (GSASIIscriptable.G2Phase property)

 	ComptonFac() (in module GSASIIElem)

 	
 	ComputeArc() (in module GSASIIplot)

 	ComputeDepESD() (in module GSASIImapvars)

 	computePDF() (in module GSASIIpwdGUI)

 	ComputePwdrProfCW() (in module GSASIImpsubs)

 	ComputePwdrProfED() (in module GSASIImpsubs)

 	ComputePwdrProfPink() (in module GSASIImpsubs)

 	ComputePwdrProfTOF() (in module GSASIImpsubs)

 	ComputeWorstFit() (GSASIIscriptable.G2Project method)

 	condaEnvCreate() (in module GSASIIpath)

 	condaInstall() (in module GSASIIpath)

 	condaTest() (in module GSASIIpath)

 	
 config_example

 	module

 	consNum (in module GSASIImapvars)

 	Constraint definition object description

 	ConstraintDialog (class in GSASIIconstrGUI)

 	ConstraintException

 	Constraints object description

 	constrParms (in module GSASIImapvars)

 	constrVarList (in module GSASIImapvars)

 	ContentsValidator() (G2img_1TIF.TIF_ReaderClass method)

 	(G2img_ADSC.ADSC_ReaderClass method)

 	(G2img_CBF.CBF_ReaderClass method)

 	(G2img_CheMin.png_ReaderClass method)

 	(G2img_EDF.EDF_ReaderClass method)

 	(G2img_GE.GE_ReaderClass method)

 	(G2img_GE.GEsum_ReaderClass method)

 	(G2img_HDF5.HDF5_Reader method)

 	(G2img_MAR.MAR_ReaderClass method)

 	(G2img_PILTIF.TIF_LibraryReader method)

 	(G2img_Rigaku.Rigaku_ReaderClass method)

 	(G2img_SFRM.SFRM_ReaderClass method)

 	(G2img_SumG2.G2_ReaderClass method)

 	(G2pdf_gr.txt_FSQReaderClass method)

 	(G2pdf_gr.txt_PDFReaderClass method)

 	(G2pdf_gr.txt_PDFReaderClassG method)

 	(G2phase.EXP_ReaderClass method)

 	(G2phase.JANA_ReaderClass method)

 	(G2phase.PDB_ReaderClass method)

 	(G2phase.PDF_ReaderClass method)

 	(G2phase_CIF.CIFPhaseReader method)

 	(G2phase_GPX.PhaseReaderClass method)

 	(G2phase_INS.PhaseReaderClass method)

 	(G2phase_rmc6f.PhaseReaderClass method)

 	(G2phase_xyz.XYZ_ReaderClass method)

 	(G2pwd_BrukerRAW.brml_ReaderClass method)

 	(G2pwd_BrukerRAW.raw_ReaderClass method)

 	(G2pwd_CIF.CIFpwdReader method)

 	(G2pwd_csv.csv_ReaderClass method)

 	(G2pwd_FP.fp_ReaderClass method)

 	(G2pwd_fxye.GSAS_ReaderClass method)

 	(G2pwd_GPX.GSAS2_ReaderClass method)

 	(G2pwd_Panalytical.Panalytical_ReaderClass method)

 	(G2pwd_rigaku.Rigaku_rasReaderClass method)

 	(G2pwd_rigaku.Rigaku_txtReaderClass method)

 	(G2pwd_xye.xye_ReaderClass method)

 	(G2rfd_Panalytical.Panalytical_ReaderClass method)

 	(G2rfd_xye.txt_NeutronReaderClass method)

 	(G2rfd_xye.txt_XRayReaderClass method)

 	(G2rfd_xye.txt_XRayThetaReaderClass method)

 	(G2sad_xye.txt_NeutronReaderClass method)

 	(G2sad_xye.txt_nmNeutronReaderClass method)

 	(G2sad_xye.txt_nmXRayReaderClass method)

 	(G2sad_xye.txt_XRayReaderClass method)

 	(G2sfact.HKLF_ReaderClass method)

 	(G2sfact.HKLMF_ReaderClass method)

 	(G2sfact.M90_ReaderClass method)

 	(G2sfact.NIST_hb3a_INT_ReaderClass method)

 	(G2sfact.NT_HKLF2_ReaderClass method)

 	(G2sfact.NT_JANA2K_ReaderClass method)

 	(G2sfact.SHELX4_ReaderClass method)

 	(G2sfact.SHELX5_ReaderClass method)

 	(G2sfact.SHELX6_ReaderClass method)

 	(G2sfact_CIF.CIFhklReader method)

 	(GSASIIobj.ImportBaseclass method)

 	Contour_color (in module config_example)

 	ControlList (GSASIIscriptable.G2Image attribute)

 	ControlOKButton() (G2export_CIF.EditCIFpanel method)

 	(GSASIIctrlGUI.ScrolledMultiEditor method)

 	(GSASIIctrlGUI.SingleFloatDialog method)

 	ConvCell() (in module nistlat)

 	ConvertRelativeHistNum() (GSASIIctrlGUI.G2TreeCtrl method)

 	ConvertRelativePhaseNum() (GSASIIctrlGUI.G2TreeCtrl method)

 	convVarList (in module GSASIImapvars)

 	convVersion() (in module GSASIIdataGUI)

 	coordinates (GSASIIscriptable.G2AtomRecord property)

 	copy_PDF() (GSASIIscriptable.G2Project method)

 	copyHAPvalues() (GSASIIscriptable.G2Phase method)

 	copyHistParms() (GSASIIscriptable.G2Project method)

 	CopyPlotCtrls() (in module GSASIIpwdGUI)

 	CopyRietveldPlot() (in module GSASIIplot)

 	CopySelectedHistItems() (in module GSASIIpwdGUI)

 	CosAngle() (in module GSASIIlattice)

 	CosSinAngle() (in module GSASIIlattice)

 	countDetachedCommits() (in module GSASIIpath)

 	Covariance description

 	Create() (GSASIIconstrGUI.G2BoolEditor method)

 	(GSASIIctrlGUI.GridFractionEditor method)

 	create() (in module GSASIIscriptable)

 	CreatePDFitems() (in module GSASIIobj)

 	createTexture() (gltext.TextElement method)

 	criticalEllipse() (in module GSASIIlattice)

 	CrsAng() (in module GSASIIlattice)

 	csv_ReaderClass (class in G2pwd_csv)

 	CubicSHarm() (in module GSASIIlattice)

 	CylinderARFF() (in module GSASIIsasd)

 	CylinderARVol() (in module GSASIIsasd)

 	CylinderDFF() (in module GSASIIsasd)

 	CylinderDVol() (in module GSASIIsasd)

 	CylinderFF() (in module GSASIIsasd)

 	CylinderVol() (in module GSASIIsasd)

D

 	
 	
 Data object descriptions

 	Atoms record

 	Constraint Definition

 	Constraints

 	Covariance

 	Drawing atoms record

 	Phase

 	Powder Data

 	Powder Reflections

 	Rigid Body Data

 	Single crystal data

 	Single Crystal Reflections

 	Space Group Data

 	Superspace Group Data

 	debug (in module config_example)

 	default() (G2export_JSON.JsonEncoder method)

 	DefaultAutoScale (in module config_example)

 	DefaultControls (in module GSASIIobj)

 	
 defaultIparms

 	module

 	Define_wxId() (in module GSASIIctrlGUI)

 	DefineEvaluator() (in module GSASIIimgGUI)

 	del_back_peak() (GSASIIscriptable.G2PwdrData method)

 	Delete() (GSASIIplot.G2PlotNoteBook method)

 	DeleteElement (class in GSASIIElemGUI)

 	deleteTexture() (gltext.TextElement method)

 	Den2Vol() (in module GSASIImath)

 	density (GSASIIscriptable.G2Phase property)

 	dependentParmList (in module GSASIImapvars)

 	dependentVar (GSASIIexprGUI.ExpressionDialog attribute)

 	depVarDict (GSASIIexprGUI.ExpressionDialog attribute)

 	depVarList (in module GSASIImapvars)

 	dervHKLF() (in module GSASIIstrMath)

 	dervRefine() (in module GSASIIstrMath)

 	Destroy() (GSASIIconstrGUI.G2BoolEditor method)

 	(GSASIIctrlGUI.G2RefinementProgress method)

 	DetMode (in module GSASIIfpaGUI)

 	dict2CIF() (in module G2export_CIF)

 	Dict2Deriv() (in module GSASIImapvars)

 	Dict2Map() (in module GSASIImapvars)

 	Dict2Values() (in module GSASIIpwd)

 	(in module GSASIIstrMath)

 	
 	dictDive() (in module GSASIIscriptable)

 	dictLogged (class in GSASIIlog)

 	DIFFaXcontrols (class in GSASIIphsGUI)

 	DiluteSF() (in module GSASIIsasd)

 	dirGitHub() (in module GSASIIpath)

 	DirSelected() (GSASIIctrlGUI.gpxFileSelector method)

 	DisAglDialog (class in GSASIIctrlGUI)

 	DisAglTor() (in module GSASIIstrMain)

 	displayGPXrtc() (GSASIIctrlGUI.gpxFileSelector method)

 	do_refine() (in module GSASIIstrMain)

 	do_refinements() (GSASIIscriptable.G2Project method)

 	docCommit() (GSASIIctrlGUI.gitVersionSelector method)

 	doFPAcalc() (in module GSASIIfpaGUI)

 	DoIndexPeaks() (in module GSASIIindex)

 	DoLayout() (G2export_CIF.EditCIFpanel method)

 	DoLeBail() (in module GSASIIstrMain)

 	DoNoFit() (in module GSASIIstrMain)

 	DoNothing() (in module GSASIIpath)

 	DoPeakFit() (in module GSASIIpwd)

 	DoPolaCalib() (in module GSASIIimage)

 	DoSequentialProjExport() (GSASIIdataGUI.GSASII method)

 	downdate (class in GSASIIctrlGUI)

 	DownloadAll() (GSASIIctrlGUI.OpenSvnTutorial method)

 	downloadDirContents() (in module GSASIIpath)

 	DownloadG2Binaries() (in module GSASIIpath)

 	DragableRBGrid (class in GSASIIconstrGUI)

 	Draw() (GSASIIctrlGUI.DisAglDialog method)

 	(GSASIIexprGUI.AngleDialog method)

 	(GSASIIexprGUI.BondDialog method)

 	(GSASIIphsGUI.AddHatomDialog method)

 	draw_text() (gltext.Text method)

 	(gltext.TextElement method)

 	DrawAtoms_default (in module config_example)

 	DrawAtomsReplaceByID() (in module GSASIImath)

 	Drawing atoms record description

 	DrawPanel() (GSASIIctrlGUI.ShowLSParms method)

 	dropOOBvars() (in module GSASIIstrMain)

 	droppedSym (in module GSASIImapvars)

 	dropTerms() (in module GSASIImath)

 	Dsp2pos() (in module GSASIIlattice)

 	dump() (in module GSASIIscriptable)

 	dumpTree() (GSASIIIO.ExportBaseclass method)

E

 	
 	EDF_ReaderClass (class in G2img_EDF)

 	EdgeFinder() (in module GSASIIimage)

 	EditCIFpanel (class in G2export_CIF)

 	EditCIFtemplate (class in G2export_CIF)

 	EditExpression() (GSASIIobj.ExpressionObj method)

 	EditProxyInfo() (GSASIIdataGUI.GSASII method)

 	EditSimulated() (GSASIIscriptable.G2PwdrData method)

 	El2EstVol() (in module GSASIImath)

 	El2Mass() (in module GSASIImath)

 	ElButton() (GSASIIElemGUI.DeleteElement method)

 	(GSASIIElemGUI.PickElement method)

 	element (GSASIIscriptable.G2AtomRecord property)

 	
 ElementTable

 	module

 	ElemPosition() (in module GSASIIspc)

 	ellipseSize() (in module GSASIIpwd)

 	ellipseSizeDerv() (in module GSASIIpwd)

 	Enable_logging (in module config_example)

 	EnableButtons() (GSASIIimgGUI.AutoIntFrame method)

 	EnableRefineCommand() (GSASIIdataGUI.GSASII method)

 	EndEdit() (GSASIIconstrGUI.G2BoolEditor method)

 	(GSASIIctrlGUI.GridFractionEditor method)

 	enum_DrawAtoms_default (in module config_example)

 	EnumSelector (class in GSASIIctrlGUI)

 	eObj (GSASIIobj.ExpressionCalcObj attribute)

 	ErrorDialog() (GSASIIdataGUI.GSASII method)

 	errRefine() (in module GSASIIstrMath)

 	evalColMetadataDicts() (in module GSASIIfiles)

 	EvalExpression() (GSASIIobj.ExpressionCalcObj method)

 	EvaluateMultipliers() (in module GSASIImapvars)

 	exceptHook() (in module GSASIIpath)

 	ExitMain() (GSASIIdataGUI.GSASII method)

 	EXP_ReaderClass (class in G2phase)

 	ExpandAll() (GSASIIdataGUI.GSASII method)

 	export() (GSASIIscriptable.G2PDF method)

 	Export() (GSASIIscriptable.G2PwdrData method)

 	export() (in module GSASIIscriptable)

 	Export3col (class in G2export_Bracket)

 	export_CIF() (GSASIIscriptable.G2Phase method)

 	Export_peaks() (GSASIIscriptable.G2PwdrData method)

 	ExportBaseclass (class in GSASIIIO)

 	Exportbracket (class in G2export_Bracket)

 	ExportCIF (class in G2export_CIF)

 	Exporter() (G2export_csv.ExportMultiPowderCSV method)

 	(G2export_csv.ExportPhaseCSV method)

 	(G2export_csv.ExportPowderCSV method)

 	(G2export_csv.ExportPowderReflCSV method)

 	(G2export_csv.ExportREFDCSV method)

 	(G2export_csv.ExportSASDCSV method)

 	(G2export_csv.ExportSingleCSV method)

 	(G2export_csv.ExportStrainCSV method)

 	(G2export_examples.ExportPhaseText method)

 	(G2export_examples.ExportPowderReflText method)

 	(G2export_examples.ExportPowderText method)

 	(G2export_examples.ExportSingleText method)

 	(G2export_FIT2D.ExportPowderCHI method)

 	(G2export_FIT2D.ExportPowderQCHI method)

 	(G2export_image.ExportImagePNG method)

 	(G2export_map.ExportMapASCII method)

 	(G2export_map.ExportMapCCP4 method)

 	(G2export_PDB.ExportPhaseCartXYZ method)

 	(G2export_PDB.ExportPhasePDB method)

 	(G2export_pwdr.ExportPowderFXYE method)

 	(G2export_pwdr.ExportPowderXYE method)

 	(G2export_shelx.ExportPhaseShelx method)

 	
 	exportersByExtension (in module GSASIIscriptable)

 	ExportHKLCIF (class in G2export_CIF)

 	ExportImagePNG (class in G2export_image)

 	ExportJSON (class in G2export_JSON)

 	ExportMapASCII (class in G2export_map)

 	ExportMapCCP4 (class in G2export_map)

 	ExportMultiPowderCSV (class in G2export_csv)

 	ExportPhaseCartXYZ (class in G2export_PDB)

 	ExportPhaseCIF (class in G2export_CIF)

 	ExportPhaseCSV (class in G2export_csv)

 	ExportPhasePDB (class in G2export_PDB)

 	ExportPhaseShelx (class in G2export_shelx)

 	ExportPhaseText (class in G2export_examples)

 	ExportPowder() (in module GSASIIIO)

 	ExportPowderCHI (class in G2export_FIT2D)

 	ExportPowderCSV (class in G2export_csv)

 	ExportPowderFXYE (class in G2export_pwdr)

 	ExportPowderList() (in module GSASIIIO)

 	ExportPowderQCHI (class in G2export_FIT2D)

 	ExportPowderReflCSV (class in G2export_csv)

 	ExportPowderReflText (class in G2export_examples)

 	ExportPowderText (class in G2export_examples)

 	ExportPowderXYE (class in G2export_pwdr)

 	ExportProjectCIF (class in G2export_CIF)

 	ExportPwdrCIF (class in G2export_CIF)

 	ExportREFDCSV (class in G2export_csv)

 	ExportSASDCSV (class in G2export_csv)

 	ExportSelect() (GSASIIIO.ExportBaseclass method)

 	ExportSequential() (in module GSASIIIO)

 	ExportSequentialFullCIF() (in module GSASIIIO)

 	ExportSingleCSV (class in G2export_csv)

 	ExportSingleText (class in G2export_examples)

 	ExportStrainCSV (class in G2export_csv)

 	expr (GSASIIexprGUI.ExpressionDialog attribute)

 	exprDict (GSASIIobj.ExpressionCalcObj attribute)

 	expression (GSASIIobj.ExpressionObj attribute)

 	ExpressionCalcObj (class in GSASIIobj)

 	ExpressionDialog (class in GSASIIexprGUI)

 	ExpressionObj (class in GSASIIobj)

 	exprVarLst (GSASIIexprGUI.ExpressionDialog attribute)

 	ExtensionValidator() (GSASIIobj.ImportBaseclass method)

 	ExtractFileFromZip() (in module GSASIIIO)

F

 	
 	factorize() (in module GSASIIpwd)

 	FastAutoPixelMask() (in module GSASIIimage)

 	fcjde_gen (class in GSASIIpwd)

 	FileDlgFixExt() (in module GSASIIIO)

 	FileSelected() (GSASIIctrlGUI.gpxFileSelector method)

 	Fill2ThetaAzimuthMap() (in module GSASIIimage)

 	FillAtomLookUp() (in module GSASIImath)

 	fillgmat() (in module GSASIIlattice)

 	FillList() (GSASIIimgGUI.ImgIntLstCtrl method)

 	FillMainMenu() (GSASIIdataGUI.GSASII method)

 	FillParmSizer() (in module GSASIIfpaGUI)

 	Filter() (GSASIIctrlGUI.G2MultiChoiceDialog method)

 	(GSASIIctrlGUI.G2MultiChoiceWindow method)

 	find() (in module GSASIIfiles)

 	find2SearchAgain() (in module SUBGROUPS)

 	FindAllNeighbors() (in module GSASIImath)

 	FindAtomIndexByIDs() (in module GSASIImath)

 	findBestCell() (in module GSASIIindex)

 	FindBondsDraw() (in module GSASIIphsGUI)

 	FindBondsDrawCell() (in module GSASIIphsGUI)

 	findConda() (in module GSASIIpath)

 	findControl() (GSASIIscriptable.G2Image method)

 	FindCoordination() (in module GSASIIphsGUI)

 	FindCoordinationByLabel() (in module GSASIIphsGUI)

 	findfullrmc() (in module GSASIIpwd)

 	FindFunction() (in module GSASIIobj)

 	FindNonstandard() (in module GSASIIlattice)

 	findOffset() (in module GSASIImath)

 	FindPage() (GSASIIctrlGUI.GSNoteBook method)

 	findPDFfit() (in module GSASIIpwd)

 	FindPhaseItem() (in module GSASIIdataGUI)

 	FindPlotTab() (GSASIIplot.G2PlotNoteBook method)

 	findSSOffset() (in module GSASIImath)

 	fit_fixed_points() (GSASIIscriptable.G2PwdrData method)

 	FitDetector() (in module GSASIIimage)

 	FitHKL() (in module GSASIIindex)

 	FitHKLE() (in module GSASIIindex)

 	FitHKLT() (in module GSASIIindex)

 	FitHKLTSS() (in module GSASIIindex)

 	FitHKLZ() (in module GSASIIindex)

 	
 	FitHKLZSS() (in module GSASIIindex)

 	FitImageSpots() (in module GSASIIimage)

 	FitMultiDist() (in module GSASIIimage)

 	FitStrain() (in module GSASIIimage)

 	FitStrSta() (in module GSASIIimage)

 	fixMono() (in module GSASIIspc)

 	FixValence() (in module GSASIIElem)

 	FlagSetDialog (class in GSASIIctrlGUI)

 	Flnh() (in module GSASIIlattice)

 	FmtAtomType() (in module G2export_CIF)

 	fmtCellConstraints() (in module GSASIIlattice)

 	fmtESD() (in module GSASIIstrIO)

 	fmtPhaseContents() (in module GSASIImath)

 	fmtVarByMode() (GSASIIobj.G2VarObj method)

 	fmtVarDescr() (in module GSASIIobj)

 	font (gltext.Text property)

 	(gltext.TextElement property)

 	font_size (gltext.Text property)

 	foreground (gltext.Text property)

 	(gltext.TextElement property)

 	FormatPadValue() (in module GSASIIfiles)

 	FormatSigFigs() (in module GSASIIfiles)

 	FormatValue() (in module GSASIIfiles)

 	
 FormFactors

 	module

 	FormulaEval() (in module GSASIIfiles)

 	Fourier4DMap() (in module GSASIImath)

 	FourierMap() (in module GSASIImath)

 	fp_ReaderClass (class in G2pwd_FP)

 	FPcalc() (in module GSASIIElem)

 	
 fprime

 	module

 	Fprime (class in fprime)

 	freeVars (GSASIIobj.ExpressionObj attribute)

 	from_dict_and_names() (GSASIIscriptable.G2Project class method)

 	fullHM2shortHM() (in module GSASIIspc)

 	fullIntegrate (in module config_example)

 	fullrmc_exec (in module config_example)

 	fullrmcDownload() (in module GSASIIpwd)

 	fullsplit() (in module GSASIIpath)

 	fxnpkgdict (GSASIIobj.ExpressionCalcObj attribute)

G

 	
 	G2_ReaderClass (class in G2img_SumG2)

 	G2App (class in GSASII)

 	G2AtomRecord (class in GSASIIscriptable)

 	G2BoolEditor (class in GSASIIconstrGUI)

 	G2CheckBox (class in GSASIIctrlGUI)

 	G2CheckBoxFrontLbl() (in module GSASIIctrlGUI)

 	G2ChoiceButton (class in GSASIIctrlGUI)

 	G2ColumnIDDialog (class in GSASIIctrlGUI)

 	
 G2compare

 	module

 	G2DataWindow (class in GSASIIdataGUI)

 	G2Exception

 	
 G2export_Bracket

 	module

 	
 G2export_CIF

 	module

 	
 G2export_csv

 	module

 	
 G2export_examples

 	module

 	
 G2export_FIT2D

 	module

 	
 G2export_image

 	module

 	
 G2export_JSON

 	module

 	
 G2export_map

 	module

 	
 G2export_PDB

 	module

 	
 G2export_pwdr

 	module

 	
 G2export_shelx

 	module

 	G2HistoDataDialog (class in GSASIIctrlGUI)

 	G2HtmlWindow (class in GSASIIctrlGUI)

 	G2Image (class in GSASIIscriptable)

 	
 G2img_1TIF

 	module

 	
 G2img_ADSC

 	module

 	
 G2img_CBF

 	module

 	
 G2img_CheMin

 	module

 	
 G2img_EDF

 	module

 	
 G2img_GE

 	module

 	
 G2img_HDF5

 	module

 	
 G2img_MAR

 	module

 	
 G2img_PILTIF

 	module

 	
 G2img_Rigaku

 	module

 	
 G2img_SFRM

 	module

 	
 G2img_SumG2

 	module

 	G2ImportException

 	G2LoggedButton (class in GSASIIctrlGUI)

 	G2logList (in module GSASIIlog)

 	G2LstCtrl (class in GSASIIctrlGUI)

 	G2MessageBox() (in module GSASIIctrlGUI)

 	G2MultiChoiceDialog (class in GSASIIctrlGUI)

 	G2MultiChoiceWindow (class in GSASIIctrlGUI)

 	G2NormException

 	G2ObjectWrapper (class in GSASIIscriptable)

 	G2PDF (class in GSASIIscriptable)

 	
 G2pdf_gr

 	module

 	
 G2phase

 	module

 	G2Phase (class in GSASIIscriptable)

 	
 G2phase_CIF

 	module

 	
 G2phase_GPX

 	module

 	
 G2phase_INS

 	module

 	
 G2phase_rmc6f

 	module

 	
 G2phase_xyz

 	module

 	G2Plot3D (class in GSASIIplot)

 	G2PlotMpl (class in GSASIIplot)

 	G2PlotNoteBook (class in GSASIIplot)

 	G2PlotOgl (class in GSASIIplot)

 	G2Print() (in module GSASIIfiles)

 	G2printLevel (in module GSASIIfiles)

 	G2Project (class in GSASIIscriptable)

 	
 G2pwd_BrukerRAW

 	module

 	
 G2pwd_CIF

 	module

 	
 G2pwd_csv

 	module

 	
 G2pwd_FP

 	module

 	
 G2pwd_fxye

 	module

 	
 G2pwd_GPX

 	module

 	
 G2pwd_Panalytical

 	module

 	
 G2pwd_rigaku

 	module

 	
 G2pwd_xye

 	module

 	G2PwdrData (class in GSASIIscriptable)

 	G2RadioButtons() (in module GSASIIctrlGUI)

 	G2RefineCancel

 	G2RefinementProgress (class in GSASIIctrlGUI)

 	G2RefinementWindow (in module config_example)

 	
 G2rfd_Panalytical

 	module

 	
 G2rfd_xye

 	module

 	
 G2sad_xye

 	module

 	G2ScriptException

 	G2ScrolledGrid() (in module GSASIIctrlGUI)

 	G2SeqRefRes (class in GSASIIscriptable)

 	G2SetPrintLevel() (in module GSASIIfiles)

 	
 G2sfact

 	module

 	
 G2sfact_CIF

 	module

 	
 G2shapes

 	module

 	G2SingleChoiceDialog (class in GSASIIctrlGUI)

 	G2Slider (class in GSASIIctrlGUI)

 	G2SliderWidget() (in module GSASIIctrlGUI)

 	G2SpinWidget() (in module GSASIIctrlGUI)

 	G2TreeCtrl (class in GSASIIctrlGUI)

 	G2VarObj (class in GSASIIobj)

 	G_matrix() (in module GSASIIsasd)

 	GaussCume() (in module GSASIIsasd)

 	GaussDist() (in module GSASIIsasd)

 	GE_ReaderClass (class in G2img_GE)

 	GenAtom() (in module GSASIIspc)

 	GenCellConstraints() (in module GSASIIlattice)

 	GenerateCellConstraints() (in module GSASIIlattice)

 	GenerateConstraints() (in module GSASIImapvars)

 	GeneratePixelMask() (GSASIIscriptable.G2Image method)

 	GenerateReflections() (in module GSASIIscriptable)

 	GenHBravais() (in module GSASIIlattice)

 	GenHKL() (in module GSASIIspc)

 	GenHKLf() (in module GSASIIspc)

 	GenHLaue() (in module GSASIIlattice)

 	GenPfHKLs() (in module GSASIIlattice)

 	GenRBCoeff() (in module GSASIIlattice)

 	GenSHCoeff() (in module GSASIIlattice)

 	GenShCoeff() (in module GSASIIlattice)

 	GenSSHLaue() (in module GSASIIlattice)

 	GenWildCard() (in module GSASIIobj)

 	GEsum_ReaderClass (class in G2img_GE)

 	get_cell() (GSASIIscriptable.G2Phase method)

 	get_cell_and_esd() (GSASIIscriptable.G2Phase method)

 	(GSASIIscriptable.G2SeqRefRes method)

 	get_Constraints() (GSASIIscriptable.G2Project method)

 	get_Controls() (GSASIIscriptable.G2Project method)

 	get_Covariance() (GSASIIscriptable.G2Project method)

 	(GSASIIscriptable.G2SeqRefRes method)

 	get_Frozen() (GSASIIscriptable.G2Project method)

 	get_ParmList() (GSASIIscriptable.G2Project method)

 	(GSASIIscriptable.G2SeqRefRes method)

 	get_Variable() (GSASIIscriptable.G2Project method)

 	(GSASIIscriptable.G2SeqRefRes method)

 	get_VaryList() (GSASIIscriptable.G2Project method)

 	(GSASIIscriptable.G2SeqRefRes method)

 	get_wR() (GSASIIscriptable.G2PwdrData method)

 	get_zoompan() (GSASIIplot.GSASIItoolbar method)

 	GetAbsorb() (in module GSASIIstrMath)

 	GetAbsorbDerv() (in module GSASIIstrMath)

 	GetAllPhaseData() (in module GSASIIstrIO)

 	GetAngleSig() (in module GSASIImath)

 	getAngSig() (in module GSASIImath)

 	GetAsfMean() (in module GSASIIpwd)

 	GetAtomCoordsByID() (in module GSASIImath)

 	GetAtomFracByID() (in module GSASIImath)

 	GetAtomFXU() (in module GSASIIstrMath)

 	GetAtomInfo() (in module GSASIIElem)

 	GetAtomItemsById() (in module GSASIImath)

 	GetAtomMomsByID() (in module GSASIImath)

 	getAtomPtrs() (in module GSASIImath)

 	getAtomRadii() (in module GSASIIphsGUI)

 	GetAtoms() (GSASIIIO.ExportBaseclass method)

 	GetAtomsById() (in module GSASIImath)

 	getAtomSelections() (in module GSASIIphsGUI)

 	GetAtomSSFXU() (in module GSASIIstrMath)

 	getAtomXYZ() (in module GSASIImath)

 	GetAzm() (in module GSASIIimage)

 	getBackground() (in module GSASIIpwd)

 	getBackgroundDerv() (in module GSASIIpwd)

 	getBackupName() (in module GSASIIstrIO)

 	GetBinaryPrefix() (in module GSASIIpath)

 	GetBLtable() (in module GSASIIElem)

 	getBLvalues() (in module GSASIIElem)

 	GetBraviasNum() (in module GSASIIlattice)

 	GetCbfData() (in module G2img_CBF)

 	GetCell() (GSASIIIO.ExportBaseclass method)

 	getCellEsd() (in module GSASIIstrIO)

 	getCellSU() (in module GSASIIstrIO)

 	getCellwStrain() (in module G2export_CIF)

 	GetCheckImageFile() (in module GSASIIIO)

 	GetColLabelValue() (GSASIIconstrGUI.RBDataTable method)

 	(GSASIIctrlGUI.Table method)

 	GetColumnMetadata() (in module GSASIIfiles)

 	GetConfigValsDocs() (in module GSASIIctrlGUI)

 	GetConfigValue() (in module GSASIIpath)

 	getConstrError() (in module GSASIImapvars)

 	getControl() (GSASIIscriptable.G2Image method)

 	getControls() (GSASIIscriptable.G2Image method)

 	GetControls() (in module GSASIIstrIO)

 	GetCSpqinel() (in module GSASIIspc)

 	GetCSuinel() (in module GSASIIspc)

 	GetCSxinel() (in module GSASIIspc)

 	getCWgam() (in module GSASIImath)

 	getCWgamDeriv() (in module GSASIImath)

 	getCWsig() (in module GSASIImath)

 	getCWsigDeriv() (in module GSASIImath)

 	GetData() (GSASIIctrlGUI.DisAglDialog method)

 	(GSASIIctrlGUI.G2HistoDataDialog method)

 	(GSASIIphsGUI.AddHatomDialog method)

 	getdata() (GSASIIscriptable.G2PwdrData method)

 	GetDATSig() (in module GSASIImath)

 	getDensity() (in module GSASIImath)

 	GetDependentVars() (in module GSASIImapvars)

 	getdEpsVoigt() (in module GSASIIpwd)

 	GetDepVar() (GSASIIexprGUI.ExpressionDialog method)

 	(GSASIIobj.ExpressionObj method)

 	getDescr() (in module GSASIIobj)

 	GetDetectorXY() (in module GSASIIimage)

 	GetDetectorXY2() (in module GSASIIimage)

 	GetDetXYfromThAzm() (in module GSASIIimage)

 	getdFCJVoigt3() (in module GSASIIpwd)

 	GetDisplay() (in module GSASIIdataGUI)

 	getDistDerv() (in module GSASIImath)

 	GetDistSig() (in module GSASIImath)

 	getDmax() (in module GSASIIindex)

 	getDmin() (in module GSASIIindex)

 	getdPsVoigt() (in module GSASIIpwd)

 	GetDroppedSym() (in module GSASIImapvars)

 	GetDsp() (in module GSASIIimage)

 	GetEdfData() (in module G2img_EDF)

 	getEDgam() (in module GSASIImath)

 	getEDgamDeriv() (in module GSASIImath)

 	getEDsig() (in module GSASIImath)

 	getEDsigDeriv() (in module GSASIImath)

 	GetEFFtable() (in module GSASIIElem)

 	GetEFormFactorCoeff() (in module GSASIIElem)

 	GetEllipse() (in module GSASIIimage)

 	GetEllipse2() (in module GSASIIimage)

 	getEpsVoigt() (in module GSASIIpwd)

 	GetExportPath() (in module GSASIIctrlGUI)

 	getFCJVoigt() (in module GSASIIpwd)

 	getFCJVoigt3() (in module GSASIIpwd)

 	GetFFC5() (in module GSASIIElem)

 	GetFFtable() (in module GSASIIElem)

 	getFFvalues() (in module GSASIIElem)

 	GetFileBackground() (in module GSASIIpwdGUI)

 	GetFileList() (GSASIIdataGUI.GSASII method)

 	(in module GSASIIpwdGUI)

 	GetFobsSq() (in module GSASIIstrMath)

 	GetFormFactorCoeff() (in module GSASIIElem)

 	GetFprime() (in module GSASIIstrIO)

 	GetFullGPX() (in module GSASIIstrIO)

 	getFWHM() (in module GSASIIpwd)

 	getgamFW() (in module GSASIIpwd)

 	GetGenSym() (in module GSASIIspc)

 	GetGEsumData() (in module G2img_GE)

 	GetGFRMData() (in module G2img_SFRM)

 	getGitBinaryLoc() (in module GSASIIpath)

 	getGitBinaryReleases() (in module GSASIIpath)

 	GetGPXtreeDataNames() (in module GSASIIdataGUI)

 	GetGPXtreeItemId() (in module GSASIIdataGUI)

 	getHAPentryList() (GSASIIscriptable.G2Phase method)

 	getHAPentryValue() (GSASIIscriptable.G2Phase method)

 	getHAPvalues() (GSASIIscriptable.G2Phase method)

 	getHeaderInfo() (in module GSASIIpwd)

 	getHistEntryList() (GSASIIscriptable.G2PwdrData method)

 	getHistEntryValue() (GSASIIscriptable.G2PwdrData method)

 	GetHistogramData() (in module GSASIIstrIO)

 	
 	GetHistogramNames() (GSASIIdataGUI.GSASII method)

 	(in module GSASIIstrIO)

 	GetHistogramNamesID() (GSASIIdataGUI.GSASII method)

 	GetHistogramPhaseData() (in module GSASIIstrIO)

 	GetHistograms() (in module GSASIIstrIO)

 	GetHistogramTypes() (GSASIIdataGUI.GSASII method)

 	GetHistsLikeSelected() (in module GSASIIpwdGUI)

 	GetHKLFdatafromTree() (GSASIIdataGUI.GSASII method)

 	getHKLmax() (in module GSASIIlattice)

 	getHKLMpeak() (in module GSASIIpwd)

 	getHKLpeak() (in module GSASIIpwd)

 	GetHStrainShift() (in module GSASIIstrMath)

 	GetHStrainShiftDerv() (in module GSASIIstrMath)

 	getIconFile() (in module GSASIIpath)

 	GetImageData() (in module GSASIIIO)

 	GetImageLoc() (GSASIIctrlGUI.G2TreeCtrl method)

 	GetImageZ() (in module GSASIIimgGUI)

 	GetImgData() (in module G2img_ADSC)

 	GetImportFile() (in module GSASIIctrlGUI)

 	GetImportPath() (in module GSASIIctrlGUI)

 	GetIndependentVars() (GSASIIobj.ExpressionObj method)

 	(in module GSASIImapvars)

 	GetIntensityCorr() (in module GSASIIstrMath)

 	GetIntensityDerv() (in module GSASIIstrMath)

 	getInvConstraintEq() (in module GSASIImapvars)

 	GetISODISTORT() (in module ISODISTORT)

 	GetISODISTORTcif() (in module ISODISTORT)

 	GetItemOrder() (in module GSASIIctrlGUI)

 	GetItemPyData() (GSASIIctrlGUI.G2TreeCtrl method)

 	GetKcl() (in module GSASIIlattice)

 	GetKclKsl() (in module GSASIIlattice)

 	GetKNsym() (in module GSASIIspc)

 	GetKsl() (in module GSASIIlattice)

 	GetLittleGrpOps() (in module GSASIIspc)

 	GetMag() (in module GSASIImath)

 	GetMagDerv() (in module GSASIImath)

 	GetMagFormFacCoeff() (in module GSASIIElem)

 	GetMAR345Data() (in module G2img_MAR)

 	getMasks() (GSASIIscriptable.G2Image method)

 	getMass() (in module GSASIImath)

 	getMeanWave() (in module GSASIImath)

 	GetMFtable() (in module GSASIIElem)

 	getMFvalues() (in module GSASIIElem)

 	getMode() (G2compare.MakeTopWindow method)

 	GetNewCellParms() (in module GSASIIstrMath)

 	GetNonStdSubgroups() (in module SUBGROUPS)

 	GetNonStdSubgroupsmag() (in module SUBGROUPS)

 	GetNumberCols() (GSASIIconstrGUI.RBDataTable method)

 	(GSASIIctrlGUI.Table method)

 	GetNumberRows() (GSASIIconstrGUI.RBDataTable method)

 	(GSASIIctrlGUI.Table method)

 	GetNumDensity() (in module GSASIIpwd)

 	GetNXUPQsym() (in module GSASIIspc)

 	GetOprName() (in module GSASIIspc)

 	GetOprPtrName() (in module GSASIIspc)

 	GetOprPtrNumber() (in module GSASIIspc)

 	GetORBtable() (in module GSASIIElem)

 	GetPawleyConstr() (in module GSASIIstrIO)

 	getPawleydRange() (in module GSASIIphsGUI)

 	GetPDFfitAtomVar() (in module GSASIIpwd)

 	getPeakPos() (in module GSASIIlattice)

 	getPeakProfile() (in module GSASIIpwd)

 	getPeakProfileDerv() (in module GSASIIpwd)

 	GetPhaseData() (GSASIIdataGUI.GSASII method)

 	(in module GSASIIstrIO)

 	getPhaseEntryList() (GSASIIscriptable.G2Phase method)

 	getPhaseEntryValue() (GSASIIscriptable.G2Phase method)

 	GetPhaseInfofromTree() (GSASIIdataGUI.GSASII method)

 	GetPhaseNames() (GSASIIdataGUI.GSASII method)

 	(in module GSASIIobj)

 	(in module GSASIIstrIO)

 	GetPhasesforHistogram() (in module GSASIIpwdGUI)

 	getPinkNalpha() (in module GSASIImath)

 	getPinkNalphaDeriv() (in module GSASIImath)

 	getPinkNbeta() (in module GSASIImath)

 	getPinkNbetaDeriv() (in module GSASIImath)

 	getPinkXalpha() (in module GSASIImath)

 	getPinkXalphaDeriv() (in module GSASIImath)

 	getPinkXbeta() (in module GSASIImath)

 	getPinkXbetaDeriv() (in module GSASIImath)

 	GetPowderIparm() (GSASIIdataGUI.GSASII method)

 	GetPowderPeaks() (in module GSASIIIO)

 	getPowderProfile() (in module GSASIIstrMath)

 	getPowderProfileDerv() (in module GSASIIstrMath)

 	GetPrefOri() (in module GSASIIstrMath)

 	GetPrefOriDerv() (in module GSASIIstrMath)

 	getPsVoigt() (in module GSASIIpwd)

 	GetPWDRdatafromTree() (GSASIIdataGUI.GSASII method)

 	GetPwdrExt() (in module GSASIIstrMath)

 	GetPwdrExtDerv() (in module GSASIIstrMath)

 	getRamaDeriv() (in module GSASIImath)

 	getRBTransMat() (in module GSASIImath)

 	GetReflPos() (in module GSASIIstrMath)

 	GetReflPosDerv() (in module GSASIIstrMath)

 	GetRelativeHistNum() (GSASIIctrlGUI.G2TreeCtrl method)

 	GetRelativePhaseNum() (GSASIIctrlGUI.G2TreeCtrl method)

 	GetRepoUpdatesInBackground() (in module GSASIIpath)

 	getRestAngle() (in module GSASIImath)

 	getRestChiral() (in module GSASIImath)

 	getRestDeriv() (in module GSASIImath)

 	getRestDist() (in module GSASIImath)

 	getRestPlane() (in module GSASIImath)

 	getRestPolefig() (in module GSASIImath)

 	getRestPolefigDerv() (in module GSASIImath)

 	GetRestraints() (in module GSASIIstrIO)

 	getRestRama() (in module GSASIImath)

 	getRestTorsion() (in module GSASIImath)

 	getRho() (in module GSASIImath)

 	getRhos() (in module GSASIImath)

 	GetRigaku() (in module G2img_Rigaku)

 	GetRigidBodies() (in module GSASIIstrIO)

 	GetRigidBodyModels() (in module GSASIIstrIO)

 	GetRowLabelValue() (GSASIIconstrGUI.RBDataTable method)

 	(GSASIIctrlGUI.Table method)

 	GetSampleSigGam() (in module GSASIIstrMath)

 	GetSampleSigGamDerv() (in module GSASIIstrMath)

 	GetSelectedRows() (in module GSASIIrestrGUI)

 	GetSelection() (GSASIIctrlGUI.G2ColumnIDDialog method)

 	(GSASIIctrlGUI.G2SingleChoiceDialog method)

 	GetSelections() (GSASIIctrlGUI.G2MultiChoiceDialog method)

 	(GSASIIctrlGUI.G2MultiChoiceWindow method)

 	GetSeqCell() (GSASIIIO.ExportBaseclass method)

 	(in module GSASIIpwd)

 	GetSeqResult() (in module GSASIIstrIO)

 	GetSFRMData() (in module G2img_SFRM)

 	GetSGSpin() (in module GSASIIspc)

 	GetSHCoeff() (in module GSASIImath)

 	GetSortImages() (GSASIIctrlGUI.G2LstCtrl method)

 	GetStdSGset() (in module SUBGROUPS)

 	GetSupergroup() (in module SUBGROUPS)

 	getsvnProxy() (in module GSASIIpath)

 	GetSymEquiv() (in module GSASIImapvars)

 	getSyXYZ() (in module GSASIImath)

 	GetTabIndex() (GSASIIplot.G2PlotNoteBook method)

 	getTextElement() (gltext.Text method)

 	getTextSize() (in module GSASIIctrlGUI)

 	getTexture() (gltext.Text method)

 	getTexture_size() (gltext.Text method)

 	GetTifData() (in module G2img_1TIF)

 	getTOFalpha() (in module GSASIImath)

 	getTOFalphaDeriv() (in module GSASIImath)

 	getTOFbeta() (in module GSASIImath)

 	getTOFbetaDeriv() (in module GSASIImath)

 	getTOFgamma() (in module GSASIImath)

 	getTOFgammaDeriv() (in module GSASIImath)

 	getTOFsig() (in module GSASIImath)

 	getTOFsigDeriv() (in module GSASIImath)

 	getTorsionDeriv() (in module GSASIImath)

 	GetTorsionSig() (in module GSASIImath)

 	GetTreeItemsList() (GSASIIdataGUI.GSASII method)

 	GetTth() (in module GSASIIimage)

 	GetTthAzm() (in module GSASIIimage)

 	GetTthAzmDsp() (in module GSASIIimage)

 	GetTthAzmDsp2() (in module GSASIIimage)

 	GetTthAzmG() (in module GSASIIimage)

 	GetTthAzmG2() (in module GSASIIimage)

 	GetTypeName() (GSASIIctrlGUI.Table method)

 	GetUsedHistogramsAndPhases() (in module GSASIIstrIO)

 	GetUsedHistogramsAndPhasesfromTree() (GSASIIdataGUI.GSASII method)

 	GetValue() (GSASIIconstrGUI.RBDataTable method)

 	(GSASIIctrlGUI.SingleStringDialog method)

 	(GSASIIctrlGUI.Table method)

 	GetValues() (GSASIIctrlGUI.MultiStringDialog method)

 	getVarDescr() (in module GSASIIobj)

 	GetVaried() (GSASIIobj.ExpressionObj method)

 	GetVariedVarVal() (GSASIIobj.ExpressionObj method)

 	getVarStep() (in module GSASIIobj)

 	getVary() (GSASIIscriptable.G2Image method)

 	getVCov() (in module GSASIImath)

 	getVersion() (GSASIIctrlGUI.downdate method)

 	(GSASIIctrlGUI.gitVersionSelector method)

 	GetVersionNumber() (in module GSASIIpath)

 	getWave() (in module GSASIImath)

 	getWidthsCW() (in module GSASIIpwd)

 	getWidthsED() (in module GSASIIpwd)

 	getWidthsTOF() (in module GSASIIpwd)

 	GetXsectionCoeff() (in module GSASIIElem)

 	GetXYZDist() (in module GSASIImath)

 	gitCheckForUpdates() (in module GSASIIpath)

 	gitCheckUpdates() (in module GSASIIctrlGUI)

 	gitCountRegressions() (in module GSASIIpath)

 	gitGetUpdate() (in module GSASIIpath)

 	gitHash2Tags() (in module GSASIIpath)

 	gitHistory() (in module GSASIIpath)

 	gitLookup() (in module GSASIIpath)

 	gitSelectVersion() (in module GSASIIctrlGUI)

 	gitStartUpdate() (in module GSASIIpath)

 	gitTag2Hash() (in module GSASIIpath)

 	gitTestGSASII() (in module GSASIIpath)

 	gitVersionSelector (class in GSASIIctrlGUI)

 	Glnh() (in module GSASIIlattice)

 	
 gltext

 	module

 	Gmat2A() (in module GSASIIlattice)

 	Gmat2AB() (in module GSASIIlattice)

 	Gmat2cell() (in module GSASIIlattice)

 	GPXBackup() (in module GSASIIstrIO)

 	gpxFileSelector (class in GSASIIctrlGUI)

 	gpxSize (in module GSASIIstrIO)

 	GramSchmidtOrtho() (in module GSASIImapvars)

 	GridFractionEditor (class in GSASIIctrlGUI)

 	GroupConstraints() (in module GSASIImapvars)

 	groupErrors (in module GSASIImapvars)

 	GSAS-II variable naming

 	GSAS2_ReaderClass (class in G2pwd_GPX)

 	GSAS_ReaderClass (class in G2pwd_fxye)

 	
 GSASII

 	module

 	GSASII (class in GSASIIdataGUI)

 	GSASII.CopyDialog (class in GSASIIdataGUI)

 	GSASII.SumDialog (class in GSASIIdataGUI)

 	
 GSASIIconstrGUI

 	module

 	
 GSASIIctrlGUI

 	module

 	
 GSASIIdata

 	module

 	
 GSASIIdataGUI

 	module

 	
 GSASIIddataGUI

 	module

 	
 GSASIIElem

 	module

 	
 GSASIIElemGUI

 	module

 	
 GSASIIexprGUI

 	module

 	
 GSASIIfiles

 	module

 	
 GSASIIfpaGUI

 	module

 	
 GSASIIimage

 	module

 	
 GSASIIimgGUI

 	module

 	
 GSASIIindex

 	module

 	
 GSASIIIntPDFtool

 	module

 	
 GSASIIIO

 	module

 	
 GSASIIlattice

 	module

 	
 GSASIIlog

 	module

 	GSASIImain() (in module GSASIIdataGUI)

 	
 GSASIImapvars

 	module

 	
 GSASIImath

 	module

 	
 GSASIImpsubs

 	module

 	
 GSASIIobj

 	module

 	
 GSASIIpath

 	module

 	
 GSASIIphsGUI

 	module

 	
 GSASIIplot

 	module

 	
 GSASIIpwd

 	module

 	
 GSASIIpwdGUI

 	module

 	
 GSASIIrestrGUI

 	module

 	
 GSASIIsasd

 	module

 	
 GSASIIscriptable

 	module

 	
 GSASIIseqGUI

 	module

 	
 GSASIIspc

 	module

 	
 GSASIIstrIO

 	module

 	
 GSASIIstrMain

 	module

 	
 GSASIIstrMath

 	module

 	
 GSASIItestplot

 	module

 	GSASIItoolbar (class in GSASIIplot)

 	GSGrid (class in GSASIIctrlGUI)

 	GSNoteBook (class in GSASIIctrlGUI)

 	GUIpatches() (in module GSASIIdataGUI)

H

 	
 	H2ThPh() (in module GSASIIlattice)

 	halfCell() (in module GSASIIindex)

 	HAPvalue() (GSASIIscriptable.G2Phase method)

 	HardSpheresSF() (in module GSASIIsasd)

 	HDF5_Reader (class in G2img_HDF5)

 	Help_mode (in module config_example)

 	HelpButton (class in GSASIIctrlGUI)

 	HessianLSQ() (in module GSASIImath)

 	HessianSVD() (in module GSASIImath)

 	HessRefine() (in module GSASIIstrMath)

 	HillSortElements() (in module G2export_CIF)

 	HistIdLookup (in module GSASIIobj)

 	histogram() (GSASIIscriptable.G2Project method)

 	histograms() (GSASIIscriptable.G2Phase method)

 	(GSASIIscriptable.G2Project method)

 	(GSASIIscriptable.G2SeqRefRes method)

 	
 	HistoryBack() (GSASIIctrlGUI.G2HtmlWindow method)

 	HistRanIdLookup (in module GSASIIobj)

 	HKL2SpAng() (in module GSASIIlattice)

 	HKLF_ReaderClass (class in G2sfact)

 	HKLMF_ReaderClass (class in G2sfact)

 	hold_many() (GSASIIscriptable.G2Project method)

 	holdParmList (in module GSASIImapvars)

 	holdParmType (in module GSASIImapvars)

 	HorizontalLine() (in module GSASIIctrlGUI)

 	HowDidIgetHere() (in module GSASIIobj)

 	HowIsG2Installed() (in module GSASIIpath)

 	HStrainNames() (in module GSASIIspc)

 	Hx2Rh() (in module GSASIIlattice)

I

 	
 	IBmono (in module GSASIIfpaGUI)

 	IBmonoParms (in module GSASIIfpaGUI)

 	image() (GSASIIscriptable.G2Project method)

 	image: Image data object description

 	image: Image object descriptions

 	Image_2theta_max (in module config_example)

 	Image_2theta_min (in module config_example)

 	Image_calibrant (in module config_example)

 	
 ImageCalibrants

 	module

 	ImageCalibrate() (in module GSASIIimage)

 	ImageCompress() (in module GSASIIimage)

 	ImageIntegrate() (in module GSASIIimage)

 	ImageLocalMax() (in module GSASIIimage)

 	imageMultiDistCalib() (GSASIIscriptable.G2Project method)

 	ImageRecalibrate() (in module GSASIIimage)

 	images() (GSASIIscriptable.G2Project method)

 	ImgIntLstCtrl (class in GSASIIimgGUI)

 	Import_directory (in module config_example)

 	import_generic() (in module GSASIIscriptable)

 	ImportBaseclass (class in GSASIIobj)

 	ImportBaseclass.ImportException

 	ImportImage (class in GSASIIobj)

 	ImportPDFData (class in GSASIIobj)

 	ImportPhase (class in GSASIIobj)

 	ImportPowderData (class in GSASIIobj)

 	ImportReflectometryData (class in GSASIIobj)

 	ImportSmallAngleData (class in GSASIIobj)

 	ImportStructFactor (class in GSASIIobj)

 	indepVarList (in module GSASIImapvars)

 	IndexAllIds() (in module GSASIIobj)

 	IndexGPX() (in module GSASIIstrIO)

 	IndexParmDict() (in module GSASIIexprGUI)

 	IndexPeakListSave() (in module GSASIIIO)

 	IndexPeaks() (in module GSASIIindex)

 	IndexSSPeaks() (in module GSASIIindex)

 	indParmList (in module GSASIImapvars)

 	init_vars() (GSASIIdataGUI.GSASII method)

 	InitExport() (GSASIIIO.ExportBaseclass method)

 	InitFobsSqGlobals() (in module GSASIImpsubs)

 	
 	initMasks() (GSASIIscriptable.G2Image method)

 	InitMP() (in module GSASIImpsubs)

 	InitParameters() (GSASIIobj.ImportImage method)

 	(GSASIIobj.ImportStructFactor method)

 	InitPwdrProfGlobals() (in module GSASIImpsubs)

 	InitVars() (in module GSASIImapvars)

 	InsertRows() (GSASIIctrlGUI.Table method)

 	InstallGitBinary() (in module GSASIIpath)

 	InstallGridToolTip() (GSASIIctrlGUI.GSGrid method)

 	installScriptingShortcut() (in module GSASIIscriptable)

 	Instprm_default (in module config_example)

 	InstrumentParameters (GSASIIscriptable.G2PwdrData property)

 	IntegParmTable (class in GSASIIimgGUI)

 	Integrate() (GSASIIscriptable.G2Image method)

 	IntegrateImage() (GSASIIimgGUI.AutoIntFrame method)

 	InterPrecipitateSF() (in module GSASIIsasd)

 	IntMaskMap() (GSASIIscriptable.G2Image method)

 	IntThetaAzMap() (GSASIIscriptable.G2Image method)

 	invarrayList (in module GSASIImapvars)

 	invcell2Gmat() (in module GSASIIlattice)

 	InvokeDebugOpts() (in module GSASIIpath)

 	InvokeMenuCommand() (in module GSASIIlog)

 	InvokeTreeItem() (GSASIIplot.G2PlotNoteBook method)

 	invpolfcal() (in module GSASIIlattice)

 	invQ() (in module GSASIImath)

 	IPG() (in module GSASIIsasd)

 	IPyBreak() (in module GSASIIpath)

 	IPyBreak_base() (in module GSASIIpath)

 	IPyBrowse() (in module GSASIIscriptable)

 	isBound() (gltext.TextElement method)

 	IsEmptyCell() (GSASIIconstrGUI.RBDataTable method)

 	(GSASIIctrlGUI.Table method)

 	IsHistogramInAnyPhase() (in module GSASIIpwdGUI)

 	ISO2PDFfit() (in module GSASIIpwd)

 	
 ISODISTORT

 	module

 	ISODISTORT_proc() (G2phase_CIF.CIFPhaseReader method)

 	ISODISTORT_shortLbl() (in module G2phase_CIF)

 	ISODISTORT_test() (G2phase_CIF.CIFPhaseReader method)

 	ItemSelector() (in module GSASIIctrlGUI)

 	iter_refinements() (GSASIIscriptable.G2Project method)

J

 	
 	JANA_ReaderClass (class in G2phase)

 	
 	JsonEncoder (class in G2export_JSON)

K

 	
 	KslCalc() (in module GSASIIlattice)

L

 	
 	label (GSASIIscriptable.G2AtomRecord property)

 	lastError (GSASIIobj.ExpressionObj attribute)

 	lastUpdateNotice (in module config_example)

 	Latt2text() (in module GSASIIspc)

 	LaueFringePeakCalc() (in module GSASIIpwd)

 	LaueSatellite() (in module GSASIIpwd)

 	LaueUnique() (in module GSASIIlattice)

 	LaueUnique2() (in module GSASIIlattice)

 	lblLookup (GSASIIobj.ExpressionCalcObj attribute)

 	link_histogram_phase() (GSASIIscriptable.G2Project method)

 	listLogged (class in GSASIIlog)

 	Load2Cells() (in module GSASIIctrlGUI)

 	load_iprms() (in module GSASIIscriptable)

 	load_pwd_from_reader() (in module GSASIIscriptable)

 	LoadCIFdic() (in module G2export_CIF)

 	LoadConfigFile() (in module GSASIIpath)

 	loadControls() (GSASIIscriptable.G2Image method)

 	LoadControls() (in module GSASIIfiles)

 	LoadDefaultExpressions() (in module GSASIIexprGUI)

 	LoadDictFromProjFile() (in module GSASIIscriptable)

 	LoadExportRoutines() (in module GSASIIfiles)

 	LoadExpression() (GSASIIobj.ExpressionObj method)

 	loadFile() (G2compare.MakeTopWindow method)

 	LoadG2fil() (in module GSASIIscriptable)

 	LoadImage() (GSASIIobj.ImportImage method)

 	LoadImage2Tree() (in module GSASIIIO)

 	LoadImportRoutines() (in module GSASIIfiles)

 	
 	loadMasks() (GSASIIscriptable.G2Image method)

 	LoadPage() (GSASIIctrlGUI.G2HtmlWindow method)

 	loadParmDict() (GSASIIIO.ExportBaseclass method)

 	LoadPhase() (G2compare.MakeTopWindow method)

 	LoadProfile() (GSASIIscriptable.G2PwdrData method)

 	LoadProject() (G2compare.MakeTopWindow method)

 	LoadPwdr() (G2compare.MakeTopWindow method)

 	loadTree() (GSASIIIO.ExportBaseclass method)

 	LogEntry (class in GSASIIlog)

 	logging_debug (in module config_example)

 	LogInfo (in module GSASIIlog)

 	LogNormalCume() (in module GSASIIsasd)

 	LogNormalDist() (in module GSASIIsasd)

 	LogOff() (in module GSASIIlog)

 	LogOn() (in module GSASIIlog)

 	LogVarChange() (in module GSASIIlog)

 	LookupAtomId() (in module GSASIIobj)

 	LookupAtomLabel() (in module GSASIIobj)

 	LookupFromTable() (in module GSASIIIntPDFtool)

 	LookupHistId() (in module GSASIIobj)

 	LookupHistName() (in module GSASIIobj)

 	LookupPhaseId() (in module GSASIIobj)

 	LookupPhaseName() (in module GSASIIobj)

 	LookupWildCard() (in module GSASIIobj)

 	LorchWeight() (in module GSASIIpwd)

 	LSWCume() (in module GSASIIsasd)

 	LSWDist() (in module GSASIIsasd)

M

 	
 	M90_ReaderClass (class in G2sfact)

 	MacOpenFiles() (GSASII.G2App method)

 	MacRunScript() (in module GSASIIpath)

 	MagMod() (in module GSASIImath)

 	MagMod2() (in module GSASIImath)

 	MagScatFac() (in module GSASIIElem)

 	MagSSText2MTS() (in module GSASIIspc)

 	MagStructureFactor2() (in module GSASIIstrMath)

 	MagStructureFactorDerv() (in module GSASIIstrMath)

 	MagStructureFactorDerv2() (in module GSASIIstrMath)

 	MagSytSym() (in module GSASIIspc)

 	MagText2MTS() (in module GSASIIspc)

 	main() (in module G2compare)

 	(in module GSASIIscriptable)

 	(in module scanCCD)

 	(in module testDeriv)

 	(in module testSSymbols)

 	(in module testSytSym)

 	Main_Pos (in module config_example)

 	Main_Size (in module config_example)

 	make2Quat() (in module GSASIImath)

 	Make2ThetaAzimuthMap() (in module GSASIIimage)

 	make_empty_project() (in module GSASIIscriptable)

 	make_var_obj() (GSASIIscriptable.G2Project method)

 	
 makeBat

 	module

 	MakeButtonLog() (in module GSASIIlog)

 	MakeByte2str() (in module GSASIIpath)

 	makeContourSliders() (in module GSASIIctrlGUI)

 	MakeDrawAtom() (in module GSASIImath)

 	makeFFTsizeList() (in module GSASIIpwd)

 	MakeFrameMask() (in module GSASIIimage)

 	MakefullrmcRun() (in module GSASIIpwd)

 	MakefullrmcSupercell() (in module GSASIIpwd)

 	MakeHistPhaseWin() (in module GSASIIddataGUI)

 	makeIsoNewPhase() (in module GSASIIphsGUI)

 	
 makeLinux

 	module

 	MakeLSParmDict() (GSASIIdataGUI.GSASII method)

 	
 makeMacApp

 	module

 	MakeMaskMap() (in module GSASIIimage)

 	makeMat() (in module GSASIIimage)

 	makeMEMfile() (in module GSASIIpwd)

 	MakePDFfitAtomsFile() (in module GSASIIpwd)

 	MakePDFfitRunFile() (in module GSASIIpwd)

 	makePRFfile() (in module GSASIIpwd)

 	MakePWDRfilename() (GSASIIIO.ExportBaseclass method)

 	makeQuat() (in module GSASIImath)

 	makeRing() (in module GSASIIimage)

 	makeScriptShortcut() (in module GSASIIpath)

 	MakeSimSizer() (in module GSASIIfpaGUI)

 	MakeSpHarmFF() (in module GSASIIstrMath)

 	MakeTabLog() (in module GSASIIlog)

 	MakeTopasFPASizer() (in module GSASIIfpaGUI)

 	MakeTopWindow (class in G2compare)

 	MakeTreeLog() (in module GSASIIlog)

 	MakeUniqueLabel() (in module GSASIIobj)

 	MakeUseMask() (in module GSASIIimage)

 	MakeUseTA() (in module GSASIIimage)

 	
 makeVarTbl

 	module

 	makeWaves() (in module GSASIImath)

 	makeWavesDerv() (in module GSASIImath)

 	Map2Dict() (in module GSASIImapvars)

 	MapCache (in module GSASIIIntPDFtool)

 	MAR_ReaderClass (class in G2img_MAR)

 	marFrame (class in ReadMarCCDFrame)

 	MaskFrameMask() (GSASIIscriptable.G2Image method)

 	MaskThetaMap() (GSASIIscriptable.G2Image method)

 	MasterExporter() (G2export_CIF.ExportCIF method)

 	MaxEnt_SB() (in module GSASIIsasd)

 	MaxEntException

 	MaxIndex() (in module GSASIIlattice)

 	mcsaSearch() (in module GSASIImath)

 	MEMupdateReflData() (in module GSASIIpwd)

 	MenuBinding() (GSASIIdataGUI.GSASII method)

 	MenuBindingLookup (in module GSASIIlog)

 	MenuLogEntry (class in GSASIIlog)

 	MergeDialog (class in GSASIIdataGUI)

 	mkSeqResTable() (in module G2export_CIF)

 	Modulation() (in module GSASIImath)

 	ModulationDerv() (in module GSASIImath)

 	ModulationPlot() (in module GSASIIplot)

 	ModulationTw() (in module GSASIImath)

 	
 module

 	Absorb

 	atmdata

 	config_example

 	defaultIparms

 	ElementTable

 	FormFactors

 	fprime

 	G2compare

 	G2export_Bracket

 	G2export_CIF

 	G2export_csv

 	G2export_examples

 	G2export_FIT2D

 	G2export_image

 	G2export_JSON

 	G2export_map

 	G2export_PDB

 	G2export_pwdr

 	G2export_shelx

 	G2img_1TIF

 	G2img_ADSC

 	G2img_CBF

 	G2img_CheMin

 	G2img_EDF

 	G2img_GE

 	G2img_HDF5

 	G2img_MAR

 	G2img_PILTIF

 	G2img_Rigaku

 	G2img_SFRM

 	G2img_SumG2

 	G2pdf_gr

 	G2phase

 	G2phase_CIF

 	G2phase_GPX

 	G2phase_INS

 	G2phase_rmc6f

 	G2phase_xyz

 	G2pwd_BrukerRAW

 	G2pwd_CIF

 	G2pwd_csv

 	G2pwd_FP

 	G2pwd_fxye

 	G2pwd_GPX

 	G2pwd_Panalytical

 	G2pwd_rigaku

 	G2pwd_xye

 	G2rfd_Panalytical

 	G2rfd_xye

 	G2sad_xye

 	G2sfact

 	G2sfact_CIF

 	G2shapes

 	gltext

 	GSASII

 	GSASIIconstrGUI

 	GSASIIctrlGUI

 	GSASIIdata

 	GSASIIdataGUI

 	GSASIIddataGUI

 	GSASIIElem

 	GSASIIElemGUI

 	GSASIIexprGUI

 	GSASIIfiles

 	GSASIIfpaGUI

 	GSASIIimage

 	GSASIIimgGUI

 	GSASIIindex

 	GSASIIIntPDFtool

 	GSASIIIO

 	GSASIIlattice

 	GSASIIlog

 	GSASIImapvars

 	GSASIImath

 	GSASIImpsubs

 	GSASIIobj

 	GSASIIpath

 	GSASIIphsGUI

 	GSASIIplot

 	GSASIIpwd

 	GSASIIpwdGUI

 	GSASIIrestrGUI

 	GSASIIsasd

 	GSASIIscriptable

 	GSASIIseqGUI

 	GSASIIspc

 	GSASIIstrIO

 	GSASIIstrMain

 	GSASIIstrMath

 	GSASIItestplot

 	ImageCalibrants

 	ISODISTORT

 	makeBat

 	makeLinux

 	makeMacApp

 	makeVarTbl

 	nistlat

 	ReadMarCCDFrame

 	scanCCD

 	SUBGROUPS

 	Substances

 	testDeriv

 	testSSymbols

 	testSytSym

 	unit_tests

 	
 	monoCellReduce() (in module GSASIIindex)

 	MoveToUnitCell() (in module GSASIIspc)

 	MoveTreeItems() (GSASIIdataGUI.GSASII method)

 	Movie_fps (in module config_example)

 	Movie_time (in module config_example)

 	MT2text() (in module GSASIIspc)

 	mu() (GSASIIscriptable.G2Phase method)

 	Muiso2Shkl() (in module GSASIIspc)

 	mult (GSASIIscriptable.G2AtomRecord property)

 	multdepVarList (in module GSASIImapvars)

 	MultiColumnSelection (class in GSASIIctrlGUI)

 	MultiDataDialog (class in GSASIIctrlGUI)

 	MultiIntegerDialog (class in GSASIIctrlGUI)

 	MultipleBlockSelector() (in module GSASIIctrlGUI)

 	MultipleChoicesDialog (class in GSASIIctrlGUI)

 	MultipleChoicesSelector() (in module GSASIIctrlGUI)

 	Multiprocessing_cores (in module config_example)

 	MultiStringDialog (class in GSASIIctrlGUI)

 	MustrainCoeff() (in module GSASIIspc)

 	MustrainNames() (in module GSASIIspc)

 	MyHelp (class in GSASIIctrlGUI)

 	MyHtmlPanel (class in GSASIIctrlGUI)

N

 	
 	NCScattDen() (in module GSASIImath)

 	NIST_hb3a_INT_ReaderClass (class in G2sfact)

 	
 nistlat

 	module

 	NISTparms (in module GSASIIfpaGUI)

 	
 	norm_gen (class in GSASIIpwd)

 	normParms() (in module GSASIImapvars)

 	normQ() (in module GSASIImath)

 	NT_HKLF2_ReaderClass (class in G2sfact)

 	NT_JANA2K_ReaderClass (class in G2sfact)

 	NumberValidator (class in GSASIIctrlGUI)

O

 	
 	objectScan() (in module GSASIIIO)

 	Oblique() (in module GSASIIpwd)

 	occupancy (GSASIIscriptable.G2AtomRecord property)

 	oddPeak() (in module GSASIIindex)

 	OdfChk() (in module GSASIIlattice)

 	OmitMap() (in module GSASIImath)

 	OnABOUTItems0Menu() (Absorb.Absorb method)

 	(fprime.Fprime method)

 	OnAddPhase() (GSASIIdataGUI.GSASII method)

 	OnAddRow() (G2export_CIF.EditCIFpanel method)

 	OnApplyChanges() (GSASIIctrlGUI.SelectConfigSetting method)

 	OnArrow() (GSASIIplot.GSASIItoolbar method)

 	OnBoolSelect() (GSASIIctrlGUI.SelectConfigSetting method)

 	OnChange() (GSASIIctrlGUI.SelectConfigSetting method)

 	OnChar() (GSASIIctrlGUI.ASCIIValidator method)

 	onChar() (GSASIIctrlGUI.G2MultiChoiceDialog method)

 	(GSASIIctrlGUI.G2MultiChoiceWindow method)

 	OnChar() (GSASIIctrlGUI.NumberValidator method)

 	onChar() (GSASIIdataGUI.GSASII.SumDialog method)

 	OnChar() (GSASIIexprGUI.ExpressionDialog method)

 	OnCheck() (GSASIIctrlGUI.G2MultiChoiceDialog method)

 	(GSASIIctrlGUI.G2MultiChoiceWindow method)

 	onCheckSet() (GSASIIconstrGUI.G2BoolEditor method)

 	OnCheckUpdates() (GSASIIctrlGUI.MyHelp method)

 	OnChoice() (GSASIIctrlGUI.OrderBox method)

 	(GSASIIexprGUI.ExpressionDialog method)

 	OnClusterAnalysis() (GSASIIdataGUI.GSASII method)

 	OnColMetaTest() (GSASIIdataGUI.GSASII method)

 	OnDataDelete() (GSASIIdataGUI.GSASII method)

 	OnDataTreeSelChanged() (GSASIIdataGUI.GSASII method)

 	OnDeletePhase() (GSASIIdataGUI.GSASII method)

 	OnDeleteSequential() (GSASIIdataGUI.GSASII method)

 	OnDepChoice() (GSASIIexprGUI.ExpressionDialog method)

 	OnDouble() (GSASIIimgGUI.ImgIntLstCtrl method)

 	OnDummyPowder() (GSASIIdataGUI.GSASII method)

 	OnExportHKL() (GSASIIdataGUI.GSASII method)

 	OnExportMTZ() (GSASIIdataGUI.GSASII method)

 	OnExportPDF() (GSASIIdataGUI.GSASII method)

 	OnExportPeakList() (GSASIIdataGUI.GSASII method)

 	OnFileBrowse() (GSASIIdataGUI.GSASII method)

 	OnFileClose() (GSASIIdataGUI.GSASII method)

 	OnFileOpen() (GSASIIdataGUI.GSASII method)

 	OnFileReopen() (GSASIIdataGUI.GSASII method)

 	OnFileReread() (GSASIIdataGUI.GSASII method)

 	OnFileSave() (GSASIIdataGUI.GSASII method)

 	OnFileSaveas() (GSASIIdataGUI.GSASII method)

 	OnFilter() (GSASIIdataGUI.GSASII.SumDialog method)

 	OnGetItemAttr() (GSASIIctrlGUI.VirtualVarBox method)

 	OnGetItemText() (GSASIIctrlGUI.VirtualVarBox method)

 	OnGPXtreeItemActivated() (GSASIIdataGUI.GSASII method)

 	OnGPXtreeItemCollapsed() (GSASIIdataGUI.GSASII method)

 	OnGPXtreeItemDelete() (GSASIIdataGUI.GSASII method)

 	OnGPXtreeItemExpanded() (GSASIIdataGUI.GSASII method)

 	OnGPXtreeKeyDown() (GSASIIdataGUI.GSASII method)

 	OnHelp() (GSASIIplot.GSASIItoolbar method)

 	OnHelpAbout() (GSASIIctrlGUI.MyHelp method)

 	OnHelpById() (GSASIIctrlGUI.MyHelp method)

 	onHistFilter() (G2compare.MakeTopWindow method)

 	onHistPrinceTest() (G2compare.MakeTopWindow method)

 	OnImageSum() (GSASIIdataGUI.GSASII method)

 	OnImportGeneric() (GSASIIdataGUI.GSASII method)

 	OnImportImage() (GSASIIdataGUI.GSASII method)

 	OnImportPDF() (GSASIIdataGUI.GSASII method)

 	OnImportPhase() (GSASIIdataGUI.GSASII method)

 	OnImportPowder() (GSASIIdataGUI.GSASII method)

 	OnImportReflectometry() (GSASIIdataGUI.GSASII method)

 	OnImportSfact() (GSASIIdataGUI.GSASII method)

 	
 	OnImportSmallAngle() (GSASIIdataGUI.GSASII method)

 	OnInit() (scanCCD.scanCCDmain method)

 	(testSSymbols.testSSmain method)

 	(testSytSym.testSytSmain method)

 	OnKey() (GSASIIplot.GSASIItoolbar method)

 	OnKeyDown() (GSASIIctrlGUI.ValidatedTxtCtrl method)

 	OnLayoutNeeded() (G2export_CIF.EditCIFpanel method)

 	OnLeBail() (GSASIIdataGUI.GSASII method)

 	onLegendPick() (in module GSASIIplot)

 	OnLinkClicked() (GSASIIctrlGUI.G2HtmlWindow method)

 	onLoadGPX() (G2compare.MakeTopWindow method)

 	onLoadMultGPX() (G2compare.MakeTopWindow method)

 	onLoadWildGPX() (G2compare.MakeTopWindow method)

 	OnMacroRecordStatus() (GSASIIdataGUI.GSASII method)

 	OnMakePDFs() (GSASIIdataGUI.GSASII method)

 	OnNewGSASII() (GSASIIdataGUI.GSASII method)

 	OnNotebookKey() (GSASIIplot.G2PlotNoteBook method)

 	OnOk() (GSASIIctrlGUI.DisAglDialog method)

 	(GSASIIphsGUI.AddHatomDialog method)

 	OnPageChanged() (GSASIIplot.G2PlotNoteBook method)

 	OnPause() (GSASIIimgGUI.AutoIntFrame method)

 	(GSASIIIntPDFtool.AutoIntFrame method)

 	OnPlotDelete() (GSASIIdataGUI.GSASII method)

 	OnPowderFPA() (GSASIIdataGUI.GSASII method)

 	OnPreferences() (GSASIIdataGUI.GSASII method)

 	onPress() (GSASIIctrlGUI.G2LoggedButton method)

 	onProjFtest() (G2compare.MakeTopWindow method)

 	OnPwdrSum() (GSASIIdataGUI.GSASII method)

 	OnReadPowderPeaks() (GSASIIdataGUI.GSASII method)

 	OnRefine() (GSASIIdataGUI.GSASII method)

 	OnRefinePartials() (GSASIIdataGUI.GSASII method)

 	onRefresh() (G2compare.MakeTopWindow method)

 	OnRenameData() (GSASIIdataGUI.GSASII method)

 	OnReplayPress() (in module GSASIIlog)

 	OnReset() (GSASIIctrlGUI.DisAglDialog method)

 	OnResize() (GSASIIdataGUI.G2DataWindow method)

 	OnRowMove() (GSASIIconstrGUI.DragableRBGrid method)

 	OnRowSelected() (GSASIIctrlGUI.VirtualVarBox method)

 	OnRunAbsorb() (GSASIIdataGUI.GSASII method)

 	OnRunFprime() (GSASIIdataGUI.GSASII method)

 	OnRunPlotXNFF() (GSASIIdataGUI.GSASII method)

 	OnSave() (GSASIIctrlGUI.SelectConfigSetting method)

 	OnSaveMultipleImg() (GSASIIdataGUI.GSASII method)

 	OnSavePartials() (GSASIIdataGUI.GSASII method)

 	onSelDir() (GSASIIctrlGUI.SelectConfigSetting method)

 	onSelectDownloaded() (GSASIIctrlGUI.OpenSvnTutorial method)

 	OnSelection() (GSASIIctrlGUI.SelectConfigSetting method)

 	OnSelectVersion() (GSASIIctrlGUI.MyHelp method)

 	onSelExec() (GSASIIctrlGUI.SelectConfigSetting method)

 	OnSeqRefine() (GSASIIdataGUI.GSASII method)

 	OnShowLSParms() (GSASIIdataGUI.GSASII method)

 	OnStartMask() (in module GSASIIplot)

 	OnStartNewDzero() (in module GSASIIplot)

 	OnTimerLoop() (GSASIIimgGUI.AutoIntFrame method)

 	(GSASIIIntPDFtool.AutoIntFrame method)

 	OnValidate() (GSASIIexprGUI.ExpressionDialog method)

 	onWebBrowse() (GSASIIctrlGUI.OpenGitTutorial method)

 	(GSASIIctrlGUI.OpenSvnTutorial method)

 	OpenFile() (GSASIIIO.ExportBaseclass method)

 	OpenGitTutorial (class in GSASIIctrlGUI)

 	openInNewTerm() (in module GSASIIctrlGUI)

 	OpenPowderInstprm() (GSASIIdataGUI.GSASII method)

 	OpenSvnTutorial (class in GSASIIctrlGUI)

 	Opposite() (in module GSASIIspc)

 	optimize() (GSASIIscriptable.G2PDF method)

 	OptimizePDF() (in module GSASIIpwdGUI)

 	OrderBox (class in GSASIIctrlGUI)

 	owner_cnt (gltext.TextElement property)

P

 	
 	Panalytical_ReaderClass (class in G2pwd_Panalytical)

 	(class in G2rfd_Panalytical)

 	Parameter dictionary

 	Parameter limits

 	Parameter names

 	Parameters (GSASIIobj.ImportStructFactor attribute)

 	paramPrefix (in module GSASIImapvars)

 	parmDict (GSASIIexprGUI.ExpressionDialog attribute)

 	(GSASIIobj.ExpressionCalcObj attribute)

 	(in module GSASIIfpaGUI)

 	parseBilbaoCheckLattice() (in module SUBGROUPS)

 	ParseExpression() (GSASIIobj.ExpressionObj method)

 	patchControls() (in module GSASIIscriptable)

 	patchIsoDisp() (in module GSASIImath)

 	PDB_ReaderClass (class in G2phase)

 	pdbBreak() (in module GSASIIpath)

 	pdf() (GSASIIpwd.cauchy_gen method)

 	(GSASIIpwd.fcjde_gen method)

 	(GSASIIpwd.norm_gen method)

 	(GSASIIscriptable.G2Project method)

 	PDF_ReaderClass (class in G2phase)

 	PDF_Rmax (in module config_example)

 	pdffit2_exec (in module config_example)

 	pdfs() (GSASIIscriptable.G2Project method)

 	PDFWrite() (in module GSASIIfiles)

 	peakInstPrmMode (in module GSASIIpwd)

 	PeakList (GSASIIscriptable.G2PwdrData property)

 	PeakListSave() (in module GSASIIIO)

 	Peaks (GSASIIscriptable.G2PwdrData property)

 	PeaksEquiv() (in module GSASIImath)

 	PeaksUnique() (in module GSASIImath)

 	penaltyDeriv() (in module GSASIIstrMath)

 	penaltyFxn() (in module GSASIIstrMath)

 	peneCorr() (in module GSASIIimage)

 	permutations() (in module GSASIIlattice)

 	Phase information record description

 	Phase object description

 	phase() (GSASIIscriptable.G2Project method)

 	phaseCheck() (in module GSASIIstrMain)

 	phaseContents() (in module GSASIImath)

 	PhaseIdLookup (in module GSASIIobj)

 	PhaseRanIdLookup (in module GSASIIobj)

 	PhaseReaderClass (class in G2phase_GPX)

 	(class in G2phase_INS)

 	(class in G2phase_rmc6f)

 	phases() (GSASIIscriptable.G2Project method)

 	PhaseSelector() (in module GSASIIctrlGUI)

 	PhaseWtSum() (in module GSASIIpwd)

 	PickElement (class in GSASIIElemGUI)

 	PickElements (class in GSASIIElemGUI)

 	PickleCIFdict() (in module G2export_CIF)

 	PickTwoDialog (class in GSASIIctrlGUI)

 	pinv() (in module GSASIImath)

 	pipInstall() (in module GSASIIpath)

 	PlaneIntercepts() (in module GSASIIlattice)

 	Plot (class in GSASIItestplot)

 	Plot1DSngl() (in module GSASIIplot)

 	Plot3DSngl() (in module GSASIIplot)

 	Plot3dXYZ() (in module GSASIIplot)

 	Plot_Colors (in module config_example)

 	Plot_Pos (in module config_example)

 	Plot_Size (in module config_example)

 	PlotAAProb() (in module GSASIIplot)

 	PlotBarGraph() (in module GSASIIplot)

 	PlotBeadModel() (in module GSASIIplot)

 	PlotCalib() (in module GSASIIplot)

 	PlotClusterXYZ() (in module GSASIIplot)

 	
 	PlotCovariance() (in module GSASIIplot)

 	PlotDeform() (in module GSASIIplot)

 	PlotDeltSig() (in module GSASIIplot)

 	PlotExposedImage() (in module GSASIIplot)

 	PlotFPAconvolutors() (in module GSASIIplot)

 	PlotImage() (in module GSASIIplot)

 	PlotIntegration() (in module GSASIIplot)

 	PlotISFG() (in module GSASIIplot)

 	PlotLayers() (in module GSASIIplot)

 	PlotNamedFloatHBarGraph() (in module GSASIIplot)

 	PlotNotebook (class in GSASIItestplot)

 	PlotPatterns() (in module GSASIIplot)

 	PlotPeakWidths() (in module GSASIIplot)

 	PlotPowderLines() (in module GSASIIplot)

 	PlotRama() (in module GSASIIplot)

 	PlotRawImage() (in module GSASIIplot)

 	PlotRigidBody() (in module GSASIIplot)

 	PlotSASDPairDist() (in module GSASIIplot)

 	PlotSASDSizeDist() (in module GSASIIplot)

 	PlotSelectedSequence() (in module GSASIIplot)

 	PlotSizeStrainPO() (in module GSASIIplot)

 	PlotSngl() (in module GSASIIplot)

 	PlotStrain() (in module GSASIIplot)

 	PlotStructure() (in module GSASIIplot)

 	PlotTexture() (in module GSASIIplot)

 	PlotTorsion() (in module GSASIIplot)

 	PlotTRImage() (in module GSASIIplot)

 	PlotXY() (in module GSASIIplot)

 	(scanCCD.scanCCD method)

 	PlotXYZ() (in module GSASIIplot)

 	PlotXYZvect() (in module GSASIIplot)

 	png_ReaderClass (class in G2img_CheMin)

 	pointInPolygon() (in module GSASIIimage)

 	Polar2Cart() (in module GSASIImath)

 	Polarization() (in module GSASIIpwd)

 	polfcal() (in module GSASIIlattice)

 	PopulateHeader() (GSASIIctrlGUI.SortableLstCtrl method)

 	PopulateLine() (GSASIIctrlGUI.SortableLstCtrl method)

 	Pos2dsp() (in module GSASIIlattice)

 	Post() (G2export_CIF.EditCIFtemplate method)

 	PostfillDataMenu() (GSASIIdataGUI.G2DataWindow method)

 	postURL() (in module GSASIIIO)

 	Powder data CW Instrument Parameters

 	Powder data object description

 	Powder data TOF Instrument Parameters

 	Powder reflection object description

 	PrefillDataMenu() (GSASIIdataGUI.G2DataWindow method)

 	PreSetup() (in module GSASIIscriptable)

 	PreviewFile() (GSASIIdataGUI.GSASII method)

 	previous_GPX_files (in module config_example)

 	print_arr() (in module GSASIIsasd)

 	print_vec() (in module GSASIIsasd)

 	PrintDistAngle() (in module GSASIIstrMain)

 	PrintIndependentVars() (in module GSASIIstrIO)

 	PrintISOmodes() (in module GSASIIstrIO)

 	PrintRestraints() (in module GSASIIstrIO)

 	printRho() (in module GSASIImath)

 	prmLookup() (in module GSASIIobj)

 	ProcessConstraints() (in module GSASIImapvars)

 	ProcessImage() (in module GSASIIIntPDFtool)

 	prodMGMT() (in module GSASIIlattice)

 	prodQQ() (in module GSASIImath)

 	prodQVQ() (in module GSASIImath)

 	ProjFileOpen() (in module GSASIIIO)

 	ProjFileSave() (in module GSASIIIO)

 	PublishRietveldPlot() (in module GSASIIplot)

 	PutG2Image() (in module GSASIIIO)

Q

 	
 	Q2AV() (in module GSASIImath)

 	
 	Q2AVdeg() (in module GSASIImath)

 	Q2Mat() (in module GSASIImath)

R

 	
 	RaisePageNoRefresh() (GSASIIplot.G2PlotNoteBook method)

 	ran2axis() (in module GSASIIindex)

 	ranAbyR() (in module GSASIIindex)

 	ranAbyV() (in module GSASIIindex)

 	ranaxis() (in module GSASIIindex)

 	rancell() (in module GSASIIindex)

 	randomAVdeg() (in module GSASIImath)

 	randomQ() (in module GSASIImath)

 	ranId (GSASIIscriptable.G2AtomRecord property)

 	raw_ReaderClass (class in G2pwd_BrukerRAW)

 	rawGitHubURL() (in module GSASIIpath)

 	RBChk() (in module GSASIIlattice)

 	RBDataTable (class in GSASIIconstrGUI)

 	RBsymCheck() (in module GSASIIlattice)

 	RBsymChk() (in module GSASIIlattice)

 	RC2Ftest() (in module G2compare)

 	RDFDialog (class in GSASIIpwdGUI)

 	Read_imctrl() (in module GSASIIimgGUI)

 	ReadCheckConstraints() (in module GSASIIstrIO)

 	ReadCIF() (in module GSASIIobj)

 	readColMetadata() (in module GSASIIfiles)

 	readColMetadataLabels() (in module GSASIIfiles)

 	ReadConstraints() (in module GSASIIstrIO)

 	ReadControls() (in module GSASIIimgGUI)

 	readDataset() (G2img_HDF5.HDF5_Reader method)

 	Reader() (G2img_1TIF.TIF_ReaderClass method)

 	(G2img_CBF.CBF_ReaderClass method)

 	(G2img_CheMin.png_ReaderClass method)

 	(G2img_GE.GE_ReaderClass method)

 	(G2img_GE.GEsum_ReaderClass method)

 	(G2img_HDF5.HDF5_Reader method)

 	(G2img_PILTIF.TIF_LibraryReader method)

 	(G2img_SFRM.SFRM_ReaderClass method)

 	(G2img_SumG2.G2_ReaderClass method)

 	(G2phase.EXP_ReaderClass method)

 	(G2phase.JANA_ReaderClass method)

 	(G2phase.PDB_ReaderClass method)

 	(G2phase.PDF_ReaderClass method)

 	(G2phase_GPX.PhaseReaderClass method)

 	(G2phase_INS.PhaseReaderClass method)

 	(G2phase_rmc6f.PhaseReaderClass method)

 	(G2phase_xyz.XYZ_ReaderClass method)

 	(G2pwd_BrukerRAW.brml_ReaderClass method)

 	(G2pwd_BrukerRAW.raw_ReaderClass method)

 	(G2pwd_CIF.CIFpwdReader method)

 	(G2pwd_csv.csv_ReaderClass method)

 	(G2pwd_FP.fp_ReaderClass method)

 	(G2pwd_fxye.GSAS_ReaderClass method)

 	(G2pwd_GPX.GSAS2_ReaderClass method)

 	(G2pwd_Panalytical.Panalytical_ReaderClass method)

 	(G2pwd_rigaku.Rigaku_rasReaderClass method)

 	(G2pwd_rigaku.Rigaku_txtReaderClass method)

 	(G2pwd_xye.xye_ReaderClass method)

 	(G2rfd_Panalytical.Panalytical_ReaderClass method)

 	(G2sfact.HKLF_ReaderClass method)

 	(G2sfact.HKLMF_ReaderClass method)

 	(G2sfact.M90_ReaderClass method)

 	(G2sfact.NIST_hb3a_INT_ReaderClass method)

 	(G2sfact.NT_HKLF2_ReaderClass method)

 	(G2sfact.NT_JANA2K_ReaderClass method)

 	(G2sfact.SHELX4_ReaderClass method)

 	(G2sfact.SHELX5_ReaderClass method)

 	(G2sfact.SHELX6_ReaderClass method)

 	(G2sfact_CIF.CIFhklReader method)

 	Readers (in module GSASIIscriptable)

 	ReadEXPPhase() (G2phase.EXP_ReaderClass method)

 	ReadFiles() (GSASIIimgGUI.IntegParmTable method)

 	ReadImageParmTable() (GSASIIimgGUI.IntegParmTable method)

 	ReadImages() (in module GSASIIIO)

 	ReadINSPhase() (G2phase_INS.PhaseReaderClass method)

 	ReadJANAPhase() (G2phase.JANA_ReaderClass method)

 	
 ReadMarCCDFrame

 	module

 	ReadMask() (in module GSASIIimgGUI)

 	readMasks() (in module GSASIIfiles)

 	ReadOnlyTextCtrl() (in module GSASIIctrlGUI)

 	
 	ReadPDBPhase() (G2phase.PDB_ReaderClass method)

 	ReadPDFPhase() (G2phase.PDF_ReaderClass method)

 	ReadPowderInstprm() (GSASIIdataGUI.GSASII method)

 	(in module GSASIIfiles)

 	ReadPowderIparm() (GSASIIdataGUI.GSASII method)

 	Readrmc6fPhase() (G2phase_rmc6f.PhaseReaderClass method)

 	Recalibrate() (GSASIIscriptable.G2Image method)

 	ReduceCell() (in module nistlat)

 	ref_back_peak() (GSASIIscriptable.G2PwdrData method)

 	RefData() (GSASIIscriptable.G2SeqRefRes method)

 	refine() (GSASIIscriptable.G2Project method)

 	(in module GSASIIscriptable)

 	Refine() (in module GSASIIstrMain)

 	refine_peaks() (GSASIIscriptable.G2PwdrData method)

 	RefineCore() (in module GSASIIstrMain)

 	refinement_flags (GSASIIscriptable.G2AtomRecord property)

 	RefinementProgress (class in GSASIIctrlGUI)

 	refinePeaks() (in module GSASIIindex)

 	refinePeaksE() (in module GSASIIindex)

 	refinePeaksT() (in module GSASIIindex)

 	refinePeaksTSS() (in module GSASIIindex)

 	refinePeaksZ() (in module GSASIIindex)

 	refinePeaksZSS() (in module GSASIIindex)

 	reflections() (GSASIIscriptable.G2PwdrData method)

 	RegisterRedrawRoutine() (GSASIIplot.G2PlotNoteBook method)

 	ReInitialize() (GSASIIobj.ImportBaseclass method)

 	(GSASIIobj.ImportImage method)

 	(GSASIIobj.ImportPDFData method)

 	(GSASIIobj.ImportPowderData method)

 	(GSASIIobj.ImportReflectometryData method)

 	(GSASIIobj.ImportSmallAngleData method)

 	(GSASIIobj.ImportStructFactor method)

 	release() (gltext.TextElement method)

 	reload() (GSASIIscriptable.G2Project method)

 	reloadFromGPX() (GSASIIdataGUI.GSASII method)

 	removeNonRefined() (in module GSASIIobj)

 	Rename() (GSASIIplot.G2PlotNoteBook method)

 	Repaint() (GSASIIexprGUI.ExpressionDialog method)

 	(GSASIIlog.TabLogEntry method)

 	(GSASIIlog.TreeLogEntry method)

 	repaintScrollTbl() (GSASIIctrlGUI.ShowLSParms method)

 	Replay() (GSASIIlog.MenuLogEntry method)

 	(GSASIIlog.TabLogEntry method)

 	(GSASIIlog.TreeLogEntry method)

 	(GSASIIlog.VarLogEntry method)

 	ReplayLog() (in module GSASIIlog)

 	ReplotPattern() (in module GSASIIplot)

 	ReportProblems() (in module GSASIIstrMain)

 	RereadImageData() (in module GSASIIfiles)

 	Reset() (GSASIIconstrGUI.G2BoolEditor method)

 	(GSASIIctrlGUI.GridFractionEditor method)

 	ResetFromTable() (GSASIIimgGUI.AutoIntFrame method)

 	ResetMP() (in module GSASIImpsubs)

 	ResetPlots() (GSASIIdataGUI.GSASII method)

 	residuals (GSASIIscriptable.G2PwdrData property)

 	RestartTimer() (GSASIIexprGUI.ExpressionDialog method)

 	RestoreExposedItems() (GSASIIctrlGUI.G2TreeCtrl method)

 	RetDistAngle() (in module GSASIIstrMain)

 	reVarDesc (in module GSASIIobj)

 	reVarStep (in module GSASIIobj)

 	Rh2Hx() (in module GSASIIlattice)

 	Rigaku_rasReaderClass (class in G2pwd_rigaku)

 	Rigaku_ReaderClass (class in G2img_Rigaku)

 	Rigaku_txtReaderClass (class in G2pwd_rigaku)

 	Rigid Body Data description

 	Ring_mask_thickness (in module config_example)

 	RotateRBXYZ() (in module GSASIImath)

 	RotationDialog (class in GSASIIphsGUI)

 	rotdMat() (in module GSASIIlattice)

 	rotdMat4() (in module GSASIIlattice)

 	rotOrthoA() (in module GSASIIindex)

 	RotPolbyM() (in module GSASIImath)

 	RotPolbyQ() (in module GSASIImath)

 	Ruland() (in module GSASIIpwd)

 	runScript() (in module GSASIIpath)

 	RwFtest() (in module G2compare)

S

 	
 	SamAng() (in module GSASIIlattice)

 	SampleParameters (GSASIIscriptable.G2PwdrData property)

 	save() (GSASIIscriptable.G2Project method)

 	Save_paths (in module config_example)

 	SaveConfigVars() (in module GSASIIctrlGUI)

 	saveControls() (GSASIIscriptable.G2Image method)

 	SaveDictToProjFile() (in module GSASIIscriptable)

 	SaveExposedItems() (GSASIIctrlGUI.G2TreeCtrl method)

 	SaveIntegration() (in module GSASIIIO)

 	saveIsoNewPhase() (in module GSASIIphsGUI)

 	SaveMenuCommand() (in module GSASIIlog)

 	saveNewPhase() (in module SUBGROUPS)

 	SaveProfile() (GSASIIscriptable.G2PwdrData method)

 	SaveTreeSetting() (GSASIIdataGUI.GSASII method)

 	SaveUpdatedHistogramsAndPhases() (in module GSASIIstrIO)

 	saveVaryList (in module GSASIImapvars)

 	scaleAbyV() (in module GSASIIindex)

 	scaleCoef() (in module GSASIIElem)

 	
 scanCCD

 	module

 	scanCCD (class in scanCCD)

 	scanCCDmain (class in scanCCD)

 	ScatFac() (in module GSASIIElem)

 	ScatFacDer() (in module GSASIIElem)

 	SCExtinction() (in module GSASIIstrMath)

 	SchulzZimmCume() (in module GSASIIsasd)

 	SchulzZimmDist() (in module GSASIIsasd)

 	ScrolledMultiEditor (class in GSASIIctrlGUI)

 	ScrolledStaticText (class in GSASIIctrlGUI)

 	searchBondRestr() (in module GSASIImath)

 	SearchMap() (in module GSASIImath)

 	sec2HMS() (in module GSASIIlattice)

 	SelectAndDownload() (GSASIIctrlGUI.OpenGitTutorial method)

 	(GSASIIctrlGUI.OpenSvnTutorial method)

 	SelectConfigSetting (class in GSASIIctrlGUI)

 	SelectDataTreeItem() (in module GSASIIdataGUI)

 	SelectDownloadLoc() (GSASIIctrlGUI.OpenGitTutorial method)

 	(GSASIIctrlGUI.OpenSvnTutorial method)

 	SelectEdit1Var() (in module GSASIIctrlGUI)

 	SelectG2var() (GSASIIexprGUI.ExpressionDialog method)

 	SelectGPX() (G2compare.MakeTopWindow method)

 	selections() (in module GSASIIlattice)

 	SelectMultGPX() (G2compare.MakeTopWindow method)

 	selftestlist (in module GSASIIlattice)

 	(in module GSASIIspc)

 	SeparateHistPhaseTreeItem (in module config_example)

 	seqref() (GSASIIscriptable.G2Project method)

 	SeqRefine() (in module GSASIIstrMain)

 	set_background() (GSASIIscriptable.G2PDF method)

 	(GSASIIscriptable.G2PwdrData method)

 	set_Controls() (GSASIIscriptable.G2Project method)

 	set_formula() (GSASIIscriptable.G2PDF method)

 	set_Frozen() (GSASIIscriptable.G2Project method)

 	set_HAP_refinements() (GSASIIscriptable.G2Phase method)

 	set_message() (GSASIIplot.GSASIItoolbar method)

 	set_peakFlags() (GSASIIscriptable.G2PwdrData method)

 	set_refinement() (GSASIIscriptable.G2Project method)

 	set_refinements() (GSASIIscriptable.G2Phase method)

 	(GSASIIscriptable.G2PwdrData method)

 	SetBackgroundParms() (in module GSASIIpwd)

 	SetBinaryPath() (in module GSASIIpath)

 	setByString() (GSASIIctrlGUI.G2ChoiceButton method)

 	setCalibrant() (GSASIIscriptable.G2Image method)

 	setCentered() (gltext.Text method)

 	SetColLabelValue() (GSASIIctrlGUI.Table method)

 	setColorButton() (in module GSASIIctrlGUI)

 	SetColWidth() (GSASIIctrlGUI.SortableLstCtrl method)

 	SetConfigValue() (in module GSASIIpath)

 	setControl() (GSASIIscriptable.G2Image method)

 	setControlFile() (GSASIIscriptable.G2Image method)

 	setControls() (GSASIIscriptable.G2Image method)

 	SetCopyNames() (in module GSASIIpwdGUI)

 	SetCu2Wave() (in module GSASIIfpaGUI)

 	SetCu6wave() (in module GSASIIfpaGUI)

 	SetDataMenuBar() (in module GSASIIdataGUI)

 	SetDataSize() (GSASIIdataGUI.G2DataWindow method)

 	(GSASIIdataGUI.GSASII method)

 	SetDefaultDData() (in module GSASIIdataGUI)

 	(in module GSASIIscriptable)

 	SetDefaultREFDModel() (in module GSASIIpwdGUI)

 	SetDefaultSample() (in module GSASIIobj)

 	SetDefaultSASDModel() (in module GSASIIpwdGUI)

 	SetDefaultSubstances() (in module GSASIIpwdGUI)

 	SetDepVar() (GSASIIobj.ExpressionObj method)

 	setDistRestraintWeight() (GSASIIscriptable.G2Phase method)

 	SetDrawingDefaults() (in module GSASIIphsGUI)

 	setEvalResult() (GSASIIexprGUI.ExpressionDialog method)

 	setFont() (gltext.Text method)

 	setFont_size() (gltext.Text method)

 	setForeground() (gltext.Text method)

 	setHAPentryValue() (GSASIIscriptable.G2Phase method)

 	setHAPvalues() (GSASIIscriptable.G2Phase method)

 	setHcorr() (in module GSASIImath)

 	SetHelpButton() (GSASIIplot.G2PlotNoteBook method)

 	setHistEntryValue() (GSASIIscriptable.G2PwdrData method)

 	SetHistogram() (GSASIIctrlGUI.G2RefinementProgress method)

 	SetHistogramData() (in module GSASIIstrIO)

 	SetHistogramPhaseData() (in module GSASIIstrIO)

 	SetISOmodes() (in module GSASIIstrIO)

 	SetItemPyData() (GSASIIctrlGUI.G2TreeCtrl method)

 	setMasks() (GSASIIscriptable.G2Image method)

 	SetMax() (GSASIIctrlGUI.G2Slider method)

 	SetMaxCycle() (GSASIIctrlGUI.G2RefinementProgress method)

 	SetMin() (GSASIIctrlGUI.G2Slider method)

 	SetModeMenu() (G2compare.MakeTopWindow method)

 	SetMolCent() (in module GSASIImath)

 	SetMonoWave() (in module GSASIIfpaGUI)

 	SetNewPhase() (in module GSASIIobj)

 	SetNoDelete() (GSASIIplot.G2PlotNoteBook method)

 	setPeakInstPrmMode() (in module GSASIIpwd)

 	setPeakparms() (in module GSASIImath)

 	SetPhaseData() (in module GSASIIstrIO)

 	setPhaseEntryValue() (GSASIIscriptable.G2Phase method)

 	SetPowderInstParms() (in module GSASIIfiles)

 	SetPrintLevel() (in module GSASIIscriptable)

 	SetRange() (GSASIIctrlGUI.G2MultiChoiceDialog method)

 	(GSASIIctrlGUI.G2MultiChoiceWindow method)

 	SetRigidBodyModels() (in module GSASIIstrIO)

 	SetRowLabelValue() (GSASIIctrlGUI.Table method)

 	setSampleProfile() (GSASIIscriptable.G2Phase method)

 	SetSelectionNoRefresh() (GSASIIplot.G2PlotNoteBook method)

 	SetSelections() (GSASIIctrlGUI.G2MultiChoiceDialog method)

 	(GSASIIctrlGUI.G2MultiChoiceWindow method)

 	SetSeqRef() (GSASIIIO.ExportBaseclass method)

 	SetSeqResult() (in module GSASIIstrIO)

 	SetSize() (Absorb.Absorb method)

 	(GSASIIconstrGUI.G2BoolEditor method)

 	(GSASIIctrlGUI.GridFractionEditor method)

 	SetSourceDir() (GSASIIimgGUI.AutoIntFrame method)

 	(GSASIIIntPDFtool.AutoIntFrame method)

 	setSVDwarn() (in module GSASIImath)

 	setsvnProxy() (in module GSASIIpath)

 	SetTable() (GSASIIctrlGUI.GSGrid method)

 	setText() (gltext.Text method)

 	SetTitleByGPX() (GSASIIdataGUI.GSASII method)

 	SetTutorialPath() (GSASIIctrlGUI.OpenGitTutorial method)

 	(GSASIIctrlGUI.OpenSvnTutorial method)

 	SetupCalc() (GSASIIobj.ExpressionCalcObj method)

 	setupFPAcalc() (in module GSASIIfpaGUI)

 	SetupGeneral() (in module GSASIIElem)

 	(in module GSASIIscriptable)

 	SetupInterpolation() (in module GSASIIIntPDFtool)

 	setupPopup() (GSASIIctrlGUI.GSGrid method)

 	SetupSampleLabels() (in module GSASIIpwdGUI)

 	SetupSeqSavePhases() (in module GSASIIstrIO)

 	SetUsedHistogramsAndPhases() (in module GSASIIstrIO)

 	SetValue() (GSASIIconstrGUI.RBDataTable method)

 	(GSASIIctrlGUI.G2Slider method)

 	(GSASIIctrlGUI.Table method)

 	(GSASIIctrlGUI.ValidatedTxtCtrl method)

 	setVary() (GSASIIscriptable.G2Image method)

 	
 	SetVersionNumber() (in module GSASIIpath)

 	sfloat() (in module G2pwd_fxye)

 	(in module GSASIIfiles)

 	(in module GSASIIIO)

 	SFRM_ReaderClass (class in G2img_SFRM)

 	sgequiv_2002_orthorhombic (in module GSASIIspc)

 	SGErrors() (in module GSASIIspc)

 	SGMagSpinBox (class in GSASIIctrlGUI)

 	SGMessageBox (class in GSASIIctrlGUI)

 	SGpolar() (in module GSASIIspc)

 	SGPrint() (in module GSASIIspc)

 	SGProd() (in module GSASIIspc)

 	SGPtGroup() (in module GSASIIspc)

 	SHarmcal() (in module GSASIIlattice)

 	SHELX4_ReaderClass (class in G2sfact)

 	SHELX5_ReaderClass (class in G2sfact)

 	SHELX6_ReaderClass (class in G2sfact)

 	ShortHistNames (in module GSASIIobj)

 	ShortPhaseNames (in module GSASIIobj)

 	Show() (GSASIIctrlGUI.MultiStringDialog method)

 	(GSASIIctrlGUI.SGMagSpinBox method)

 	(GSASIIctrlGUI.SGMessageBox method)

 	(GSASIIctrlGUI.SingleStringDialog method)

 	(GSASIIexprGUI.ExpressionDialog method)

 	(GSASIItestplot.PlotNotebook method)

 	show_gpxSize (in module config_example)

 	Show_timing (in module config_example)

 	ShowBanner() (in module GSASIIstrIO)

 	showCell() (in module nistlat)

 	ShowControls() (in module GSASIIstrIO)

 	showError() (GSASIIexprGUI.ExpressionDialog method)

 	ShowHelp() (in module GSASIIctrlGUI)

 	ShowHstrainCells() (G2export_CIF.ExportCIF method)

 	ShowIsoDistortCalc() (in module GSASIIconstrGUI)

 	ShowIsoModes() (in module GSASIIconstrGUI)

 	ShowLogStatus() (in module GSASIIlog)

 	ShowLSParms (class in GSASIIctrlGUI)

 	ShowMatchingFiles() (GSASIIimgGUI.AutoIntFrame method)

 	(GSASIIIntPDFtool.AutoIntFrame method)

 	ShowScrolledColText() (in module GSASIIctrlGUI)

 	ShowScrolledInfo() (in module GSASIIctrlGUI)

 	ShowStringValidity() (GSASIIctrlGUI.ValidatedTxtCtrl method)

 	ShowTiming (class in GSASIIobj)

 	showUniqueCell() (in module GSASIIctrlGUI)

 	ShowValidity() (GSASIIctrlGUI.NumberValidator method)

 	ShowVersions() (in module GSASIIdataGUI)

 	ShowWebPage() (in module GSASIIctrlGUI)

 	SHPOcal() (in module GSASIIstrMath)

 	SHPOcalDerv() (in module GSASIIstrMath)

 	SHTXcal() (in module GSASIIstrMath)

 	SHTXcalDerv() (in module GSASIIstrMath)

 	simParms (in module GSASIIfpaGUI)

 	Single Crystal data object description

 	Single Crystal reflection object description

 	SingleFloatDialog (class in GSASIIctrlGUI)

 	SingleIntDialog (class in GSASIIctrlGUI)

 	SingleStringDialog (class in GSASIIctrlGUI)

 	sint() (in module G2pwd_fxye)

 	(in module GSASIIIO)

 	skimGPX() (in module GSASIIctrlGUI)

 	SortableLstCtrl (class in GSASIIctrlGUI)

 	sortArray() (in module GSASIImath)

 	sortHKLd() (in module GSASIIlattice)

 	sortM20() (in module GSASIIindex)

 	SortVariables() (in module GSASIIobj)

 	Space Group Data description

 	SpaceGroup() (in module GSASIIspc)

 	SpcGroup() (in module GSASIIspc)

 	spg2origins (in module GSASIIspc)

 	spgbyNum (in module GSASIIspc)

 	spglist (in module GSASIIspc)

 	SphereEnclosure (class in GSASIIphsGUI)

 	SphereFF() (in module GSASIIsasd)

 	SphereVol() (in module GSASIIsasd)

 	SphericalShellFF() (in module GSASIIsasd)

 	SphericalShellVol() (in module GSASIIsasd)

 	SpheroidFF() (in module GSASIIsasd)

 	SpheroidVol() (in module GSASIIsasd)

 	SphHarmAng() (in module GSASIIlattice)

 	splitSSsym() (in module GSASIIspc)

 	Spot_mask_diameter (in module config_example)

 	SquareWellSF() (in module GSASIIsasd)

 	SSChargeFlip() (in module GSASIImath)

 	SSChoice() (in module GSASIIspc)

 	SSGModCheck() (in module GSASIIspc)

 	SSGPrint() (in module GSASIIspc)

 	SSLatt2text() (in module GSASIIspc)

 	SSMT2text() (in module GSASIIspc)

 	SSpaceGroup() (in module GSASIIspc)

 	SSpcGroup() (in module GSASIIspc)

 	SStructureFactor() (in module GSASIIstrMath)

 	SStructureFactorDerv() (in module GSASIIstrMath)

 	SStructureFactorDerv2() (in module GSASIIstrMath)

 	SStructureFactorDervTw() (in module GSASIIstrMath)

 	SStructureFactorTw() (in module GSASIIstrMath)

 	StackSim() (in module GSASIIpwd)

 	StandardizeSpcName() (in module GSASIIspc)

 	Starting_directory (in module config_example)

 	StartingClick() (GSASIIconstrGUI.G2BoolEditor method)

 	StartingKey() (GSASIIctrlGUI.GridFractionEditor method)

 	StartLoop() (GSASIIimgGUI.AutoIntFrame method)

 	(GSASIIIntPDFtool.AutoIntFrame method)

 	StartProject() (GSASIIdataGUI.GSASII method)

 	StickyHardSpheresSF() (in module GSASIIsasd)

 	StoreEquivalence() (in module GSASIImapvars)

 	StoreHold() (in module GSASIImapvars)

 	StringOpsProd() (in module GSASIIspc)

 	striphist() (in module G2export_CIF)

 	(in module GSASIIIO)

 	StripIndents() (in module GSASIIctrlGUI)

 	StripUnicode() (in module GSASIIctrlGUI)

 	(in module GSASIIobj)

 	StructureFactor2() (in module GSASIIstrMath)

 	StructureFactorDerv2() (in module GSASIIstrMath)

 	StructureFactorDervTw2() (in module GSASIIstrMath)

 	su (GSASIIobj.ExpressionCalcObj attribute)

 	subBilbaoCheckLattice() (in module SUBGROUPS)

 	SubCellsDialog (class in GSASIIpwdGUI)

 	SubfromParmDict() (in module GSASIImapvars)

 	
 SUBGROUPS

 	module

 	
 Substances

 	module

 	subVals() (in module GSASIIlattice)

 	Superspace Group Data description

 	SurfaceRough() (in module GSASIIpwd)

 	SurfaceRoughDerv() (in module GSASIIpwd)

 	svn_exec (in module config_example)

 	svnChecksumPatch() (in module GSASIIpath)

 	svnCheckUpdates() (in module GSASIIctrlGUI)

 	svnCleanup() (in module GSASIIpath)

 	svnFindLocalChanges() (in module GSASIIpath)

 	svnGetFileStatus() (in module GSASIIpath)

 	svnGetLog() (in module GSASIIpath)

 	svnGetRev() (in module GSASIIpath)

 	svnInstallDir() (in module GSASIIpath)

 	svnList() (in module GSASIIpath)

 	svnSelectVersion() (in module GSASIIctrlGUI)

 	svnSwitch2branch() (in module GSASIIpath)

 	svnSwitchDir() (in module GSASIIpath)

 	svnUpdateDir() (in module GSASIIpath)

 	svnUpdateProcess() (in module GSASIIpath)

 	svnUpgrade() (in module GSASIIpath)

 	svnVersion() (in module GSASIIpath)

 	svnVersionNumber() (in module GSASIIpath)

 	SwapIndx() (in module GSASIIlattice)

 	SwapItems() (in module GSASIIlattice)

 	swapMonoA() (in module GSASIIindex)

 	symGenList (in module GSASIImapvars)

 	symInner() (in module GSASIIlattice)

 	SymOpDialog (class in GSASIIphsGUI)

 	SytSym() (in module GSASIIspc)

T

 	
 	Table (class in GSASIIctrlGUI)

 	TabLogEntry (class in GSASIIlog)

 	test() (in module SUBGROUPS)

 	test0() (in module GSASIIspc)

 	test1() (in module GSASIIlattice)

 	(in module GSASIIspc)

 	test2() (in module GSASIIlattice)

 	(in module GSASIIspc)

 	test3() (in module GSASIIlattice)

 	(in module GSASIIspc)

 	test4() (in module GSASIIlattice)

 	test5() (in module GSASIIlattice)

 	test6() (in module GSASIIlattice)

 	test7() (in module GSASIIlattice)

 	test8() (in module GSASIIlattice)

 	test9() (in module GSASIIlattice)

 	test_GSASIIlattice() (in module unit_tests)

 	test_GSASIIspc() (in module unit_tests)

 	TestAtoms() (in module GSASIIpwdGUI)

 	testColumnMetadata() (in module GSASIIimgGUI)

 	TestData() (in module GSASIIindex)

 	(in module GSASIIpwd)

 	
 testDeriv

 	module

 	testDeriv (class in testDeriv)

 	TestFastPixelMask() (GSASIIscriptable.G2Image method)

 	(in module GSASIIimage)

 	TestIndexAll() (in module GSASIIobj)

 	TestMagAtoms() (in module GSASIIpwdGUI)

 	TestOldVersions() (in module GSASIIdataGUI)

 	testSeqRefineMode() (GSASIIdataGUI.GSASII method)

 	TestSPG() (in module GSASIIpath)

 	testSSmain (class in testSSymbols)

 	
 testSSymbols

 	module

 	testSSymbols (class in testSSymbols)

 	testSytSmain (class in testSytSym)

 	
 testSytSym

 	module

 	testSytSym (class in testSytSym)

 	TestValid() (GSASIIctrlGUI.ASCIIValidator method)

 	(GSASIIctrlGUI.NumberValidator method)

 	Text (class in gltext)

 	text (gltext.Text property)

 	(gltext.TextElement property)

 	
 	Text2MT() (in module GSASIIspc)

 	text_element (gltext.Text property)

 	TextElement (class in gltext)

 	TextOps() (in module GSASIIspc)

 	texture (gltext.Text property)

 	(gltext.TextElement property)

 	texture_size (gltext.Text property)

 	(gltext.TextElement property)

 	textureIndex() (in module GSASIIlattice)

 	Tick_length (in module config_example)

 	Tick_width (in module config_example)

 	TIF_LibraryReader (class in G2img_PILTIF)

 	TIF_ReaderClass (class in G2img_1TIF)

 	TIFValidator() (in module G2img_1TIF)

 	TLS2Uij() (in module GSASIImath)

 	TOF2dsp() (in module GSASIIlattice)

 	ToggleMultiSpotMask() (in module GSASIIplot)

 	Trans2Text() (in module GSASIIspc)

 	TransConstraints() (in module GSASIIconstrGUI)

 	TransferFromWindow() (GSASIIctrlGUI.ASCIIValidator method)

 	(GSASIIctrlGUI.NumberValidator method)

 	TransferToWindow() (GSASIIctrlGUI.ASCIIValidator method)

 	(GSASIIctrlGUI.NumberValidator method)

 	TransformCell() (in module GSASIIlattice)

 	TransformDialog (class in GSASIIphsGUI)

 	TransformPhase() (in module GSASIIlattice)

 	Transmission() (in module GSASIIpwd)

 	Transpose (in module config_example)

 	transposeHKLF() (in module GSASIIlattice)

 	TreeLogEntry (class in GSASIIlog)

 	trim() (in module GSASIIIO)

 	Tutorial_location (in module config_example)

 	txt_FSQReaderClass (class in G2pdf_gr)

 	txt_NeutronReaderClass (class in G2rfd_xye)

 	(class in G2sad_xye)

 	txt_nmNeutronReaderClass (class in G2sad_xye)

 	txt_nmXRayReaderClass (class in G2sad_xye)

 	txt_PDFReaderClass (class in G2pdf_gr)

 	txt_PDFReaderClassG (class in G2pdf_gr)

 	txt_XRayReaderClass (class in G2rfd_xye)

 	(class in G2sad_xye)

 	txt_XRayThetaReaderClass (class in G2rfd_xye)

 	type (GSASIIscriptable.G2AtomRecord property)

U

 	
 	U6toUij() (in module GSASIIlattice)

 	Uij2betaij() (in module GSASIIlattice)

 	Uij2Ueqv() (in module GSASIIlattice)

 	UijtoU6() (in module GSASIIlattice)

 	uiso (GSASIIscriptable.G2AtomRecord property)

 	undefinedVars (in module GSASIImapvars)

 	uneqImgShow() (in module GSASIIplot)

 	UniDiskFF() (in module GSASIIsasd)

 	UniDiskVol() (in module GSASIIsasd)

 	uniqCells() (in module nistlat)

 	UniqueCellByLaue (in module GSASIIlattice)

 	uniqueCombinations() (in module GSASIIlattice)

 	UniRodARFF() (in module GSASIIsasd)

 	UniRodARVol() (in module GSASIIsasd)

 	UniRodFF() (in module GSASIIsasd)

 	UniRodVol() (in module GSASIIsasd)

 	UniSphereFF() (in module GSASIIsasd)

 	UniSphereVol() (in module GSASIIsasd)

 	
 unit_tests

 	module

 	UniTubeFF() (in module GSASIIsasd)

 	UniTubeVol() (in module GSASIIsasd)

 	unvariedParmsList (in module GSASIImapvars)

 	Update() (GSASIIctrlGUI.G2RefinementProgress method)

 	(GSASIIctrlGUI.RefinementProgress method)

 	update_ids() (GSASIIscriptable.G2Project method)

 	UpDateAbsPlot() (Absorb.Absorb method)

 	updateAddRBorientText() (in module GSASIIphsGUI)

 	UpdateBackground() (in module GSASIIpwdGUI)

 	UpdateComments() (in module GSASIIdataGUI)

 	UpdateConstraints() (in module GSASIIconstrGUI)

 	UpdateControls() (in module GSASIIdataGUI)

 	UpdateDData() (in module GSASIIddataGUI)

 	UpdateDict() (GSASIIobj.ExpressionCalcObj method)

 	UpdateDownloaded() (GSASIIctrlGUI.OpenSvnTutorial method)

 	
 	UpDateFPlot() (fprime.Fprime method)

 	UpdateImageControls() (in module GSASIIimgGUI)

 	UpdateImageLoc() (GSASIIctrlGUI.G2TreeCtrl method)

 	UpdateIndexPeaksGrid() (in module GSASIIpwdGUI)

 	UpdateInstrumentGrid() (in module GSASIIpwdGUI)

 	UpdateLimitsGrid() (in module GSASIIpwdGUI)

 	UpdateMasks() (in module GSASIIimgGUI)

 	UpdateMCSAxyz() (in module GSASIImath)

 	UpdateModelsGrid() (in module GSASIIpwdGUI)

 	UpdateNotebook() (in module GSASIIdataGUI)

 	updateNoticeDict (in module GSASIIctrlGUI)

 	updateNotifier() (in module GSASIIctrlGUI)

 	UpdateParameters() (GSASIIobj.ImportStructFactor method)

 	UpdatePDFfit() (in module GSASIIpwd)

 	UpdatePDFGrid() (in module GSASIIpwdGUI)

 	UpdatePeakGrid() (in module GSASIIpwdGUI)

 	UpdatePhaseData() (in module GSASIIphsGUI)

 	UpdatePolygon() (in module GSASIIplot)

 	UpdatePWHKPlot() (in module GSASIIdataGUI)

 	UpdateRBUIJ() (in module GSASIImath)

 	UpdateRBXYZ() (in module GSASIImath)

 	UpdateREFDModelsGrid() (in module GSASIIpwdGUI)

 	UpdateReflectionGrid() (in module GSASIIpwdGUI)

 	UpdateRestraints() (in module GSASIIrestrGUI)

 	UpdateRigidBodies() (in module GSASIIconstrGUI)

 	UpdateSampleGrid() (in module GSASIIpwdGUI)

 	UpdateSeqResults() (in module GSASIIseqGUI)

 	UpdateStressStrain() (in module GSASIIimgGUI)

 	UpdateSubstanceGrid() (in module GSASIIpwdGUI)

 	UpdateSytSym() (in module GSASIIspc)

 	UpdateUnitCellsGrid() (in module GSASIIpwdGUI)

 	UpdateVariedVars() (GSASIIobj.ExpressionObj method)

 	UpdateVars() (GSASIIobj.ExpressionCalcObj method)

 	usedVars (GSASIIexprGUI.ExpressionDialog attribute)

 	UseMagAtomDialog (class in GSASIIphsGUI)

V

 	
 	ValEsd() (in module GSASIImath)

 	ValEsd2col() (G2export_Bracket.Export3col method)

 	ValidateAscii() (G2export_CIF.ExportCIF method)

 	validateAtomDrawType() (in module GSASIIobj)

 	ValidatedTxtCtrl (class in GSASIIctrlGUI)

 	Values2A() (in module GSASIIindex)

 	Values2Dict() (in module GSASIIpwd)

 	(in module GSASIIstrMath)

 	VarDescr() (in module GSASIIobj)

 	VarKeys() (in module GSASIImapvars)

 	VarLogEntry (class in GSASIIlog)

 	
 	varLookup (GSASIIobj.ExpressionCalcObj attribute)

 	varName (GSASIIexprGUI.ExpressionDialog attribute)

 	varname() (GSASIIobj.G2VarObj method)

 	varRefflag (GSASIIexprGUI.ExpressionDialog attribute)

 	VarRemapShow() (in module GSASIImapvars)

 	varSelect (GSASIIexprGUI.ExpressionDialog attribute)

 	varValue (GSASIIexprGUI.ExpressionDialog attribute)

 	versionDict (in module GSASIIdataGUI)

 	VirtualVarBox (class in GSASIIctrlGUI)

 	visit() (G2img_HDF5.HDF5_Reader method)

 	VoidMap() (in module GSASIIphsGUI)

 	Vol2Den() (in module GSASIImath)

W

 	
 	wavekE() (in module GSASIImath)

 	whichsvn() (in module GSASIIpath)

 	Write() (G2export_map.ExportMapCCP4 method)

 	(GSASIIIO.ExportBaseclass method)

 	Write2csv() (in module GSASIIplot)

 	WriteAtomsMagnetic() (in module G2export_CIF)

 	WriteAtomsMM() (in module G2export_CIF)

 	WriteAtomsNuclear() (in module G2export_CIF)

 	WriteCIFitem() (in module G2export_CIF)

 	WriteComposition() (in module G2export_CIF)

 	WriteCompositionMM() (in module G2export_CIF)

 	WriteControls() (in module GSASIIfiles)

 	
 	WriteInstFile() (G2export_pwdr.ExportPowderFXYE method)

 	WriteList() (in module G2export_csv)

 	writeNIST() (in module GSASIIfpaGUI)

 	Writer() (G2export_CIF.ExportPwdrCIF method)

 	(G2export_pwdr.ExportPowderFXYE method)

 	WriteRBObjPOAndSig() (in module GSASIIstrIO)

 	WriteRBObjSHCAndSig() (in module GSASIIstrIO)

 	WriteRBObjTLSAndSig() (in module GSASIIstrIO)

 	WriteRBObjTorAndSig() (in module GSASIIstrIO)

 	WriteResRBModel() (in module GSASIIstrIO)

 	WriteSeqAtomsNuclear() (in module G2export_CIF)

 	WriteVecRBModel() (in module GSASIIstrIO)

 	wxInspector (in module config_example)

X

 	
 	XferFPAsettings() (in module GSASIIfpaGUI)

 	XformMatrix() (in module GSASIIctrlGUI)

 	XScattDen() (in module GSASIImath)

 	
 	xye_ReaderClass (class in G2pwd_xye)

 	XYsave() (in module GSASIIIO)

 	XYZ_ReaderClass (class in G2phase_xyz)

Y

 	
 	y_calc() (GSASIIscriptable.G2PwdrData method)

 \(\renewcommand\AA{\text{Å}}\)

Naming for GSAS-II parameter names, p:h:<var>:n

	<var>

	usage

	\(\scriptstyle K\) (example: a)

	Lattice parameter, \(\scriptstyle K\), from Ai and Djk; where \(\scriptstyle K\) is one of the characters a, b or c.

	α

	Lattice parameter, α, computed from both Ai and Djk.

	β

	Lattice parameter, β, computed from both Ai and Djk.

	γ

	Lattice parameter, γ, computed from both Ai and Djk.

	Scale

	Phase fraction (as p:h:Scale) or Histogram scale factor (as :h:Scale).

	A\(\scriptstyle I\) (example: A0)

	Reciprocal metric tensor component \(\scriptstyle I\); where \(\scriptstyle I\) is a digit between 0 and 5.

	\(\scriptstyle L\)ol (example: vol)

	Unit cell volume; where \(\scriptstyle L\) is one of the characters v or V.

	dA\(\scriptstyle M\) (example: dAx)

	Refined change to atomic coordinate, \(\scriptstyle M\); where \(\scriptstyle M\) is one of the characters x, y or z.

	A\(\scriptstyle M\) (example: Ax)

	Fractional atomic coordinate, \(\scriptstyle M\); where \(\scriptstyle M\) is one of the characters x, y or z.

	AUiso

	Atomic isotropic displacement parameter.

	AU\(\scriptstyle N_0\)\(\scriptstyle N_1\) (example: AU11)

	Atomic anisotropic displacement parameter U\(\scriptstyle N_0\)\(\scriptstyle N_1\); where \(\scriptstyle N_0\) is one of the characters 1, 2 or 3 and \(\scriptstyle N_1\) is one of the characters 1, 2 or 3.

	Afrac

	Atomic site fraction parameter.

	Amul

	Atomic site multiplicity value.

	AM\(\scriptstyle M\) (example: AMx)

	Atomic magnetic moment parameter, \(\scriptstyle M\); where \(\scriptstyle M\) is one of the characters x, y or z.

	Akappa\(\scriptstyle O\) (example: Akappa0)

	Atomic orbital softness for orbital, \(\scriptstyle O\); where \(\scriptstyle O\) is one of the characters 0, - or 6.

	ANe\(\scriptstyle P\) (example: ANe0)

	Atomic <j0> orbital population for orbital, \(\scriptstyle P\); where \(\scriptstyle P\) is one of the characters 0 or 1.

	AD\(\scriptstyle O_0\),\(\scriptstyle O_1\)\(\scriptstyle O_0\) (example: AD0,00)

	Atomic sp. harm. coeff for orbital, 1; where \(\scriptstyle O_0\) is one of the characters 0, - or 6 and \(\scriptstyle O_1\) is one of the characters 0, - or 6 and \(\scriptstyle O_0\) is one of the characters 0, - or 6.

	AD\(\scriptstyle O_0\),-\(\scriptstyle O_1\)\(\scriptstyle O_0\) (example: AD0,-00)

	Atomic sp. harm. coeff for orbital, 1; where \(\scriptstyle O_0\) is one of the characters 0, - or 6 and \(\scriptstyle O_1\) is one of the characters 0, - or 6 and \(\scriptstyle O_0\) is one of the characters 0, - or 6.

	Back\(\scriptstyle J\) (example: Back11)

	Background term #\(\scriptstyle J\); where \(\scriptstyle J\) is the background term number.

	BkPkint;\(\scriptstyle J\) (example: BkPkint;11)

	Background peak #\(\scriptstyle J\) intensity; where \(\scriptstyle J\) is the background peak number.

	BkPkpos;\(\scriptstyle J\) (example: BkPkpos;11)

	Background peak #\(\scriptstyle J\) position; where \(\scriptstyle J\) is the background peak number.

	BkPksig;\(\scriptstyle J\) (example: BkPksig;11)

	Background peak #\(\scriptstyle J\) Gaussian width; where \(\scriptstyle J\) is the background peak number.

	BkPkgam;\(\scriptstyle J\) (example: BkPkgam;11)

	Background peak #\(\scriptstyle J\) Cauchy width; where \(\scriptstyle J\) is the background peak number.

	BF mult

	Background file multiplier.

	Bab\(\scriptstyle Q\) (example: BabA)

	Babinet solvent scattering coef. \(\scriptstyle Q\); where \(\scriptstyle Q\) is one of the characters A or U.

	D\(\scriptstyle N_0\)\(\scriptstyle N_1\) (example: D11)

	Anisotropic strain coef. \(\scriptstyle N_0\)\(\scriptstyle N_1\); where \(\scriptstyle N_0\) is one of the characters 1, 2 or 3 and \(\scriptstyle N_1\) is one of the characters 1, 2 or 3.

	Extinction

	Extinction coef.

	MD

	March-Dollase coef.

	Mustrain;\(\scriptstyle J\) (example: Mustrain;11)

	Microstrain coefficient (delta Q/Q x 10**6); where \(\scriptstyle J\) can be i for isotropic or equatorial and a is axial (uniaxial broadening), a number for generalized (Stephens) broadening or mx for the Gaussian/Lorentzian mixing term (LGmix).

	Size;\(\scriptstyle J\) (example: Size;11)

	Crystallite size value (in microns); where \(\scriptstyle J\) can be i for isotropic or equatorial, and a is axial (uniaxial broadening), a number between 0 and 5 for ellipsoidal broadening or mx for the Gaussian/Lorentzian mixing term (LGmix).

	eA

	Cubic mustrain value.

	Ep

	Primary extinction.

	Es

	Secondary type II extinction.

	Eg

	Secondary type I extinction.

	Flack

	Flack parameter.

	TwinFr

	Twin fraction.

	Layer Disp

	Layer displacement along beam.

	Absorption

	Absorption coef.

	LayerDisp

	Bragg-Brentano Layer displacement.

	Displace\(\scriptstyle R\) (example: DisplaceX)

	Debye-Scherrer sample displacement \(\scriptstyle R\); where \(\scriptstyle R\) is one of the characters X or Y.

	Lam

	Wavelength.

	I(L2)\/I(L1)

	Ka2/Ka1 intensity ratio.

	Polariz.

	Polarization correction.

	SH/L

	FCJ peak asymmetry correction.

	\(\scriptstyle S\) (example: U)

	Gaussian instrument broadening \(\scriptstyle S\); where \(\scriptstyle S\) is one of the characters U, V or W.

	\(\scriptstyle T\) (example: X)

	Cauchy instrument broadening \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	Zero

	Debye-Scherrer zero correction.

	Shift

	Bragg-Brentano sample displ.

	SurfRoughA

	Bragg-Brenano surface roughness A.

	SurfRoughB

	Bragg-Brenano surface roughness B.

	Transparency

	Bragg-Brentano sample tranparency.

	DebyeA

	Debye model amplitude.

	DebyeR

	Debye model radius.

	DebyeU

	Debye model Uiso.

	RBV\(\scriptstyle J\) (example: RBV11)

	Vector rigid body parameter.

	RBVO\(\scriptstyle U\) (example: RBVOa)

	Vector rigid body orientation parameter \(\scriptstyle U\); where \(\scriptstyle U\) is one of the characters a, i, j or k.

	RBVP\(\scriptstyle M\) (example: RBVPx)

	Vector rigid body \(\scriptstyle M\) position parameter; where \(\scriptstyle M\) is one of the characters x, y or z.

	RBVf

	Vector rigid body site fraction.

	RBV\(\scriptstyle V_0\)\(\scriptstyle W_0\)\(\scriptstyle W_1\) (example: RBVT11)

	Residue rigid body group disp. param.; where \(\scriptstyle V_0\) is one of the characters T, L or S and \(\scriptstyle W_0\) is one of the characters 1, 2, 3, A or B and \(\scriptstyle W_1\) is one of the characters 1, 2, 3, A or B.

	RBVU

	Residue rigid body group Uiso param.

	RBRO\(\scriptstyle U\) (example: RBROa)

	Residue rigid body orientation parameter \(\scriptstyle U\); where \(\scriptstyle U\) is one of the characters a, i, j or k.

	RBRP\(\scriptstyle M\) (example: RBRPx)

	Residue rigid body \(\scriptstyle M\) position parameter; where \(\scriptstyle M\) is one of the characters x, y or z.

	RBRTr;\(\scriptstyle J\) (example: RBRTr;11)

	Residue rigid body torsion parameter.

	RBRf

	Residue rigid body site fraction.

	RBR\(\scriptstyle V_0\)\(\scriptstyle W_0\)\(\scriptstyle W_1\) (example: RBRT11)

	Residue rigid body group disp. param.; where \(\scriptstyle V_0\) is one of the characters T, L or S and \(\scriptstyle W_0\) is one of the characters 1, 2, 3, A or B and \(\scriptstyle W_1\) is one of the characters 1, 2, 3, A or B.

	RBRU

	Residue rigid body group Uiso param.

	RBSAtNo

	Atom number for spinning rigid body.

	RBSO\(\scriptstyle U\) (example: RBSOa)

	Spinning rigid body orientation parameter \(\scriptstyle U\); where \(\scriptstyle U\) is one of the characters a, i, j or k.

	RBSP\(\scriptstyle M\) (example: RBSPx)

	Spinning rigid body \(\scriptstyle M\) position parameter; where \(\scriptstyle M\) is one of the characters x, y or z.

	RBSShRadius

	Spinning rigid body shell radius.

	RBSShC\(\scriptstyle X\) (example: RBSShC1)

	Spinning rigid body sph. harmonics term; where \(\scriptstyle X\) is one of the characters 1, -, 2 or 0 ,, 1, -, 2 or 0.

	constr\(\scriptstyle G\) (example: constr10)

	Generated degree of freedom from constraint; where \(\scriptstyle G\) is one or more digits (0, 1,… 9).

	nv-(.+)

	New variable assignment with name 1.

	mV\(\scriptstyle H\) (example: mV0)

	Modulation vector component \(\scriptstyle H\); where \(\scriptstyle H\) is the digits 0, 1, or 2.

	Fsin

	Sin site fraction modulation.

	Fcos

	Cos site fraction modulation.

	Fzero

	Crenel function offset.

	Fwid

	Crenel function width.

	Tmin

	ZigZag/Block min location.

	Tmax

	ZigZag/Block max location.

	\(\scriptstyle T\)max (example: Xmax)

	ZigZag/Block max value for \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	\(\scriptstyle T\)sin (example: Xsin)

	Sin position wave for \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	\(\scriptstyle T\)cos (example: Xcos)

	Cos position wave for \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	U\(\scriptstyle N_0\)\(\scriptstyle N_1\)sin (example: U11sin)

	Sin thermal wave for U\(\scriptstyle N_0\)\(\scriptstyle N_1\); where \(\scriptstyle N_0\) is one of the characters 1, 2 or 3 and \(\scriptstyle N_1\) is one of the characters 1, 2 or 3.

	U\(\scriptstyle N_0\)\(\scriptstyle N_1\)cos (example: U11cos)

	Cos thermal wave for U\(\scriptstyle N_0\)\(\scriptstyle N_1\); where \(\scriptstyle N_0\) is one of the characters 1, 2 or 3 and \(\scriptstyle N_1\) is one of the characters 1, 2 or 3.

	M\(\scriptstyle T\)sin (example: MXsin)

	Sin mag. moment wave for \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	M\(\scriptstyle T\)cos (example: MXcos)

	Cos mag. moment wave for \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	PDFpos

	PDF peak position.

	PDFmag

	PDF peak magnitude.

	PDFsig

	PDF peak std. dev.

	Aspect ratio

	Particle aspect ratio.

	Length

	Cylinder length.

	Diameter

	Cylinder/disk diameter.

	Thickness

	Disk thickness.

	Shell thickness

	Multiplier to get inner(<1) or outer(>1) sphere radius.

	Dist

	Interparticle distance.

	VolFr

	Dense scatterer volume fraction.

	epis

	Sticky sphere epsilon.

	Sticky

	Stickyness.

	Depth

	Well depth.

	Width

	Well width.

	Volume

	Particle volume.

	Radius

	Sphere/cylinder/disk radius.

	Mean

	Particle mean radius.

	StdDev

	Standard deviation in Mean.

	G

	Guinier prefactor.

	Rg

	Guinier radius of gyration.

	B

	Porod prefactor.

	P

	Porod power.

	Cutoff

	Porod cutoff.

	PkInt

	Bragg peak intensity.

	PkPos

	Bragg peak position.

	PkSig

	Bragg peak sigma.

	PkGam

	Bragg peak gamma.

	e\(\scriptstyle Y_0\)\(\scriptstyle Y_1\) (example: e11)

	strain tensor e\(\scriptstyle Y_0\)\(\scriptstyle Y_1\); where \(\scriptstyle Y_0\) is one of the characters 1 or 2 and \(\scriptstyle Y_1\) is one of the characters 1 or 2.

	Dcalc

	Calc. d-spacing.

	Back

	background parameter.

	pos

	peak position.

	int

	peak intensity.

	WgtFrac

	phase weight fraction.

	alpha

	TOF profile term.

	alpha-\(\scriptstyle P\) (example: alpha-0)

	Pink profile term; where \(\scriptstyle P\) is one of the characters 0 or 1.

	beta-\(\scriptstyle Z\) (example: beta-0)

	TOF/Pink profile term; where \(\scriptstyle Z\) is one of the characters 0, 1 or q.

	sig-\(\scriptstyle a\) (example: sig-0)

	TOF profile term; where \(\scriptstyle a\) is one of the characters 0, 1, 2 or q.

	dif\(\scriptstyle b\) (example: difA)

	TOF to d-space calibration; where \(\scriptstyle b\) is one of the characters A, B or C.

	C\(\scriptstyle G_0\),\(\scriptstyle G_1\) (example: C10,10)

	spherical harmonics preferred orientation coef.; where \(\scriptstyle G_0\) is one or more digits (0, 1,… 9) and \(\scriptstyle G_1\) is one or more digits (0, 1,… 9).

	Pressure

	Pressure level for measurement in MPa.

	Temperature

	T value for measurement, K.

	FreePrm\(\scriptstyle N\) (example: FreePrm1)

	User defined measurement parameter \(\scriptstyle N\); where \(\scriptstyle N\) is one of the characters 1, 2 or 3.

	Gonio. radius

	Distance from sample to detector, mm.

 \(\renewcommand\AA{\text{Å}}\)

This documentation was prepared from GSAS-II version 918ae0 dated 27-Mar-2024 20:38 with the most recent tag as version #5773

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 GSAS-II Developer’s Documentation

 		
 GSAS-II Requirements, Python Packages and External Software

 		
 Supported Platforms

 		
 Version Control

 		
 Python Requirements

 		
 GUI Requirements

 		
 Scripting Requirements

 		
 Optional Python Packages

 		
 Required Binary Files

 		
 Supported Externally-Developed Software

 		
 Main routine: GSASII.py

 		
 GSASII: GSAS-II GUI

 		
 Keyboard Menu Shortcuts

 		
 GSAS-II contents

 		
 G2App

 		
 GSASIIobj: Data objects & Docs

 		
 Summary/Contents

 		
 Variable names in GSAS-II

 		
 Constraints Tree Item

 		
 Covariance Tree Item

 		
 Phase Tree Items

 		
 Rigid Body Objects

 		
 Space Group Objects

 		
 Phase Information

 		
 Atom Records

 		
 Drawing Atom Records

 		
 Rigid Body Insertions

 		
 Powder Diffraction Tree Items

 		
 CW Instrument Parameters

 		
 TOF Instrument Parameters

 		
 Powder Reflection Data Structure

 		
 Single Crystal Tree Items

 		
 Single Crystal Reflection Data Structure

 		
 Image Data Structure

 		
 Parameter Dictionary

 		
 Texture implementation

 		
 ISODISTORT implementation

 		
 Displacive modes

 		
 Occupancy modes

 		
 Mode Computations

 		
 Parameter Limits

 		
 GSASIIobj Classes and routines

 		
 AddPhase2Index()

 		
 AtomIdLookup

 		
 AtomRanIdLookup

 		
 CompileVarDesc()

 		
 CreatePDFitems()

 		
 DefaultControls

 		
 ExpressionCalcObj

 		
 ExpressionObj

 		
 FindFunction()

 		
 G2Exception

 		
 G2RefineCancel

 		
 G2VarObj

 		
 GenWildCard()

 		
 GetPhaseNames()

 		
 HistIdLookup

 		
 HistRanIdLookup

 		
 HowDidIgetHere()

 		
 ImportBaseclass

 		
 ImportImage

 		
 ImportPDFData

 		
 ImportPhase

 		
 ImportPowderData

 		
 ImportReflectometryData

 		
 ImportSmallAngleData

 		
 ImportStructFactor

 		
 IndexAllIds()

 		
 LookupAtomId()

 		
 LookupAtomLabel()

 		
 LookupHistId()

 		
 LookupHistName()

 		
 LookupPhaseId()

 		
 LookupPhaseName()

 		
 LookupWildCard()

 		
 MakeUniqueLabel()

 		
 PhaseIdLookup

 		
 PhaseRanIdLookup

 		
 ReadCIF()

 		
 SetDefaultSample()

 		
 SetNewPhase()

 		
 ShortHistNames

 		
 ShortPhaseNames

 		
 ShowTiming

 		
 SortVariables()

 		
 StripUnicode()

 		
 TestIndexAll()

 		
 VarDescr()

 		
 _lookup()

 		
 fmtVarDescr()

 		
 getDescr()

 		
 getVarDescr()

 		
 getVarStep()

 		
 prmLookup()

 		
 reVarDesc

 		
 reVarStep

 		
 removeNonRefined()

 		
 validateAtomDrawType()

 		
 GSAS-II Utility Modules

 		
 GSASIIpath: locations & updates

 		
 GSASIIpath Classes & Routines

 		
 GSASIIlog: Logging of “Actions”

 		
 GSASIIlog Classes & Routines

 		
 config_example.py: Configuration options

 		
 Configuration variables

 		
 GSASIIElem: functions for element types

 		
 GSASIIElem Routines

 		
 GSASIIlattice: Unit Cell Computations

 		
 GSASIIlattice Classes & Routines

 		
 GSASIIspc: Space Group Computations

 		
 GSASIIspc Classes & Routines

 		
 GSASIIfiles: data (non-GUI) I/O routines

 		
 GSASIIfiles Classes & Routines

 		
 GSASIImpsubs: routines used in multiprocessing

 		
 GSASIImpsubs Classes & Routines

 		
 Module nistlat: NIST*LATTICE cell computations

 		
 nistlat Classes & Routines

 		
 ReadMarCCDFrame: Read Mar Files

 		
 marFrame

 		
 G2shapes: Compute SAS particle shapes

 		
 GSAS-II GUI Support Modules

 		
 GSASIIctrlGUI: Custom GUI controls

 		
 GSASIIctrlGUI Classes & Routines

 		
 GSASIIIO: Misc I/O routines

 		
 GSASIIIO Classes & Routines

 		
 gltext: draw OpenGL text

 		
 Text

 		
 TextElement

 		
 GSAS-II GUI Components

 		
 GSASIIdataGUI: Main GUI for GSAS-II

 		
 GSASIIdataGUI Classes & Routines

 		
 GSASIIseqGUI: Sequential Results GUI

 		
 GSASIIseqGUI Classes & Routines

 		
 GSASIIphsGUI: Phase GUI

 		
 GSASIIphsGUI Classes & Routines

 		
 GSASIIddataGUI: Phase Diffraction Data GUI

 		
 GSASIIddataGUI Classes & Routines

 		
 GSASIIElemGUI: GUI to select and delete element lists

 		
 GSASIIElemGUI Classes & Routines

 		
 GSASIIconstrGUI: Constraint GUI routines

 		
 GSASIIconstrGUI Classes & Routines

 		
 GSASIIrestrGUI: Restraint GUI routines

 		
 GSASIIrestrGUI Classes & Routines

 		
 GSASIIimgGUI: Image GUI

 		
 GSASIIimgGUI Classes & Routines

 		
 GSASIIpwdGUI: Powder Pattern GUI routines

 		
 GSASIIpwdGUI Classes & Routines

 		
 GSASIIexprGUI: Expression Handling

 		
 GSASIIexprGUI Classes & Routines

 		
 GSASIIfpaGUI: Fundamental Parameters Routines

 		
 GSASIIfpaGUI Classes & Routines

 		
 fprime: compute f’ & f”

 		
 fprime Classes & Routines

 		
 Absorb: Compute X-ray Absorption

 		
 Absorb Classes & Routines

 		
 GSAS-II Data Storage Modules

 		
 GSASIIdata: Ramachandran Parameters

 		
 ElementTable: Periodic Table Data

 		
 FormFactors: Scattering Data

 		
 ImageCalibrants: Calibration Standards

 		
 User-Defined Calibrants

 		
 atmdata: Table of atomic data

 		
 defaultIparms: Table of instrument parameters

 		
 GSAS-II Structure Submodules

 		
 GSASIIstrMain: main structure routine

 		
 GSASIIstrMain Classes & Routines

 		
 GSASIIstrMath - structure math routines

 		
 GSASIIstrMath Classes & Routines

 		
 GSASIIstrIO: structure I/O routines

 		
 GSASIIstrIO Classes & Routines

 		
 GSASIImapvars: Param Constraints

 		
 Summary/Contents

 		
 Externally-Accessible Routines

 		
 Types of constraints

 		
 Alternate parameters (New Var)

 		
 Constrained parameters (Const)

 		
 Equivalenced parameters (Equiv)

 		
 Hold parameters (Fixed)

 		
 Constraint Processing

 		
 Constraint Reorganization (ProcessConstraints())

 		
 Constraint Checking and Grouping (GenerateConstraints())

 		
 Equivalence Checking and Reorganization (CheckEquivalences())

 		
 Global Variables

 		
 GSASIImapvars Routines/variables

 		
 CheckEquivalences()

 		
 ComputeDepESD()

 		
 ConstraintException

 		
 Dict2Deriv()

 		
 Dict2Map()

 		
 EvaluateMultipliers()

 		
 GenerateConstraints()

 		
 GetDependentVars()

 		
 GetDroppedSym()

 		
 GetIndependentVars()

 		
 GetSymEquiv()

 		
 GramSchmidtOrtho()

 		
 GroupConstraints()

 		
 InitVars()

 		
 Map2Dict()

 		
 ProcessConstraints()

 		
 StoreEquivalence()

 		
 StoreHold()

 		
 SubfromParmDict()

 		
 VarKeys()

 		
 VarRemapShow()

 		
 _FillArray()

 		
 _FormatConstraint()

 		
 _RowEchelon()

 		
 _SwapColumns()

 		
 _showEquiv()

 		
 arrayList

 		
 consNum

 		
 constrParms

 		
 constrVarList

 		
 convVarList

 		
 depVarList

 		
 dependentParmList

 		
 droppedSym

 		
 getConstrError()

 		
 getInvConstraintEq()

 		
 groupErrors

 		
 holdParmList

 		
 holdParmType

 		
 indParmList

 		
 indepVarList

 		
 invarrayList

 		
 multdepVarList

 		
 normParms()

 		
 paramPrefix

 		
 saveVaryList

 		
 symGenList

 		
 undefinedVars

 		
 unvariedParmsList

 		
 GSASIIimage: Image calc module

 		
 Summary/Contents

 		
 GSASIIimage Routines

 		
 AutoPixelMask()

 		
 DoPolaCalib()

 		
 EdgeFinder()

 		
 FastAutoPixelMask()

 		
 Fill2ThetaAzimuthMap()

 		
 FitDetector()

 		
 FitImageSpots()

 		
 FitMultiDist()

 		
 FitStrSta()

 		
 FitStrain()

 		
 GetAzm()

 		
 GetDetXYfromThAzm()

 		
 GetDetectorXY()

 		
 GetDetectorXY2()

 		
 GetDsp()

 		
 GetEllipse()

 		
 GetEllipse2()

 		
 GetTth()

 		
 GetTthAzm()

 		
 GetTthAzmDsp()

 		
 GetTthAzmDsp2()

 		
 GetTthAzmG()

 		
 GetTthAzmG2()

 		
 ImageCalibrate()

 		
 ImageCompress()

 		
 ImageIntegrate()

 		
 ImageLocalMax()

 		
 ImageRecalibrate()

 		
 Make2ThetaAzimuthMap()

 		
 MakeFrameMask()

 		
 MakeMaskMap()

 		
 MakeUseMask()

 		
 MakeUseTA()

 		
 TestFastPixelMask()

 		
 calcFij()

 		
 checkEllipse()

 		
 makeMat()

 		
 makeRing()

 		
 peneCorr()

 		
 pointInPolygon()

 		
 GSASIImath: computation module

 		
 Summary/Contents

 		
 GSASIImath Classes and routines

 		
 AV2Q()

 		
 AVdeg2Q()

 		
 ApplyModeDisp()

 		
 ApplyModulation()

 		
 ApplySeqData()

 		
 AtomTLS2UIJ()

 		
 AtomsCollect()

 		
 BessIn()

 		
 BessJn()

 		
 CalcIsoCoords()

 		
 CalcIsoDisp()

 		
 Cart2Polar()

 		
 ChargeFlip()

 		
 Den2Vol()

 		
 DrawAtomsReplaceByID()

 		
 El2EstVol()

 		
 El2Mass()

 		
 FillAtomLookUp()

 		
 FindAllNeighbors()

 		
 FindAtomIndexByIDs()

 		
 Fourier4DMap()

 		
 FourierMap()

 		
 G2NormException

 		
 GetAngleSig()

 		
 GetAtomCoordsByID()

 		
 GetAtomFracByID()

 		
 GetAtomItemsById()

 		
 GetAtomMomsByID()

 		
 GetAtomsById()

 		
 GetDATSig()

 		
 GetDistSig()

 		
 GetMag()

 		
 GetMagDerv()

 		
 GetSHCoeff()

 		
 GetTorsionSig()

 		
 GetXYZDist()

 		
 HessianLSQ()

 		
 HessianSVD()

 		
 MagMod()

 		
 MagMod2()

 		
 MakeDrawAtom()

 		
 Modulation()

 		
 ModulationDerv()

 		
 ModulationTw()

 		
 NCScattDen()

 		
 OmitMap()

 		
 PeaksEquiv()

 		
 PeaksUnique()

 		
 Polar2Cart()

 		
 Q2AV()

 		
 Q2AVdeg()

 		
 Q2Mat()

 		
 RotPolbyM()

 		
 RotPolbyQ()

 		
 RotateRBXYZ()

 		
 SSChargeFlip()

 		
 SearchMap()

 		
 SetMolCent()

 		
 TLS2Uij()

 		
 UpdateMCSAxyz()

 		
 UpdateRBUIJ()

 		
 UpdateRBXYZ()

 		
 ValEsd()

 		
 Vol2Den()

 		
 XScattDen()

 		
 adjHKLmax()

 		
 anneal()

 		
 calcRamaEnergy()

 		
 calcTorsionEnergy()

 		
 dropTerms()

 		
 findOffset()

 		
 findSSOffset()

 		
 fmtPhaseContents()

 		
 getAngSig()

 		
 getAtomPtrs()

 		
 getAtomXYZ()

 		
 getCWgam()

 		
 getCWgamDeriv()

 		
 getCWsig()

 		
 getCWsigDeriv()

 		
 getDensity()

 		
 getDistDerv()

 		
 getEDgam()

 		
 getEDgamDeriv()

 		
 getEDsig()

 		
 getEDsigDeriv()

 		
 getMass()

 		
 getMeanWave()

 		
 getPinkNalpha()

 		
 getPinkNalphaDeriv()

 		
 getPinkNbeta()

 		
 getPinkNbetaDeriv()

 		
 getPinkXalpha()

 		
 getPinkXalphaDeriv()

 		
 getPinkXbeta()

 		
 getPinkXbetaDeriv()

 		
 getRBTransMat()

 		
 getRamaDeriv()

 		
 getRestAngle()

 		
 getRestChiral()

 		
 getRestDeriv()

 		
 getRestDist()

 		
 getRestPlane()

 		
 getRestPolefig()

 		
 getRestPolefigDerv()

 		
 getRestRama()

 		
 getRestTorsion()

 		
 getRho()

 		
 getRhos()

 		
 getSyXYZ()

 		
 getTOFalpha()

 		
 getTOFalphaDeriv()

 		
 getTOFbeta()

 		
 getTOFbetaDeriv()

 		
 getTOFgamma()

 		
 getTOFgammaDeriv()

 		
 getTOFsig()

 		
 getTOFsigDeriv()

 		
 getTorsionDeriv()

 		
 getVCov()

 		
 getWave()

 		
 invQ()

 		
 make2Quat()

 		
 makeQuat()

 		
 makeWaves()

 		
 makeWavesDerv()

 		
 mcsaSearch()

 		
 normQ()

 		
 patchIsoDisp()

 		
 phaseContents()

 		
 pinv()

 		
 printRho()

 		
 prodQQ()

 		
 prodQVQ()

 		
 randomAVdeg()

 		
 randomQ()

 		
 searchBondRestr()

 		
 setHcorr()

 		
 setPeakparms()

 		
 setSVDwarn()

 		
 sortArray()

 		
 wavekE()

 		
 GSASIIindex: Cell Indexing Module

 		
 Summary/Contents

 		
 GSASIIindex routines

 		
 A2values()

 		
 DoIndexPeaks()

 		
 FitHKL()

 		
 FitHKLE()

 		
 FitHKLT()

 		
 FitHKLTSS()

 		
 FitHKLZ()

 		
 FitHKLZSS()

 		
 IndexPeaks()

 		
 IndexSSPeaks()

 		
 TestData()

 		
 Values2A()

 		
 calc_M20()

 		
 calc_M20SS()

 		
 findBestCell()

 		
 getDmax()

 		
 getDmin()

 		
 halfCell()

 		
 monoCellReduce()

 		
 oddPeak()

 		
 ran2axis()

 		
 ranAbyR()

 		
 ranAbyV()

 		
 ranaxis()

 		
 rancell()

 		
 refinePeaks()

 		
 refinePeaksE()

 		
 refinePeaksT()

 		
 refinePeaksTSS()

 		
 refinePeaksZ()

 		
 refinePeaksZSS()

 		
 rotOrthoA()

 		
 scaleAbyV()

 		
 sortM20()

 		
 swapMonoA()

 		
 GSASIIplot: plotting routines

 		
 Summary/Contents

 		
 List of Graphics routines

 		
 Window management routines

 		
 GSASIIplot Classes and routines

 		
 ComputeArc()

 		
 CopyRietveldPlot()

 		
 G2Plot3D

 		
 G2PlotMpl

 		
 G2PlotNoteBook

 		
 G2PlotOgl

 		
 GSASIItoolbar

 		
 ModulationPlot()

 		
 OnStartMask()

 		
 OnStartNewDzero()

 		
 Plot1DSngl()

 		
 Plot3DSngl()

 		
 Plot3dXYZ()

 		
 PlotAAProb()

 		
 PlotBarGraph()

 		
 PlotBeadModel()

 		
 PlotCalib()

 		
 PlotClusterXYZ()

 		
 PlotCovariance()

 		
 PlotDeform()

 		
 PlotDeltSig()

 		
 PlotExposedImage()

 		
 PlotFPAconvolutors()

 		
 PlotISFG()

 		
 PlotImage()

 		
 PlotIntegration()

 		
 PlotLayers()

 		
 PlotNamedFloatHBarGraph()

 		
 PlotPatterns()

 		
 PlotPeakWidths()

 		
 PlotPowderLines()

 		
 PlotRama()

 		
 PlotRawImage()

 		
 PlotRigidBody()

 		
 PlotSASDPairDist()

 		
 PlotSASDSizeDist()

 		
 PlotSelectedSequence()

 		
 PlotSizeStrainPO()

 		
 PlotSngl()

 		
 PlotStrain()

 		
 PlotStructure()

 		
 PlotTRImage()

 		
 PlotTexture()

 		
 PlotTorsion()

 		
 PlotXY()

 		
 PlotXYZ()

 		
 PlotXYZvect()

 		
 PublishRietveldPlot()

 		
 ReplotPattern()

 		
 ToggleMultiSpotMask()

 		
 UpdatePolygon()

 		
 Write2csv()

 		
 _Old_Paired_data

 		
 _tabPlotWin

 		
 changePlotSettings()

 		
 onLegendPick()

 		
 uneqImgShow()

 		
 GSASIIpwd: Powder calculations

 		
 Summary/Contents

 		
 GSASIIpwd Classes and routines

 		
 Absorb()

 		
 AbsorbDerv()

 		
 CalcPDF()

 		
 Dict2Values()

 		
 DoPeakFit()

 		
 GetAsfMean()

 		
 GetNumDensity()

 		
 GetPDFfitAtomVar()

 		
 GetSeqCell()

 		
 ISO2PDFfit()

 		
 LaueFringePeakCalc()

 		
 LaueSatellite()

 		
 LorchWeight()

 		
 MEMupdateReflData()

 		
 MakePDFfitAtomsFile()

 		
 MakePDFfitRunFile()

 		
 MakefullrmcRun()

 		
 MakefullrmcSupercell()

 		
 Oblique()

 		
 PhaseWtSum()

 		
 Polarization()

 		
 Ruland()

 		
 SetBackgroundParms()

 		
 StackSim()

 		
 SurfaceRough()

 		
 SurfaceRoughDerv()

 		
 TestData()

 		
 Transmission()

 		
 UpdatePDFfit()

 		
 Values2Dict()

 		
 abeles()

 		
 autoBkgCalc()

 		
 calcIncident()

 		
 cauchy_gen

 		
 ellipseSize()

 		
 ellipseSizeDerv()

 		
 factorize()

 		
 fcjde_gen

 		
 findPDFfit()

 		
 findfullrmc()

 		
 fullrmcDownload()

 		
 getBackground()

 		
 getBackgroundDerv()

 		
 getEpsVoigt()

 		
 getFCJVoigt()

 		
 getFCJVoigt3()

 		
 getFWHM()

 		
 getHKLMpeak()

 		
 getHKLpeak()

 		
 getHeaderInfo()

 		
 getPeakProfile()

 		
 getPeakProfileDerv()

 		
 getPsVoigt()

 		
 getWidthsCW()

 		
 getWidthsED()

 		
 getWidthsTOF()

 		
 getdEpsVoigt()

 		
 getdFCJVoigt3()

 		
 getdPsVoigt()

 		
 getgamFW()

 		
 makeFFTsizeList()

 		
 makeMEMfile()

 		
 makePRFfile()

 		
 norm_gen

 		
 peakInstPrmMode

 		
 setPeakInstPrmMode()

 		
 GSAS-II Small Angle Scattering

 		
 GSASII small angle calculation module

 		
 CylinderARFF()

 		
 CylinderARVol()

 		
 CylinderDFF()

 		
 CylinderDVol()

 		
 CylinderFF()

 		
 CylinderVol()

 		
 DiluteSF()

 		
 G_matrix()

 		
 GaussCume()

 		
 GaussDist()

 		
 HardSpheresSF()

 		
 IPG()

 		
 InterPrecipitateSF()

 		
 LSWCume()

 		
 LSWDist()

 		
 LogNormalCume()

 		
 LogNormalDist()

 		
 MaxEntException

 		
 MaxEnt_SB()

 		
 SchulzZimmCume()

 		
 SchulzZimmDist()

 		
 SphereFF()

 		
 SphereVol()

 		
 SphericalShellFF()

 		
 SphericalShellVol()

 		
 SpheroidFF()

 		
 SpheroidVol()

 		
 SquareWellSF()

 		
 StickyHardSpheresSF()

 		
 UniDiskFF()

 		
 UniDiskVol()

 		
 UniRodARFF()

 		
 UniRodARVol()

 		
 UniRodFF()

 		
 UniRodVol()

 		
 UniSphereFF()

 		
 UniSphereVol()

 		
 UniTubeFF()

 		
 UniTubeVol()

 		
 print_arr()

 		
 print_vec()

 		
 Substances: Define Materials

 		
 GSASIIscriptable: Scripting Interface

 		
 Summary/Contents

 		
 Installation of GSASIIscriptable

 		
 Application Interface (API) Summary

 		
 Overview of Classes

 		
 Independent Functions

 		
 Class G2Project

 		
 Class G2Phase

 		
 Class G2PwdrData

 		
 Class G2Image

 		
 Class G2PDF

 		
 Class G2SeqRefRes

 		
 Class G2AtomRecord

 		
 Refinement parameters

 		
 Project-level Parameter Dict

 		
 Refinement recipe

 		
 Refinement parameter types

 		
 Specifying Refinement Parameters

 		
 Histogram parameters

 		
 Phase parameters

 		
 Histogram-and-phase parameters

 		
 Histogram/Phase objects

 		
 Access to other parameter settings

 		
 Code Examples

 		
 Shortcut for Scripting Access

 		
 Peak Fitting

 		
 Pattern Simulation

 		
 Simple Refinement

 		
 Sequential Refinement

 		
 Image Processing

 		
 Image Calibration

 		
 Optimized Image Integration

 		
 Multicore Image Integration

 		
 Histogram Export

 		
 Automatic Background

 		
 GSASIIscriptable Command-line Interface

 		
 Parameters in JSON files

 		
 API: Complete Documentation

 		
 G2AtomRecord

 		
 G2Image

 		
 G2ImportException

 		
 G2ObjectWrapper

 		
 G2PDF

 		
 G2Phase

 		
 G2Project

 		
 G2PwdrData

 		
 G2ScriptException

 		
 G2SeqRefRes

 		
 GenerateReflections()

 		
 IPyBrowse()

 		
 LoadDictFromProjFile()

 		
 LoadG2fil()

 		
 PreSetup()

 		
 Readers

 		
 SaveDictToProjFile()

 		
 SetDefaultDData()

 		
 SetPrintLevel()

 		
 SetupGeneral()

 		
 add()

 		
 blkSize

 		
 calcMaskMap()

 		
 calcThetaAzimMap()

 		
 create()

 		
 dictDive()

 		
 dump()

 		
 export()

 		
 exportersByExtension

 		
 import_generic()

 		
 installScriptingShortcut()

 		
 load_iprms()

 		
 load_pwd_from_reader()

 		
 main()

 		
 make_empty_project()

 		
 patchControls()

 		
 refine()

 		
 GSAS-II Misc Scripts

 		
 testDeriv: Check derivative computation

 		
 main()

 		
 testDeriv

 		
 GSASIItestplot: Plotting for testDeriv

 		
 Plot

 		
 PlotNotebook

 		
 scanCCD: reduce data from scanning CCD

 		
 main()

 		
 scanCCD

 		
 scanCCDmain

 		
 makeMacApp: Create Mac Applet

 		
 AppleScript

 		
 makeBat: Create GSAS-II Batch File

 		
 makeLinux: Create Linux Shortcuts

 		
 makeVarTbl: Make Table of Variable Names

 		
 unit_tests: Self-test Module

 		
 test_GSASIIlattice()

 		
 test_GSASIIspc()

 		
 testSytSym: Test Site Symmetry

 		
 main()

 		
 testSytSmain

 		
 testSytSym

 		
 testSSymbols: Test Superspace Group Symbols

 		
 main()

 		
 testSSmain

 		
 testSSymbols

 		
 Other scripts

 		
 GSAS-II Web Modules

 		
 SUBGROUPS: Interface Bilbao SUBGROUPS & k-SUBGROUPSMAG web pages

 		
 BilbaoLowSymSea1()

 		
 BilbaoLowSymSea2()

 		
 BilbaoReSymSearch()

 		
 BilbaoSymSearch1()

 		
 BilbaoSymSearch2()

 		
 GetNonStdSubgroups()

 		
 GetNonStdSubgroupsmag()

 		
 GetStdSGset()

 		
 GetSupergroup()

 		
 applySym()

 		
 find2SearchAgain()

 		
 parseBilbaoCheckLattice()

 		
 saveNewPhase()

 		
 subBilbaoCheckLattice()

 		
 test()

 		
 ISODISTORT: Interface to BYU ISODISTORT web pages

 		
 GetISODISTORT()

 		
 GetISODISTORTcif()

 		
 GSAS-II Import Modules

 		
 Phase Import Routines

 		
 Module G2phase: PDB, .EXP & JANA m40,m50

 		
 Module G2phase_GPX: Import phase from GSAS-II project

 		
 Module G2phase_CIF: Coordinates from CIF

 		
 Module G2phase_INS: Import phase from SHELX INS file

 		
 Module G2phase_rmc6f: Import phase from RMCProfile

 		
 Module G2phase_xyz: read coordinates from an xyz file

 		
 Powder Data Import Routines

 		
 Module G2pwd_GPX: GSAS-II projects

 		
 Module G2pwd_fxye: GSAS data files

 		
 Module G2pwd_xye: Topas & Fit2D data

 		
 Module G2pwd_CIF: CIF powder data

 		
 Module G2pwd_BrukerRAW: Bruker .raw & .brml

 		
 Module G2pwd_FP: FullProf .dat data

 		
 Module G2pwd_Panalytical: Panalytical .xrdml data

 		
 Module G2pwd_csv: Read Excel .csv data

 		
 Module G2pwd_rigaku: powder data from a Rigaku .txt file

 		
 Single Crystal Data Import Routines

 		
 Module G2sfact: simple HKL import

 		
 Module G2sfact_CIF: CIF import

 		
 Small Angle Scattering Data Import Routines

 		
 Module G2sad_xye: read small angle data

 		
 Image Import Routines

 		
 Module G2img_ADSC: .img image file

 		
 Module G2img_EDF: .edf image file

 		
 Module G2img_SumG2: Python pickled image

 		
 Module G2img_GE: summed GE image file

 		
 Module G2img_MAR: MAR image files

 		
 Module G2img_Rigaku: .stl image file

 		
 Module G2img_1TIF: Tagged-image File images

 		
 Module G2img_PILTIF: Std Tagged-image File images

 		
 Module G2img_png: png image file

 		
 Module G2img_CBF: .cbf cif image file

 		
 Module G2img_HDF5: summed HDF5 image file

 		
 Module G2img_SFRM: Brucker .sfrm image file

 		
 PDF Import Routines

 		
 Module G2pdf_gr: read PDF G(R) data

 		
 Reflectometry Import Routines

 		
 Module G2rfd_xye: read reflectometry data

 		
 Module G2rfd_Panalytical: read Panalytical reflectometry data

 		
 Writing an Import Routine

 		
 __init__()

 		
 Reader()

 		
 ContentsValidator()

 		
 ReInitialize()

 		
 GSAS-II Export Modules

 		
 Module G2export_examples: Examples

 		
 G2export_examples Classes and Routines

 		
 Module G2export_csv: Spreadsheet export

 		
 G2export_csv Classes and Routines

 		
 Module G2export_PDB: Macromolecular export

 		
 G2export_PDB Classes and Routines

 		
 Module G2export_image: 2D Image data export

 		
 G2export_image Classes and Routines

 		
 Module G2export_map: Map export

 		
 G2export_map Classes and Routines

 		
 Module G2export_shelx: Examples

 		
 G2export_shelx Classes and Routines

 		
 Module G2export_CIF: CIF Exports

 		
 G2export_CIF Classes and Routines

 		
 Module G2export_pwdr: Export powder input files

 		
 G2export_pwdr Classes and Routines

 		
 Module G2export_FIT2D: Fit2D “Chi” export

 		
 G2export_FIT2d Classes and Routines

 		
 Module G2export_JSON: ASCII .gpx Export

 		
 G2export_JSON Classes and Routines

 		
 Module G2export_Bracket: ASCII .gpx Export

 		
 G2export_Bracket Classes and Routines

 		
 GSAS-II Independent Tools

 		
 GSASIIIntPDFtool: autointegration routines

 		
 AutoIntFrame

 		
 LookupFromTable()

 		
 MapCache

 		
 ProcessImage()

 		
 SetupInterpolation()

 		
 G2compare: Tool for project comparison

 		
 MakeTopWindow

 		
 RC2Ftest()

 		
 RwFtest()

 		
 main()

 		
 Indices

 		
 General Index

 		
 Module Index

_static/G2_html_logo.png
GSAS-2

