\(\renewcommand\AA{\text{Å}}\)

4. GSASIIobj: Data objects & Docs

This module defines many data structures used in GSAS-II, as well as provides misc. support routines for accessing them.

4.1. GSASIIobj Classes and routines

Classes and routines defined in GSASIIobj follow.

GSASIIobj.AddPhase2Index(rdObj, filename)[source]

Add a phase to the index during reading Used where constraints are generated during import (ISODISTORT CIFs)

GSASIIobj.AtomIdLookup = {}

dict listing for each phase index as a str, the atom label and atom random Id, keyed by atom sequential index as a str; best to access this using LookupAtomLabel()

GSASIIobj.AtomRanIdLookup = {}

dict listing for each phase the atom sequential index keyed by atom random Id; best to access this using LookupAtomId()

GSASIIobj.CompileVarDesc()[source]

Set the values in the variable lookup tables (reVarDesc and reVarStep). This is called in getDescr() and getVarStep() so this initialization is always done before use. These variables are also used in script makeVarTbl.py which creates the table in section 3.2 of the Sphinx docs (Parameter names in GSAS-II).

Note that keys may contain regular expressions, where ‘[xyz]’ matches ‘x’ ‘y’ or ‘z’ (equivalently ‘[x-z]’ describes this as range of values). ‘.*’ matches any string. For example:

'AUiso':'Atomic isotropic displacement parameter',

will match variable 'p::AUiso:a'. If parentheses are used in the key, the contents of those parentheses can be used in the value, such as:

'AU([123][123])':'Atomic anisotropic displacement parameter U\1',

will match AU11, AU23,… and U11, U23 etc will be displayed in the value when used.

GSASIIobj.CreatePDFitems(G2frame, PWDRtree, ElList, Qlimits, numAtm=1, FltBkg=0, PDFnames=[])[source]

Create and initialize a new set of PDF tree entries

Parameters:
  • G2frame (Frame) – main GSAS-II tree frame object

  • PWDRtree (str) – name of PWDR to be used to create PDF item

  • ElList (dict) – data structure with composition

  • Qlimits (list) – Q limits to be used for computing the PDF

  • numAtm (float) – no. atom in chemical formula

  • FltBkg (float) – flat background value

  • PDFnames (list) – previously used PDF names

Returns:

the Id of the newly created PDF entry

GSASIIobj.DefaultControls = {'Author': 'no name', 'Copy2Next': False, 'F**2': False, 'FreePrm1': 'Sample humidity (%)', 'FreePrm2': 'Sample voltage (V)', 'FreePrm3': 'Applied load (MN)', 'HatomFix': False, 'Reverse Seq': False, 'SVDtol': 1e-06, 'ShowCell': False, 'UsrReject': {'MaxD': 500.0, 'MaxDF/F': 100.0, 'MinD': 0.05, 'MinExt': 0.01, 'minF/sig': 0.0}, 'deriv type': 'analytic Hessian', 'max cyc': 3, 'min dM/M': 0.001, 'newLeBail': False, 'shift factor': 1.0}

Values to be used as defaults for the initial contents of the Controls data tree item.

class GSASIIobj.ExpressionCalcObj(exprObj)[source]

An object used to evaluate an expression from a ExpressionObj object.

Parameters:

exprObj (ExpressionObj) – a ExpressionObj expression object with an expression string and mappings for the parameter labels in that object.

EvalExpression()[source]

Evaluate an expression. Note that the expression and mapping are taken from the ExpressionObj expression object and the parameter values were specified in SetupCalc(). :returns: a single value for the expression. If parameter values are arrays (for example, from wild-carded variable names), the sum of the resulting expression is returned.

For example, if the expression is 'A*B', where A is 2.0 and B maps to '1::Afrac:*', which evaluates to:

[0.5, 1, 0.5]

then the result will be 4.0.

SetupCalc(parmDict)[source]

Do all preparations to use the expression for computation. Adds the free parameter values to the parameter dict (parmDict).

UpdateDict(parmDict)[source]

Update the dict for the expression with values in a dict :param dict parmDict: a dict of values, items not in use are ignored

UpdateVars(varList, valList)[source]

Update the dict for the expression with a set of values :param list varList: a list of variable names :param list valList: a list of corresponding values

__init__(exprObj)[source]
__weakref__

list of weak references to the object

compiledExpr

The expression as compiled byte-code

eObj

The expression and mappings; a ExpressionObj object

exprDict

dict that defines values for labels used in expression and packages referenced by functions

fxnpkgdict

a dict with references to packages needed to find functions referenced in the expression.

lblLookup

Lookup table that specifies the expression label name that is tied to a particular GSAS-II parameters in the parmDict.

parmDict

A copy of the parameter dictionary, for distance and angle computation

su

Standard error evaluation where supplied by the evaluator

varLookup

Lookup table that specifies the GSAS-II variable(s) indexed by the expression label name. (Used for only for diagnostics not evaluation of expression.)

class GSASIIobj.ExpressionObj[source]

Defines an object with a user-defined expression, to be used for secondary fits or restraints. Object is created null, but is changed using LoadExpression(). This contains only the minimum information that needs to be stored to save and load the expression and how it is mapped to GSAS-II variables.

CheckVars()[source]

Check that the expression can be parsed, all functions are defined and that input loaded into the object is internally consistent. If not an Exception is raised.

Returns:

a dict with references to packages needed to find functions referenced in the expression.

EditExpression(exprVarLst, varSelect, varName, varValue, varRefflag)[source]

Load the expression and associated settings from the object into arrays used for editing.

Parameters:
  • exprVarLst (list) – parameter labels found in the expression

  • varSelect (dict) – this will be 0 for Free parameters and non-zero for expression labels linked to G2 variables.

  • varName (dict) – Defines a name (str) associated with each free parameter

  • varValue (dict) – Defines a value (float) associated with each free parameter

  • varRefflag (dict) – Defines a refinement flag (bool) associated with each free parameter

Returns:

the expression as a str

GetDepVar()[source]

return the dependent variable, or None

GetIndependentVars()[source]

Returns the names of the required independent parameters used in expression

GetVaried()[source]

Returns the names of the free parameters that will be refined

GetVariedVarVal()[source]

Returns the names and values of the free parameters that will be refined

LoadExpression(expr, exprVarLst, varSelect, varName, varValue, varRefflag)[source]

Load the expression and associated settings into the object. Raises an exception if the expression is not parsed, if not all functions are defined or if not all needed parameter labels in the expression are defined.

This will not test if the variable referenced in these definitions are actually in the parameter dictionary. This is checked when the computation for the expression is done in SetupCalc().

Parameters:
  • expr (str) – the expression

  • exprVarLst (list) – parameter labels found in the expression

  • varSelect (dict) – this will be 0 for Free parameters and non-zero for expression labels linked to G2 variables.

  • varName (dict) – Defines a name (str) associated with each free parameter

  • varValue (dict) – Defines a value (float) associated with each free parameter

  • varRefflag (dict) – Defines a refinement flag (bool) associated with each free parameter

ParseExpression(expr)[source]

Parse an expression and return a dict of called functions and the variables used in the expression. Returns None in case an error is encountered. If packages are referenced in functions, they are loaded and the functions are looked up into the modules global workspace.

Note that no changes are made to the object other than saving an error message, so that this can be used for testing prior to the save.

Returns:

a list of used variables

SetDepVar(var)[source]

Set the dependent variable, if used

UpdateVariedVars(varyList, values)[source]

Updates values for the free parameters (after a refinement); only updates refined vars

__init__()[source]
__weakref__

list of weak references to the object

assgnVars

A dict where keys are label names in the expression mapping to a GSAS-II variable. The value a G2 variable name. Note that the G2 variable name may contain a wild-card and correspond to multiple values.

expression

The expression as a text string

freeVars

A dict where keys are label names in the expression mapping to a free parameter. The value is a list with:

  • a name assigned to the parameter

  • a value for to the parameter and

  • a flag to determine if the variable is refined.

lastError

Shows last encountered error in processing expression (list of 1-3 str values)

GSASIIobj.FindFunction(f)[source]

Find the object corresponding to function f

Parameters:

f (str) – a function name such as ‘numpy.exp’

Returns:

(pkgdict,pkgobj) where pkgdict contains a dict that defines the package location(s) and where pkgobj defines the object associated with the function. If the function is not found, pkgobj is None.

exception GSASIIobj.G2Exception(msg)[source]

A generic GSAS-II exception class

__init__(msg)[source]
__str__()[source]

Return str(self).

__weakref__

list of weak references to the object

exception GSASIIobj.G2RefineCancel(msg)[source]

Raised when Cancel is pressed in a refinement dialog

__init__(msg)[source]
__str__()[source]

Return str(self).

__weakref__

list of weak references to the object

class GSASIIobj.G2VarObj(*args)[source]

Defines a GSAS-II variable either using the phase/atom/histogram unique Id numbers or using a character string that specifies variables by phase/atom/histogram number (which can change). Note that GSASIIstrIO.GetUsedHistogramsAndPhases(), which calls IndexAllIds() (or GSASIIscriptable.G2Project.index_ids()) should be used to (re)load the current Ids before creating or later using the G2VarObj object.

This can store rigid body variables, but does not translate the residue # and body # to/from random Ids

A G2VarObj object can be created with a single parameter:

Parameters:

varname (str/tuple) –

a single value can be used to create a G2VarObj

object. If a string, it must be of form “p:h:var” or “p:h:var:a”, where

  • p is the phase number (which may be left blank or may be ‘*’ to indicate all phases);

  • h is the histogram number (which may be left blank or may be ‘*’ to indicate all histograms);

  • a is the atom number (which may be left blank in which case the third colon is omitted). The atom number can be specified as ‘*’ if a phase number is specified (not as ‘*’). For rigid body variables, specify a will be a string of form “residue:body#”

Alternately a single tuple of form (Phase,Histogram,VarName,AtomID) can be used, where Phase, Histogram, and AtomID are None or are ranId values (or one can be ‘*’) and VarName is a string. Note that if Phase is ‘*’ then the AtomID is an atom number. For a rigid body variables, AtomID is a string of form “residue:body#”.

If four positional arguments are supplied, they are:

Parameters:
  • phasenum (str/int) – The number for the phase (or None or ‘*’)

  • histnum (str/int) – The number for the histogram (or None or ‘*’)

  • varname (str) – a single value can be used to create a G2VarObj

  • atomnum (str/int) – The number for the atom (or None or ‘*’)

__eq__(other)[source]

Allow comparison of G2VarObj to other G2VarObj objects or strings. If any field is a wildcard (‘*’) that field matches.

__hash__()[source]

Allow G2VarObj to be a dict key by implementing hashing

__init__(*args)[source]
__repr__()[source]

Return the detailed contents of the object

__str__()[source]

Return str(self).

__weakref__

list of weak references to the object

_show()[source]

For testing, shows the current lookup table

fmtVarByMode(seqmode, note, warnmsg)[source]

Format a parameter object for display. Note that these changes are only temporary and are only shown only when the Constraints data tree is selected.

  • In a non-sequential refinement or where the mode is ‘use-all’, the name is converted unchanged to a str

  • In a sequential refinement when the mode is ‘wildcards-only’ the name is converted unchanged to a str but a warning is added for non-wildcarded HAP or Histogram parameters

  • In a sequential refinement or where the mode is ‘auto-wildcard’, a histogram number is converted to a wildcard (*) and then converted to str

Parameters:
  • mode (str) – the sequential mode (see above)

  • note (str) – value displayed on the line of the constraint/equiv.

  • warnmsg (str) – a message saying the constraint is not used

Returns:

varname, explain, note, warnmsg (all str values) where:

  • varname is the parameter expressed as a string,

  • explain is blank unless there is a warning explanation about the parameter or blank

  • note is the previous value unless overridden

  • warnmsg is the previous value unless overridden

varname(hist=None)[source]

Formats the GSAS-II variable name as a “traditional” GSAS-II variable string (p:h:<var>:a) or (p:h:<var>)

Parameters:

hist (str/int) – if specified, overrides the histogram number with the specified value

Returns:

the variable name as a str

GSASIIobj.GenWildCard(varlist)[source]

Generate wildcard versions of G2 variables. These introduce ‘*’ for a phase, histogram or atom number (but only for one of these fields) but only when there is more than one matching variable in the input variable list. So if the input is this:

varlist = ['0::AUiso:0', '0::AUiso:1', '1::AUiso:0']

then the output will be this:

wildList = ['*::AUiso:0', '0::AUiso:*']
Parameters:

varlist (list) – an input list of GSAS-II variable names (such as 0::AUiso:0)

Returns:

wildList, the generated list of wild card variable names.

GSASIIobj.GetPhaseNames(fl)[source]

Returns a list of phase names found under ‘Phases’ in GSASII gpx file NB: there is another one of these in GSASIIstrIO.py that uses the gpx filename

Parameters:

fl (file) – opened .gpx file

Returns:

list of phase names

GSASIIobj.HistIdLookup = {}

dict listing histogram name and random Id, keyed by sequential histogram index as a str; best to access this using LookupHistName()

GSASIIobj.HistRanIdLookup = {}

dict listing histogram sequential index keyed by histogram random Id; best to access this using LookupHistId()

GSASIIobj.HowDidIgetHere(wherecalledonly=False)[source]

Show a traceback with calls that brought us to the current location. Used for debugging.

Parameters:

wherecalledonly (bool) – When True, the entire calling stack is shown. When False (default), only the 2nd to last stack entry (the routine that called the calling routine is shown.

class GSASIIobj.ImportBaseclass(formatName, longFormatName=None, extensionlist=[], strictExtension=False)[source]

Defines a base class for the reading of input files (diffraction data, coordinates,…). See Writing a Import Routine for an explanation on how to use a subclass of this class.

CIFValidator(filepointer)[source]

A ContentsValidator() for use to validate CIF files.

ContentsValidator(filename)[source]

This routine will attempt to determine if the file can be read with the current format. This will typically be overridden with a method that takes a quick scan of [some of] the file contents to do a “sanity” check if the file appears to match the selected format. the file must be opened here with the correct format (binary/text)

ExtensionValidator(filename)[source]

This methods checks if the file has the correct extension

Returns:

  • False if this filename will not be supported by this reader (only when strictExtension is True)

  • True if the extension matches the list supplied by the reader

  • None if the reader allows un-registered extensions

exception ImportException[source]

Defines an Exception that is used when an import routine hits an expected error, usually in .Reader.

Good practice is that the Reader should define a value in self.errors that tells the user some information about what is wrong with their file.

__weakref__

list of weak references to the object

ReInitialize()[source]

Reinitialize the Reader to initial settings

__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)[source]
__weakref__

list of weak references to the object

class GSASIIobj.ImportImage(formatName, longFormatName=None, extensionlist=[], strictExtension=False)[source]

Defines a base class for the reading of images

Images are read in only these places:

When reading an image, the Reader() routine in the ImportImage class should set:

  • Comments: a list of strings (str),

  • Npix: the number of pixels in the image (int),

  • Image: the actual image as a numpy array (np.array)

  • Data: a dict defining image parameters (dict). Within this dict the following data items are used:

    • pixelSize: size of each pixel (x,y) in microns (such as [200.,200.].

    • wavelength: wavelength in \(\AA\).

    • distance: distance of detector from sample in cm.

    • center: uncalibrated center of beam on detector (such as [204.8,204.8], in mm measured from top left corner of the detector

    • size: size of image in pixels (x,y) (such as [2048,2048]).

    • ImageTag: image number or other keyword used to retrieve image from a multi-image data file (defaults to 1 if not specified).

    • sumfile: holds sum image file name if a sum was produced from a multi image file

    • PolaVal: has two values, the polarization fraction (typically 0.95-0.99 for synchrotrons, 0.5 for lab instruments) and a refinement flag (such as [0.99, False]).

    • setdist: nominal distance from sample to detector. Note that distance may be changed during calibration, but setdist will not be, so that calibration may be repeated.

optional data items:

  • repeat: set to True if there are additional images to read in the file, False otherwise

  • repeatcount: set to the number of the image.

Note that the above is initialized with InitParameters(). (Also see Writing a Import Routine for an explanation on how to use import classes in general.)

InitParameters()[source]

initialize the instrument parameters structure

LoadImage(ParentFrame, imagefile, imagetag=None)[source]

Optionally, call this after reading in an image to load it into the tree. This saves time by preventing a reread of the same information.

ReInitialize()[source]

Reinitialize the Reader to initial settings – not used at present

__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)[source]
class GSASIIobj.ImportPDFData(formatName, longFormatName=None, extensionlist=[], strictExtension=False)[source]

Defines a base class for the reading of files with PDF G(R) data. See Writing a Import Routine for an explanation on how to use this class.

ReInitialize()[source]

Reinitialize the Reader to initial settings

__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)[source]
class GSASIIobj.ImportPhase(formatName, longFormatName=None, extensionlist=[], strictExtension=False)[source]

Defines a base class for the reading of files with coordinates

Objects constructed that subclass this (in import/G2phase_*.py etc.) will be used in GSASIIdataGUI.GSASII.OnImportPhase() and in GSASIIscriptable.import_generic(). See Writing a Import Routine for an explanation on how to use this class.

__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)[source]
class GSASIIobj.ImportPowderData(formatName, longFormatName=None, extensionlist=[], strictExtension=False)[source]

Defines a base class for the reading of files with powder data.

Objects constructed that subclass this (in import/G2pwd_*.py etc.) will be used in GSASIIdataGUI.GSASII.OnImportPowder() and in GSASIIscriptable.import_generic(). See Writing a Import Routine for an explanation on how to use this class.

ReInitialize()[source]

Reinitialize the Reader to initial settings

__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)[source]
class GSASIIobj.ImportReflectometryData(formatName, longFormatName=None, extensionlist=[], strictExtension=False)[source]

Defines a base class for the reading of files with reflectometry data. See Writing a Import Routine for an explanation on how to use this class.

ReInitialize()[source]

Reinitialize the Reader to initial settings

__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)[source]
class GSASIIobj.ImportSmallAngleData(formatName, longFormatName=None, extensionlist=[], strictExtension=False)[source]

Defines a base class for the reading of files with small angle data. See Writing a Import Routine for an explanation on how to use this class.

ReInitialize()[source]

Reinitialize the Reader to initial settings

__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)[source]
class GSASIIobj.ImportStructFactor(formatName, longFormatName=None, extensionlist=[], strictExtension=False)[source]

Defines a base class for the reading of files with tables of structure factors.

Structure factors are read with a call to GSASIIdataGUI.GSASII.OnImportSfact() which in turn calls GSASIIdataGUI.GSASII.OnImportGeneric(), which calls methods ExtensionValidator(), ContentsValidator() and Reader().

See Writing a Import Routine for an explanation on how to use import classes in general. The specifics for reading a structure factor histogram require that the Reader() routine in the import class need to do only a few things: It should load RefDict item 'RefList' with the reflection list, and set Parameters with the instrument parameters (initialized with InitParameters() and set with UpdateParameters()).

Banks

self.RefDict is a dict containing the reflection information, as read from the file. Item ‘RefList’ contains the reflection information. See the Single Crystal Reflection Data Structure for the contents of each row. Dict element ‘FF’ contains the form factor values for each element type; if this entry is left as initialized (an empty list) it will be initialized as needed later.

InitParameters()[source]

initialize the instrument parameters structure

Parameters

self.Parameters is a list with two dicts for data parameter settings

ReInitialize()[source]

Reinitialize the Reader to initial settings

UpdateParameters(Type=None, Wave=None)[source]

Revise the instrument parameters

__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)[source]
GSASIIobj.IndexAllIds(Histograms, Phases)[source]

Scan through the used phases & histograms and create an index to the random numbers of phases, histograms and atoms. While doing this, confirm that assigned random numbers are unique – just in case lightning strikes twice in the same place.

Note: this code assumes that the atom random Id (ranId) is the last element each atom record.

This is called when phases & histograms are looked up in these places (only):

Note that globals PhaseIdLookup and PhaseRanIdLookup are also set in AddPhase2Index() to temporarily assign a phase number as a phase is being imported.

TODO: do we need a lookup for rigid body variables?

GSASIIobj.LookupAtomId(pId, ranId)[source]

Get the atom number from a phase and atom random Id

Parameters:
  • pId (int/str) – the sequential number of the phase

  • ranId (int) – the random Id assigned to an atom

Returns:

the index number of the atom (str)

GSASIIobj.LookupAtomLabel(pId, index)[source]

Get the atom label from a phase and atom index number

Parameters:
  • pId (int/str) – the sequential number of the phase

  • index (int) – the index of the atom in the list of atoms

Returns:

the label for the atom (str) and the random Id of the atom (int)

GSASIIobj.LookupHistId(ranId)[source]

Get the histogram number and name from a histogram random Id

Parameters:

ranId (int) – the random Id assigned to a histogram

Returns:

the sequential Id (hId) number for the histogram (str)

GSASIIobj.LookupHistName(hId)[source]

Get the histogram number and name from a histogram Id

Parameters:

hId (int/str) – the sequential assigned to a histogram

Returns:

(hist,ranId) where hist is the name of the histogram (str) and ranId is the random # id for the histogram (int)

GSASIIobj.LookupPhaseId(ranId)[source]

Get the phase number and name from a phase random Id

Parameters:

ranId (int) – the random Id assigned to a phase

Returns:

the sequential Id (pId) number for the phase (str)

GSASIIobj.LookupPhaseName(pId)[source]

Get the phase number and name from a phase Id

Parameters:

pId (int/str) – the sequential assigned to a phase

Returns:

(phase,ranId) where phase is the name of the phase (str) and ranId is the random # id for the phase (int)

GSASIIobj.LookupWildCard(varname, varlist)[source]

returns a list of variable names from list varname that match wildcard name in varname

Parameters:
  • varname (str) – a G2 variable name containing a wildcard (such as *::var)

  • varlist (list) – the list of all variable names used in the current project

Returns:

a list of matching GSAS-II variables (may be empty)

GSASIIobj.MakeUniqueLabel(lbl, labellist)[source]

Make sure that every a label is unique against a list by adding digits at the end until it is not found in list.

Parameters:
  • lbl (str) – the input label

  • labellist (list) – the labels that have already been encountered

Returns:

lbl if not found in labellist or lbl with _1-9 (or _10-99, etc.) appended at the end

GSASIIobj.PhaseIdLookup = {}

dict listing phase name and random Id keyed by sequential phase index as a str; best to access this using LookupPhaseName()

GSASIIobj.PhaseRanIdLookup = {}

dict listing phase sequential index keyed by phase random Id; best to access this using LookupPhaseId()

GSASIIobj.ReadCIF(URLorFile)[source]

Open a CIF, which may be specified as a file name or as a URL using PyCifRW (from James Hester). The open routine gets confused with DOS names that begin with a letter and colon “C:dir” so this routine will try to open the passed name as a file and if that fails, try it as a URL

Parameters:

URLorFile (str) – string containing a URL or a file name. Code will try first to open it as a file and then as a URL.

Returns:

a PyCifRW CIF object.

GSASIIobj.SetDefaultSample()[source]

Fills in default items for the Sample dictionary for Debye-Scherrer & SASD

GSASIIobj.SetNewPhase(Name='New Phase', SGData=None, cell=None, Super=None)[source]

Create a new phase dict with default values for various parameters

Parameters:
  • Name (str) – Name for new Phase

  • SGData (dict) – space group data from GSASIIspc:SpcGroup(); defaults to data for P 1

  • cell (list) – unit cell parameter list; defaults to [1.0,1.0,1.0,90.,90,90.,1.]

GSASIIobj.ShortHistNames = {}

a dict containing a possibly shortened and when non-unique numbered version of the histogram name. Keyed by the histogram sequential index.

GSASIIobj.ShortPhaseNames = {}

a dict containing a possibly shortened and when non-unique numbered version of the phase name. Keyed by the phase sequential index.

class GSASIIobj.ShowTiming[source]

An object to use for timing repeated sections of code.

Create the object with::

tim0 = ShowTiming()

Tag sections of code to be timed with::

tim0.start(‘start’) tim0.start(‘in section 1’) tim0.start(‘in section 2’)

etc. (Note that each section should have a unique label.)

After the last section, end timing with::

tim0.end()

Show timing results with::

tim0.show()

__init__()[source]
__weakref__

list of weak references to the object

GSASIIobj.SortVariables(varlist)[source]

Sorts variable names in a sensible manner

GSASIIobj.StripUnicode(string, subs='.')[source]

Strip non-ASCII characters from strings

Parameters:
  • string (str) – string to strip Unicode characters from

  • subs (str) – character(s) to place into string in place of each Unicode character. Defaults to ‘.’

Returns:

a new string with only ASCII characters

GSASIIobj.TestIndexAll()[source]

Test if IndexAllIds() has been called to index all phases and histograms (this is needed before G2VarObj() can be used.

Returns:

Returns True if indexing is needed.

GSASIIobj.VarDescr(varname)[source]

Return two strings with a more complete description for a GSAS-II variable

Parameters:

name (str) – A full G2 variable name with 2 or 3 or 4 colons (<p>:<h>:name[:<a>] or <p>::RBname:<r>:<t>])

Returns:

(loc,meaning) where loc describes what item the variable is mapped (phase, histogram, etc.) and meaning describes what the variable does.

GSASIIobj._lookup(dic, key)[source]

Lookup a key in a dictionary, where None returns an empty string but an unmatched key returns a question mark. Used in G2VarObj

GSASIIobj.fmtVarDescr(varname)[source]

Return a string with a more complete description for a GSAS-II variable

Parameters:

varname (str) – A full G2 variable name with 2 or 3 or 4 colons (<p>:<h>:name[:<a>] or <p>::RBname:<r>:<t>])

Returns:

a string with the description

GSASIIobj.getDescr(name)[source]

Return a short description for a GSAS-II variable

Parameters:

name (str) – The descriptive part of the variable name without colons (:)

Returns:

a short description or None if not found

GSASIIobj.getVarDescr(varname)[source]

Return a short description for a GSAS-II variable

Parameters:

name (str) – A full G2 variable name with 2 or 3 or 4 colons (<p>:<h>:name[:<a1>][:<a2>])

Returns:

a six element list as [p,`h`,`name`,`a1`,`a2`,`description`], where p, h, a1, a2 are str values or None, for the phase number, the histogram number and the atom number; name will always be a str; and description is str or None. If the variable name is incorrectly formed (for example, wrong number of colons), None is returned instead of a list.

GSASIIobj.getVarStep(name, parmDict=None)[source]

Return a step size for computing the derivative of a GSAS-II variable

Parameters:
  • name (str) – A complete variable name (with colons, :)

  • parmDict (dict) – A dict with parameter values or None (default)

Returns:

a float that should be an appropriate step size, either from the value supplied in CompileVarDesc() or based on the value for name in parmDict, if supplied. If not found or the value is zero, a default value of 1e-5 is used. If parmDict is None (default) and no value is provided in CompileVarDesc(), then None is returned.

GSASIIobj.patchControls(Controls)[source]

patch routine to convert variable names used in parameter limits to G2VarObj objects (See Parameter Limits description.)

GSASIIobj.prmLookup(name, prmDict)[source]

Looks for a parameter in a min/max dictionary, optionally considering a wild card for histogram or atom number (use of both will never occur at the same time).

Parameters:
Returns:

Two values, (matchname, value), are returned where:

  • matchname (str) is the G2VarObj object corresponding to the actual matched name, which could contain a wildcard even if name does not; and

  • value (float) which contains the parameter limit.

GSASIIobj.reVarDesc = {re.compile('([UVW])$'): 'Gaussian instrument broadening \\1', re.compile('([XYZ])$'): 'Cauchy instrument broadening \\1', re.compile('([XYZ])cos'): 'Cos position wave for \\1', re.compile('([XYZ])max'): 'ZigZag/Block max value for \\1', re.compile('([XYZ])sin'): 'Sin position wave for \\1', re.compile('([abc])$'): 'Lattice parameter, \\1, from Ai and Djk', re.compile('([vV]ol)'): 'Unit cell volume', re.compile('A([0-5])'): 'Reciprocal metric tensor component \\1', re.compile('A([xyz])$'): 'Fractional atomic coordinate, \\1', re.compile('AD\\([0-6],-[0-6]\\)([0-6])'): ' Atomic sp. harm. coeff for orbital, \\1', re.compile('AD\\([0-6],[0-6]\\)([0-6])'): ' Atomic sp. harm. coeff for orbital, \\1', re.compile('AM([xyz])$'): 'Atomic magnetic moment parameter, \\1', re.compile('ANe([01])'): ' Atomic <j0> orbital population for orbital, \\1', re.compile('AU([123][123])'): 'Atomic anisotropic displacement parameter U\\1', re.compile('AUiso'): 'Atomic isotropic displacement parameter', re.compile('Absorption'): 'Absorption coef.', re.compile('Afrac'): 'Atomic site fraction parameter', re.compile('Akappa([0-6])'): ' Atomic orbital softness for orbital, \\1', re.compile('Amul'): 'Atomic site multiplicity value', re.compile('Aspect ratio'): 'Particle aspect ratio', re.compile('B$'): 'Porod prefactor', re.compile('BF mult'): 'Background file multiplier', re.compile('Bab([AU])'): 'Babinet solvent scattering coef. \\1', re.compile('Back$'): 'background parameter', re.compile('Back(.*)'): 'Background term #\\1', re.compile('BkPkgam;(.*)'): 'Background peak #\\1 Cauchy width', re.compile('BkPkint;(.*)'): 'Background peak #\\1 intensity', re.compile('BkPkpos;(.*)'): 'Background peak #\\1 position', re.compile('BkPksig;(.*)'): 'Background peak #\\1 Gaussian width', re.compile('C\\([0-9]*,[0-9]*\\)'): 'spherical harmonics preferred orientation coef.', re.compile('Cutoff'): 'Porod cutoff', re.compile('D([123][123])'): 'Anisotropic strain coef. \\1', re.compile('Dcalc'): 'Calc. d-spacing', re.compile('DebyeA'): 'Debye model amplitude', re.compile('DebyeR'): 'Debye model radius', re.compile('DebyeU'): 'Debye model Uiso', re.compile('Depth'): 'Well depth', re.compile('Diameter'): 'Cylinder/disk diameter', re.compile('Displace([XY])'): 'Debye-Scherrer sample displacement \\1', re.compile('Dist'): 'Interparticle distance', re.compile('Eg$'): 'Secondary type I extinction', re.compile('Ep$'): 'Primary extinction', re.compile('Es$'): 'Secondary type II extinction', re.compile('Extinction'): 'Extinction coef.', re.compile('Fcos'): 'Cos site fraction modulation', re.compile('Flack'): 'Flack parameter', re.compile('FreePrm([123])'): 'User defined measurement parameter \\1', re.compile('Fsin'): 'Sin site fraction modulation', re.compile('Fwid'): 'Crenel function width', re.compile('Fzero'): 'Crenel function offset', re.compile('G$'): 'Guinier prefactor', re.compile('Gonio. radius'): 'Distance from sample to detector, mm', re.compile('I\\(L2\\)\\/I\\(L1\\)'): 'Ka2/Ka1 intensity ratio', re.compile('Lam'): 'Wavelength', re.compile('Layer Disp'): 'Layer displacement along beam', re.compile('LayerDisp'): 'Bragg-Brentano Layer displacement', re.compile('Length'): 'Cylinder length', re.compile('M([XYZ])cos$'): 'Cos mag. moment wave for \\1', re.compile('M([XYZ])sin$'): 'Sin mag. moment wave for \\1', re.compile('MD'): 'March-Dollase coef.', re.compile('Mean'): 'Particle mean radius', re.compile('Mustrain;.*'): 'Microstrain coefficient (delta Q/Q x 10**6)', re.compile('P$'): 'Porod power', re.compile('PDFmag'): 'PDF peak magnitude', re.compile('PDFpos'): 'PDF peak position', re.compile('PDFsig'): 'PDF peak std. dev.', re.compile('PkGam'): 'Bragg peak gamma', re.compile('PkInt'): 'Bragg peak intensity', re.compile('PkPos'): 'Bragg peak position', re.compile('PkSig'): 'Bragg peak sigma', re.compile('Polariz.'): 'Polarization correction', re.compile('Pressure'): 'Pressure level for measurement in MPa', re.compile('RBR([TLS])([123AB][123AB])'): 'Residue rigid body group disp. param.', re.compile('RBRO([aijk])'): 'Residue rigid body orientation parameter \\1', re.compile('RBRP([xyz])'): 'Residue rigid body \\1 position parameter', re.compile('RBRTr;.*'): 'Residue rigid body torsion parameter', re.compile('RBRU'): 'Residue rigid body group Uiso param.', re.compile('RBRf'): 'Residue rigid body site fraction', re.compile('RBSAtNo'): 'Atom number for spinning rigid body', re.compile('RBSO([aijk])'): 'Spinning rigid body orientation parameter \\1', re.compile('RBSP([xyz])'): 'Spinning rigid body \\1 position parameter', re.compile('RBSShC([1-20,1-20])'): 'Spinning rigid body sph. harmonics term', re.compile('RBSShRadius'): 'Spinning rigid body shell radius', re.compile('RBV([TLS])([123AB][123AB])'): 'Residue rigid body group disp. param.', re.compile('RBV.*'): 'Vector rigid body parameter', re.compile('RBVO([aijk])'): 'Vector rigid body orientation parameter \\1', re.compile('RBVP([xyz])'): 'Vector rigid body \\1 position parameter', re.compile('RBVU'): 'Residue rigid body group Uiso param.', re.compile('RBVf'): 'Vector rigid body site fraction', re.compile('Radius'): 'Sphere/cylinder/disk radius', re.compile('Rg$'): 'Guinier radius of gyration', re.compile('SH/L'): 'FCJ peak asymmetry correction', re.compile('Scale'): 'Phase fraction (as p:h:Scale) or Histogram scale factor (as :h:Scale)', re.compile('Shell thickness'): 'Multiplier to get inner(<1) or outer(>1) sphere radius', re.compile('Shift'): 'Bragg-Brentano sample displ.', re.compile('Size;.*'): 'Crystallite size value (in microns)', re.compile('StdDev'): 'Standard deviation in Mean', re.compile('Sticky'): 'Stickyness', re.compile('SurfRoughA'): 'Bragg-Brenano surface roughness A', re.compile('SurfRoughB'): 'Bragg-Brenano surface roughness B', re.compile('Temperature'): 'T value for measurement, K', re.compile('Thickness'): 'Disk thickness', re.compile('Tmax'): 'ZigZag/Block max location', re.compile('Tmin'): 'ZigZag/Block min location', re.compile('Transparency'): 'Bragg-Brentano sample tranparency', re.compile('TwinFr'): 'Twin fraction', re.compile('U([123][123])cos$'): 'Cos thermal wave for U\\1', re.compile('U([123][123])sin$'): 'Sin thermal wave for U\\1', re.compile('VolFr'): 'Dense scatterer volume fraction', re.compile('Volume'): 'Particle volume', re.compile('WgtFrac'): 'phase weight fraction', re.compile('Width'): 'Well width', re.compile('Zero'): 'Debye-Scherrer zero correction', re.compile('alpha'): 'TOF profile term', re.compile('alpha-([01])'): 'Pink profile term', re.compile('beta-([01q])'): 'TOF/Pink profile term', re.compile('constr([0-9]*)'): 'Generated degree of freedom from constraint', re.compile('dA([xyz])$'): 'Refined change to atomic coordinate, \\1', re.compile('dif([ABC])'): 'TOF to d-space calibration', re.compile('e([12][12])'): 'strain tensor e\\1', re.compile('eA$'): 'Cubic mustrain value', re.compile('epis'): 'Sticky sphere epsilon', re.compile('int$'): 'peak intensity', re.compile('mV([0-2])$'): 'Modulation vector component \\1', re.compile('nv-(.+)'): 'New variable assignment with name \\1', re.compile('pos$'): 'peak position', re.compile('sig-([012q])'): 'TOF profile term', re.compile('α'): 'Lattice parameter, α, computed from both Ai and Djk', re.compile('β'): 'Lattice parameter, β, computed from both Ai and Djk', re.compile('γ'): 'Lattice parameter, γ, computed from both Ai and Djk'}

This dictionary lists descriptions for GSAS-II variables where keys are compiled regular expressions that will match the name portion of a parameter name. Initialized in CompileVarDesc().

GSASIIobj.reVarStep = {re.compile('([UVW])$'): 1e-05, re.compile('([XYZ])$'): 1e-05, re.compile('A([0-5])'): 1e-05, re.compile('AU([123][123])'): 0.0001, re.compile('AUiso'): 0.0001, re.compile('Afrac'): 1e-05, re.compile('Displace([XY])'): 0.1, re.compile('I\\(L2\\)\\/I\\(L1\\)'): 0.001, re.compile('Lam'): 1e-06, re.compile('Polariz.'): 0.001, re.compile('SH/L'): 0.0001, re.compile('dA([xyz])$'): 1e-06}

This dictionary lists the preferred step size for numerical derivative computation w/r to a GSAS-II variable. Keys are compiled regular expressions and values are the step size for that parameter. Initialized in CompileVarDesc().

GSASIIobj.removeNonRefined(parmList)[source]

Remove items from variable list that are not refined and should not appear as options for constraints

Parameters:

parmList (list) – a list of strings of form “p:h:VAR:a” where VAR is the variable name

Returns:

a list after removing variables where VAR matches a entry in local variable NonRefinedList

GSASIIobj.restraintNames = [['Bond', 'Bonds'], ['Angle', 'Angles'], ['Plane', 'Planes'], ['Chiral', 'Volumes'], ['Torsion', 'Torsions'], ['Rama', 'Ramas'], ['ChemComp', 'Sites'], ['Texture', 'HKLs'], ['Moments', 'Moments'], ['General', 'General']]

Names of restraint keys for the restraint dict and the location of the restraints in each dict

GSASIIobj.validateAtomDrawType(typ, generalData={})[source]

Confirm that the selected Atom drawing type is valid for the current phase. If not, use ‘vdW balls’. This is currently used only for setting a default when atoms are added to the atoms draw list.