# -*- coding: utf-8 -*-
''':mod:`GSASIIspc` Classes & routines follow
'''
from __future__ import division, print_function
import numpy as np
import numpy.linalg as nl
import scipy.optimize as so
import sys
import copy
import os.path as ospath
from . import GSASIIpath
GSASIIpath.SetBinaryPath()
from . import GSASIIlattice as G2lat
try:
if GSASIIpath.binaryPath:
import pyspg
else:
from . import pyspg
except ImportError:
print('binary load error: pyspg not found')
npsind = lambda x: np.sin(x*np.pi/180.)
npcosd = lambda x: np.cos(x*np.pi/180.)
nxs = np.newaxis
DEBUG = False
################################################################################
#### Space group codes
################################################################################
[docs]
def SpcGroup(SGSymbol):
"""
Determines cell and symmetry information from a short H-M space group name
:param SGSymbol: space group symbol (string) with spaces between axial fields
:returns: (SGError,SGData)
* SGError = 0 for no errors; >0 for errors (see :func:`SGErrors` for details)
* SGData - is a dict (see :ref:`Space Group object<SGData_table>`) with entries:
* 'SpGrp': space group symbol, slightly cleaned up
* 'SGFixed': True if space group data can not be changed, e.g. from magnetic cif; otherwise False
* 'SGGray': True if 1' in symbol - gray group for mag. incommensurate phases
* 'SGLaue': one of '-1', '2/m', 'mmm', '4/m', '4/mmm', '3R',
'3mR', '3', '3m1', '31m', '6/m', '6/mmm', 'm3', 'm3m'
* 'SGInv': boolean; True if centrosymmetric, False if not
* 'SGLatt': one of 'P', 'A', 'B', 'C', 'I', 'F', 'R'
* 'SGUniq': one of 'a', 'b', 'c' if monoclinic, '' otherwise
* 'SGCen': cell centering vectors [0,0,0] at least
* 'SGOps': symmetry operations as [M,T] so that M*x+T = x'
* 'SGSys': one of 'triclinic', 'monoclinic', 'orthorhombic',
'tetragonal', 'rhombohedral', 'trigonal', 'hexagonal', 'cubic'
* 'SGPolax': one of ' ', 'x', 'y', 'x y', 'z', 'x z', 'y z',
'xyz', '111' for arbitrary axes
* 'SGPtGrp': one of 32 point group symbols (with some permutations), which
is filled by SGPtGroup, is external (KE) part of supersymmetry point group
* 'SSGKl': default internal (Kl) part of supersymmetry point group; modified
in supersymmetry stuff depending on chosen modulation vector for Mono & Ortho
* 'BNSlattsym': BNS lattice symbol & cenering op - used for magnetic structures
"""
LaueSym = ('-1','2/m','mmm','4/m','4/mmm','3R','3mR','3','3m1','31m','6/m','6/mmm','m3','m3m')
LattSym = ('P','A','B','C','I','F','R')
UniqSym = ('','','a','b','c','',)
SysSym = ('triclinic','monoclinic','orthorhombic','tetragonal','rhombohedral','trigonal','hexagonal','cubic')
SGData = {}
if len(SGSymbol.split()) < 2:
return SGErrors(0),SGData
if ':R' in SGSymbol:
SGSymbol = SGSymbol.replace(':',' ') #get rid of ':' in R space group symbols from some cif files
SGData['SGGray'] = False
if "1'" in SGSymbol: #set for incommensurate magnetic
SGData['SGGray'] = True
SGSymbol = SGSymbol.replace("1'",'')
SGSymbol = SGSymbol.split(':')[0] #remove :1/2 setting symbol from some cif files
if '-2' in SGSymbol: #replace bad but legal symbols with correct equivalents
SGSymbol = SGSymbol.replace('-2','m')
if SGSymbol.split()[1] =='3/m':
SGSymbol = SGSymbol.replace('3/m','-6')
SGInfo = pyspg.sgforpy(SGSymbol)
SGData['SpGrp'] = SGSymbol.strip().lower().capitalize()
SGData['SGLaue'] = LaueSym[SGInfo[0]-1]
SGData['SGInv'] = bool(SGInfo[1])
SGData['SGLatt'] = LattSym[SGInfo[2]-1]
SGData['SGUniq'] = UniqSym[SGInfo[3]+1]
SGData['SGFixed'] = False
SGData['SGOps'] = []
SGData['SGGen'] = []
for i in range(SGInfo[5]):
Mat = np.array(SGInfo[6][i])
Trns = np.array(SGInfo[7][i])
SGData['SGOps'].append([Mat,Trns])
if 'array' in str(type(SGInfo[8])): #patch for old fortran bin?
SGData['SGGen'].append(int(SGInfo[8][i]))
SGData['BNSlattsym'] = [LattSym[SGInfo[2]-1],[0,0,0]]
lattSpin = []
if SGData['SGLatt'] == 'P':
SGData['SGCen'] = np.array(([0,0,0],))
elif SGData['SGLatt'] == 'A':
SGData['SGCen'] = np.array(([0,0,0],[0,.5,.5]))
lattSpin += [1,]
elif SGData['SGLatt'] == 'B':
SGData['SGCen'] = np.array(([0,0,0],[.5,0,.5]))
lattSpin += [1,]
elif SGData['SGLatt'] == 'C':
SGData['SGCen'] = np.array(([0,0,0],[.5,.5,0,]))
lattSpin += [1,]
elif SGData['SGLatt'] == 'I':
SGData['SGCen'] = np.array(([0,0,0],[.5,.5,.5]))
lattSpin += [1,]
elif SGData['SGLatt'] == 'F':
SGData['SGCen'] = np.array(([0,0,0],[0,.5,.5],[.5,0,.5],[.5,.5,0,]))
lattSpin += [1,1,1,1]
elif SGData['SGLatt'] == 'R':
SGData['SGCen'] = np.array(([0,0,0],[2./3,1./3,1./3],[1./3,2./3,2./3]))
if SGData['SGInv']:
if SGData['SGLaue'] in ['-1','2/m','mmm']:
Ibar = 7
elif SGData['SGLaue'] in ['4/m','4/mmm']:
Ibar = 1
elif SGData['SGLaue'] in ['3R','3mR','3','3m1','31m','6/m','6/mmm']:
Ibar = 15 #8+4+2+1
else:
Ibar = 4
Ibarx = Ibar&14
else:
Ibarx = 8
if SGData['SGLaue'] in ['-1','2/m','mmm','m3','m3m']:
Ibarx = 0
moregen = []
for i,gen in enumerate(SGData['SGGen']):
if SGData['SGLaue'] in ['m3','m3m']:
if gen in [1,2,4]:
SGData['SGGen'][i] = 4
elif gen < 7:
SGData['SGGen'][i] = 0
elif SGData['SGLaue'] in ['4/m','4/mmm','3R','3mR','3','3m1','31m','6/m','6/mmm']:
if gen == 2:
SGData['SGGen'][i] = 4
elif gen in [3,5]:
SGData['SGGen'][i] = 3
elif gen == 6:
if SGData['SGLaue'] in ['4/m','4/mmm']:
SGData['SGGen'][i] = 128
else:
SGData['SGGen'][i] = 16
elif not SGData['SGInv'] and gen == 12:
SGData['SGGen'][i] = 8
elif (not SGData['SGInv']) and (SGData['SGLaue'] in ['3','3m1','31m','6/m','6/mmm']) and (gen == 1):
SGData['SGGen'][i] = 24
gen1 = SGData['SGGen'][i]
if gen1 == 99:
gen1 = 8
if SGData['SGLaue'] in ['3m1','31m','6/m','6/mmm']:
gen1 = 3
elif SGData['SGLaue'] == 'm3m':
gen1 = 12
SGData['SGGen'][i] = gen1
elif gen1 == 98:
gen1 = 8
if SGData['SGLaue'] in ['3m1','31m','6/m','6/mmm']:
gen1 = 4
SGData['SGGen'][i] = gen1
elif not SGData['SGInv'] and gen1 in [23,] and SGData['SGLaue'] in ['m3','m3m']:
SGData['SGGen'][i] = 24
elif gen1 >= 16 and gen1 != 128:
if not SGData['SGInv']:
gen1 = 31
else:
gen1 ^= Ibarx
SGData['SGGen'][i] = gen1
if SGData['SGInv']:
if gen1 < 128:
moregen.append(SGData['SGGen'][i]^Ibar)
else:
moregen.append(1)
SGData['SGGen'] += moregen
if SGData['SGLaue'] in '-1':
SGData['SGSys'] = SysSym[0]
elif SGData['SGLaue'] in '2/m':
SGData['SGSys'] = SysSym[1]
elif SGData['SGLaue'] in 'mmm':
SGData['SGSys'] = SysSym[2]
elif SGData['SGLaue'] in ['4/m','4/mmm']:
SGData['SGSys'] = SysSym[3]
elif SGData['SGLaue'] in ['3R','3mR']:
SGData['SGSys'] = SysSym[4]
elif SGData['SGLaue'] in ['3','3m1','31m']:
SGData['SGSys'] = SysSym[5]
elif SGData['SGLaue'] in ['6/m','6/mmm']:
SGData['SGSys'] = SysSym[6]
elif SGData['SGLaue'] in ['m3','m3m']:
SGData['SGSys'] = SysSym[7]
SGData['SGPolax'] = SGpolar(SGData)
SGData['SGPtGrp'],SGData['SSGKl'] = SGPtGroup(SGData)
if SGData['SGLatt'] == 'R':
if SGData['SGPtGrp'] in ['3',]:
SGData['SGSpin'] = 3*[1,]
elif SGData['SGPtGrp'] in ['-3','32','3m']:
SGData['SGSpin'] = 4*[1,]
elif SGData['SGPtGrp'] in ['-3m',]:
SGData['SGSpin'] = 5*[1,]
else:
if SGData['SGPtGrp'] in ['1','3','23',]:
SGData['SGSpin'] = lattSpin+[1,]
elif SGData['SGPtGrp'] in ['-1','2','m','4','-4','-3','312','321','3m1','31m','6','-6','432','-43m']:
SGData['SGSpin'] = lattSpin+[1,1,]
elif SGData['SGPtGrp'] in ['2/m','4/m','422','4mm','-42m','-4m2','-3m1','-31m',
'6/m','622','6mm','-6m2','-62m','m3','m3m']:
SGData['SGSpin'] = lattSpin+[1,1,1,]
else: #'222'-'mmm','4/mmm','6/mmm'
SGData['SGSpin'] = lattSpin+[1,1,1,1,]
return SGInfo[-1],SGData
[docs]
def SGErrors(IErr):
'''
Interprets the error message code from SpcGroup. Used in SpaceGroup.
:param IErr: see SGError in :func:`SpcGroup`
:returns:
ErrString - a string with the error message or "Unknown error"
'''
ErrString = [' ',
'Less than 2 operator fields were found',
'Illegal Lattice type, not P, A, B, C, I, F or R',
'Rhombohedral lattice requires a 3-axis',
'Minus sign does not preceed 1, 2, 3, 4 or 6',
'Either a 5-axis anywhere or a 3-axis in field not allowed',
' ',
'I for COMPUTED GO TO out of range.',
'An a-glide mirror normal to A not allowed',
'A b-glide mirror normal to B not allowed',
'A c-glide mirror normal to C not allowed',
'D-glide in a primitive lattice not allowed',
'A 4-axis not allowed in the 2nd operator field',
'A 6-axis not allowed in the 2nd operator field',
'More than 24 matrices needed to define group',
' ',
'Improper construction of a rotation operator',
'Mirror following a / not allowed',
'A translation conflict between operators',
'The 2bar operator is not allowed',
'3 fields are legal only in R & m3 cubic groups',
'Syntax error. Expected I -4 3 d at this point',
' ',
'A or B centered tetragonal not allowed',
' ','unknown error in sgroup',' ',' ',' ',
'Illegal character in the space group symbol',
]
try:
return ErrString[IErr]
except:
return "Unknown error"
[docs]
def SGpolar(SGData):
'''
Determine identity of polar axes if any
'''
POL = ('','x','y','x y','z','x z','y z','xyz','111')
NP = [1,2,4]
NPZ = [0,1]
for M,T in SGData['SGOps']:
for i in range(3):
if M[i][i] <= 0.: NP[i] = 0
if M[0][2] > 0: NPZ[0] = 8
if M[1][2] > 0: NPZ[1] = 0
NPol = (NP[0]+NP[1]+NP[2]+NPZ[0]*NPZ[1])*(1-int(SGData['SGInv']))
return POL[NPol]
[docs]
def SGPtGroup(SGData):
'''
Determine point group of the space group - done after space group symbol has
been evaluated by SpcGroup. Only short symbols are allowed
:param SGData: from :func:`SpcGroup`
:returns: SSGPtGrp & SSGKl (only defaults for Mono & Ortho)
'''
Flds = SGData['SpGrp'].split()
if len(Flds) < 2:
return '',[]
if SGData['SGLaue'] == '-1': #triclinic
if '-' in Flds[1]:
return '-1',[-1,]
else:
return '1',[1,]
elif SGData['SGLaue'] == '2/m': #monoclinic - default for 2D modulation vector
if '/' in SGData['SpGrp']:
return '2/m',[-1,1]
elif '2' in SGData['SpGrp']:
return '2',[-1,]
else:
return 'm',[1,]
elif SGData['SGLaue'] == 'mmm': #orthorhombic
if SGData['SpGrp'].count('2') == 3:
return '222',[-1,-1,-1]
elif SGData['SpGrp'].count('2') == 1:
if SGData['SGPolax'] == 'x':
return '2mm',[-1,1,1]
elif SGData['SGPolax'] == 'y':
return 'm2m',[1,-1,1]
elif SGData['SGPolax'] == 'z':
return 'mm2',[1,1,-1]
else:
return 'mmm',[1,1,1]
elif SGData['SGLaue'] == '4/m': #tetragonal
if '/' in SGData['SpGrp']:
return '4/m',[1,-1]
elif '-' in Flds[1]:
return '-4',[-1,]
else:
return '4',[1,]
elif SGData['SGLaue'] == '4/mmm':
if '/' in SGData['SpGrp']:
return '4/mmm',[1,-1,1,1]
elif '-' in Flds[1]:
if '2' in Flds[2]:
return '-42m',[-1,-1,1]
else:
return '-4m2',[-1,1,-1]
elif '2' in Flds[2:]:
return '422',[1,-1,-1]
else:
return '4mm',[1,1,1]
elif SGData['SGLaue'] in ['3','3R']: #trigonal/rhombohedral
if '-' in Flds[1]:
return '-3',[-1,]
else:
return '3',[1,]
elif SGData['SGLaue'] == '3mR' or 'R' in Flds[0]:
if '2' in Flds[2]:
return '32',[1,-1]
elif '-' in Flds[1]:
return '-3m',[-1,1]
else:
return '3m',[1,1]
elif SGData['SGLaue'] == '3m1':
if '2' in Flds[2]:
return '321',[1,-1,1]
elif '-' in Flds[1]:
return '-3m1',[-1,1,1]
else:
return '3m1',[1,1,1]
elif SGData['SGLaue'] == '31m':
if '2' in Flds[3]:
return '312',[1,1,-1]
elif '-' in Flds[1]:
return '-31m',[-1,1,1]
else:
return '31m',[1,1,1]
elif SGData['SGLaue'] == '6/m': #hexagonal
if '/' in SGData['SpGrp']:
return '6/m',[1,-1]
elif '-' in SGData['SpGrp']:
return '-6',[-1,]
else:
return '6',[1,]
elif SGData['SGLaue'] == '6/mmm':
if '/' in SGData['SpGrp']:
return '6/mmm',[1,-1,1,1]
elif '-' in Flds[1]:
if '2' in Flds[2]:
return '-62m',[-1,-1,1]
else:
return '-6m2',[-1,1,-1]
elif '2' in Flds[2:]:
return '622',[1,-1,-1]
else:
return '6mm',[1,1,1]
elif SGData['SGLaue'] == 'm3': #cubic - no (3+1) supersymmetry
if '2' in Flds[1]:
return '23',[]
else:
return 'm3',[]
elif SGData['SGLaue'] == 'm3m':
if '4' in Flds[1]:
if '-' in Flds[1]:
return '-43m',[]
else:
return '432',[]
else:
return 'm3m',[]
[docs]
def SGPrint(SGData,AddInv=False):
'''
Print the output of SpcGroup in a nicely formatted way. Used in SpaceGroup
:param SGData: from :func:`SpcGroup`
:returns:
SGText - list of strings with the space group details
SGTable - list of strings for each of the operations
'''
if SGData.get('SGFixed',False): #inverses included in ops for cif fixed
Mult = len(SGData['SGCen'])*len(SGData['SGOps'])
else:
Mult = len(SGData['SGCen'])*len(SGData['SGOps'])*(int(SGData['SGInv'])+1)
SGText = []
SGText.append(' Space Group: '+SGData['SpGrp'])
SGCen = list(SGData['SGCen'])
if SGData.get('SGGray',False):
SGText[-1] += " 1'"
if SGData.get('SGFixed',False):
Mult //= 2
else:
SGCen += list(SGData['SGCen']+[0,0,0])
SGCen = np.array(SGCen)%1.
CentStr = 'centrosymmetric'
if not SGData['SGInv']:
CentStr = 'non'+CentStr
if SGData['SGLatt'] in 'ABCIFR':
SGText.append(' The lattice is '+CentStr+' '+SGData['SGLatt']+'-centered '+SGData['SGSys'].lower())
else:
SGText.append(' The lattice is '+CentStr+' '+'primitive '+SGData['SGSys'].lower())
SGText.append(' The Laue symmetry is '+SGData['SGLaue'])
if 'SGPtGrp' in SGData: #patch
SGText.append(' The lattice point group is '+SGData['SGPtGrp'])
SGText.append(' Multiplicity of a general site is '+str(Mult))
if SGData['SGUniq'] in ['a','b','c']:
SGText.append(' The unique monoclinic axis is '+SGData['SGUniq'])
if SGData['SGInv']:
SGText.append(' The inversion center is located at 0,0,0')
if SGData['SGPolax']:
SGText.append(' The location of the origin is arbitrary in '+SGData['SGPolax'])
SGText.append(' ')
if len(SGData['SGCen']) == 1:
SGText.append(' The equivalent positions are:\n')
else:
SGText.append(' The equivalent positions are:\n')
SGText.append(' ('+Latt2text(SGCen)+')+\n')
SGTable = []
for i,Opr in enumerate(SGData['SGOps']):
SGTable.append('(%2d) %s'%(i+1,MT2text(Opr)))
if AddInv and SGData['SGInv']:
for i,Opr in enumerate(SGData['SGOps']):
IOpr = [-Opr[0],-Opr[1]]
SGTable.append('(%2d) %s'%(i+1,MT2text(IOpr)))
return SGText,SGTable
[docs]
def AllOps(SGData):
'''
Returns a list of all operators for a space group, including those for
centering and a center of symmetry
:param SGData: from :func:`SpcGroup`
:returns: (SGTextList,offsetList,symOpList,G2oprList) where
* SGTextList: a list of strings with formatted and normalized
symmetry operators.
* offsetList: a tuple of (dx,dy,dz) offsets that relate the GSAS-II
symmetry operation to the operator in SGTextList and symOpList.
these dx (etc.) values are added to the GSAS-II generated
positions to provide the positions that are generated
by the normalized symmetry operators.
* symOpList: a list of tuples with the normalized symmetry
operations as (M,T) values
(see ``SGOps`` in the :ref:`Space Group object<SGData_table>`)
* G2oprList: a list with the GSAS-II operations for each symmetry operation as
a tuple with (center,mult,opnum,opcode), where center is (0,0,0), (0.5,0,0),
(0.5,0.5,0.5),...; where mult is 1 or -1 for the center of symmetry
where opnum is the number for the symmetry operation, in ``SGOps``
(starting with 0) and opcode is mult*(100*icen+j+1).
* G2opcodes: a list with the name that GSAS-II uses for each symmetry
operation (same as opcode, above)
'''
SGTextList = []
offsetList = []
symOpList = []
G2oprList = []
G2opcodes = []
onebar = (1,)
if SGData['SGInv']:
onebar += (-1,)
for icen,cen in enumerate(SGData['SGCen']):
for mult in onebar:
for j,(M,T) in enumerate(SGData['SGOps']):
offset = [0,0,0]
Tprime = (mult*T)+cen
for i in range(3):
while Tprime[i] < 0:
Tprime[i] += 1
offset[i] += 1
while Tprime[i] >= 1:
Tprime[i] += -1
offset[i] += -1
Opr = [mult*M,Tprime]
OPtxt = MT2text(Opr)
SGTextList.append(OPtxt.replace(' ',''))
offsetList.append(tuple(offset))
symOpList.append((mult*M,Tprime))
G2oprList.append((cen,mult,j))
G2opcodes.append(mult*(100*icen+j+1))
return SGTextList,offsetList,symOpList,G2oprList,G2opcodes
[docs]
def TextOps(text,table,reverse=False):
''' Makes formatted operator list
:param text,table: arrays of text made by SGPrint
:param reverse: True for x+1/2 form; False for 1/2+x form
:returns: OpText: full list of symmetry operators; one operation per line
generally printed to console for use via cut/paste in other programs, but
could be used for direct input
'''
OpText = []
Inv = True
Super = False
if 'noncentro' in text[1]:
Inv = False
if 'Super' in text[0]:
Super = True
Cent = [[0,0,0],]
if Super:
Cent = [[0,0,0,0],]
if '0,0,0' in text[-1]:
Cent = np.array(eval(text[-1].split('+')[0].replace(';','),(')))
OpsM = []
OpsT = []
for item in table:
if 'for' in item: continue
if Super:
M,T = MagSSText2MTS(item.split(')')[1].replace(' ',''),G2=True)[:2]
else:
M,T = Text2MT(item.split(')')[1].replace(' ',''),CIF=True)
OpsM.append(M)
OpsT.append(T)
OpsM = np.array(OpsM)
OpsT = np.array(OpsT)
if Inv and not Super: #inversion ops altready listed in supersymmetries
OpsM = np.concatenate((OpsM,-OpsM))
OpsT = np.concatenate((OpsT,-OpsT%1.))
for cent in Cent:
for iop,opM in enumerate(list(OpsM)):
if Super:
txt = SSMT2text([opM,(OpsT[iop]+cent)%1.])
else:
txt = MT2text([opM,(OpsT[iop]+cent)%1.],reverse)
OpText.append(txt.replace(' ','').lower())
return OpText
def TextGen(SGData,reverse=False): #does not always work correctly - not used anyway
GenSym,GenFlg,BNSsym = GetGenSym(SGData)
SGData['GenSym'] = GenSym
SGData['GenFlg'] = GenFlg
text,table = SGPrint(SGData)
GenText = []
OprNames = GetOprNames(SGData)
OpText = TextOps(text,table,reverse)
for name in SGData['GenSym']:
gid = OprNames.index(name.replace(' ',''))
GenText.append(OpText[gid])
if len(SGData['SGCen']) > 1:
GenText.append(OpText[-1])
return GenText
def GetOprNames(SGData):
OprNames = [GetOprPtrName(str(irtx)) for irtx in PackRot(SGData['SGOps'])]
if SGData['SGInv']:
OprNames += [GetOprPtrName(str(-irtx)) for irtx in PackRot(SGData['SGOps'])]
return OprNames
[docs]
def MT2text(Opr,reverse=False):
"From space group matrix/translation operator returns text version"
XYZ = ('-Z','-Y','-X','X-Y','ERR','Y-X','X','Y','Z')
TRA = (' ','ERR','1/6','1/4','1/3','ERR','1/2','ERR','2/3','3/4','5/6','ERR')
Fld = ''
M,T = Opr
for j in range(3):
IJ = int(round(2*M[j][0]+3*M[j][1]+4*M[j][2]+4))%12
IK = int(round(T[j]*12))%12
if IK:
if IJ < 3:
if reverse:
Fld += (XYZ[IJ]+'+'+TRA[IK]).rjust(5)
else:
Fld += (TRA[IK]+XYZ[IJ]).rjust(5)
else:
if reverse:
Fld += (XYZ[IJ]+'+'+TRA[IK]).rjust(5)
else:
Fld += (TRA[IK]+'+'+XYZ[IJ]).rjust(5)
else:
Fld += XYZ[IJ].rjust(5)
if j != 2: Fld += ', '
return Fld
[docs]
def Latt2text(Cen):
"From lattice centering vectors returns ';' delimited cell centering vectors"
lattTxt = ''
fracList = ['1/2','1/3','2/3','1/4','3/4','1/5','2/5','3/5','4/5','1/6','5/6',
'1/7','2/7','3/7','4/7','5/7','6/7','1/8','3/8','5/8','7/8','1/9','2/9','4/9','5/9','7/9','8/9']
mulList = [2,3,3,4,4,5,5,5,5,6,6,7,7,7,7,7,7,8,8,8,8,9,9,9,9,9,9]
prodList = [1.,1.,2.,1.,3.,1.,2.,3.,4.,1.,5.,1.,2.,3.,4.,5.,6.,1.,3.,5.,7.,1.,2.,4.,5.,7.,8.]
nCen = len(Cen)
for i,cen in enumerate(Cen):
txt = ''
for icen in cen:
if icen == 1:
txt += '1,'
continue
elif icen == -1:
txt += '-1,'
continue
if not icen:
txt += '0,'
continue
if icen < 0:
txt += '-'
icen *= -1
for mul,prod,frac in zip(mulList,prodList,fracList):
if abs(icen*mul-prod) < 1.e-5:
txt += frac+','
break
lattTxt += txt[:-1]+'; '
if i and not i%8 and i < nCen-1: #not for the last cen!
lattTxt += '\n '
return lattTxt[:-2]
[docs]
def SpaceGroup(SGSymbol):
'''
Print the output of SpcGroup in a nicely formatted way.
:param SGSymbol: space group symbol (string) with spaces between axial fields
:returns: nothing
'''
E,A = SpcGroup(SGSymbol)
if E > 0:
print (SGErrors(E))
return
for l in SGPrint(A):
print (l)
################################################################################
#### Magnetic space group stuff
################################################################################
def SplitMagSpSG(MSpSg):
SpSG = StandardizeSpcName(MSpSg.replace("'",'')) #removes all mag. op. marks & makes axial fields
Sflds = SpSG.split() #2-4 axial fields
Axf = []
MSpSg += ' '
Psym = MSpSg[0]
Ib = 0
if '_' in MSpSg:
Psym = MSpSg[:3]
Ib = 2
Ib += 1
if len(Sflds) == 2: #simple: one axial field
return Psym+' '+MSpSg[Ib:]
if '/' in MSpSg[Ib:]: #more fields - do 1st axial field
Is = MSpSg.index('/')
If = Is+1
if "'" in MSpSg[Is+2]:
If += 1
Axf.append(MSpSg[Ib:If+1])
Ib = If+1
else:
If = Ib+len(Sflds[1])
if "'" == MSpSg[If]:
If += 1
Axf.append(MSpSg[Ib:If])
Ib = If
for i in range(len(Sflds)-2): #do rest
If = Ib+len(Sflds[i+2])
if "'" == MSpSg[If]:
If += 1
Axf.append(MSpSg[Ib:If])
Ib = If
MSpcGp = Psym+' '+' '.join(Axf)
return MSpcGp
def SetMagnetic(SGData):
GenSym,GenFlg,BNSsym = GetGenSym(SGData)
SGData['GenSym'] = GenSym
SGData['GenFlg'] = GenFlg
OprNames,SpnFlp = GenMagOps(SGData)
SGData['SpnFlp'] = SpnFlp
SGData['MagSpGrp'] = MagSGSym(SGData)
[docs]
def GetGenSym(SGData):
'''
Get the space group generator symbols
:param SGData: from :func:`SpcGroup`
LaueSym = ('-1','2/m','mmm','4/m','4/mmm','3R','3mR','3','3m1','31m','6/m','6/mmm','m3','m3m')
LattSym = ('P','A','B','C','I','F','R')
'''
BNSsym = {}
OprNames = [GetOprPtrName(str(irtx)) for irtx in PackRot(SGData['SGOps'])]
if SGData['SGInv']:
OprNames += [GetOprPtrName(str(-irtx)) for irtx in PackRot(SGData['SGOps'])]
# for oprname in OprNames:
# print(oprname)
Nsyms = len(SGData['SGOps'])
if SGData['SGInv'] and not SGData['SGFixed']: Nsyms *= 2
UsymOp = ['1',]
OprFlg = [0,]
if Nsyms == 2: #Centric triclinic or acentric monoclinic
UsymOp.append(OprNames[1])
OprFlg.append(SGData['SGGen'][1])
elif Nsyms == 4: #Point symmetry 2/m, 222, 22m, or 4
if '4z' in OprNames[1]: #Point symmetry 4 or -4
UsymOp.append(OprNames[1])
OprFlg.append(SGData['SGGen'][1])
elif not SGData['SGInv']: #Acentric Orthorhombic
if 'm' in OprNames[1:4]: #22m, 2m2 or m22
if '2' in OprNames[1]: #Acentric orthorhombic, 2mm
UsymOp.append(OprNames[2])
OprFlg.append(SGData['SGGen'][2])
UsymOp.append(OprNames[3])
OprFlg.append(SGData['SGGen'][3])
elif '2' in OprNames[2]: #Acentric orthorhombic, m2m
UsymOp.append(OprNames[1])
OprFlg.append(SGData['SGGen'][1])
UsymOp.append(OprNames[3])
OprFlg.append(SGData['SGGen'][3])
else: #Acentric orthorhombic, mm2
UsymOp.append(OprNames[1])
OprFlg.append(SGData['SGGen'][1])
UsymOp.append(OprNames[2])
OprFlg.append(SGData['SGGen'][2])
else: #Acentric orthorhombic, 222
SGData['SGGen'][1:] = [4,2,1]
UsymOp.append(OprNames[1])
OprFlg.append(SGData['SGGen'][1])
UsymOp.append(OprNames[2])
OprFlg.append(SGData['SGGen'][2])
UsymOp.append(OprNames[3])
OprFlg.append(SGData['SGGen'][3])
else: #Centric Monoclinic
UsymOp.append(OprNames[1])
OprFlg.append(SGData['SGGen'][1])
UsymOp.append(OprNames[3])
OprFlg.append(SGData['SGGen'][3])
elif Nsyms == 6: #Point symmetry 32, 3m or 6
if '6' in OprNames[1]: #Hexagonal 6 Laue symmetry
UsymOp.append(OprNames[1])
OprFlg.append(SGData['SGGen'][1])
else: #Trigonal
UsymOp.append(OprNames[4])
OprFlg.append(SGData['SGGen'][3])
if '2110' in OprNames[1]: UsymOp[-1] = ' 2100 '
elif Nsyms == 8: #Point symmetry mmm, 4/m, or 422, etc
if '4' in OprNames[1]: #Tetragonal
if SGData['SGInv']: #4/m
UsymOp.append(OprNames[1])
OprFlg.append(SGData['SGGen'][1])
UsymOp.append(OprNames[6])
OprFlg.append(SGData['SGGen'][6])
else:
if 'x' in OprNames[4]: #4mm type group
UsymOp.append(OprNames[4])
OprFlg.append(6)
UsymOp.append(OprNames[7])
OprFlg.append(8)
else: #-42m, -4m2, and 422 type groups
UsymOp.append(OprNames[6])
OprFlg.append(19)
UsymOp.append(OprNames[5])
OprFlg.append(8)
else: #Orthorhombic, mmm
UsymOp.append(OprNames[1])
OprFlg.append(SGData['SGGen'][1])
UsymOp.append(OprNames[2])
OprFlg.append(SGData['SGGen'][2])
UsymOp.append(OprNames[7])
OprFlg.append(SGData['SGGen'][7])
elif Nsyms == 12 and '3' in OprNames[1] and SGData['SGSys'] != 'cubic': #Trigonal
UsymOp.append(OprNames[3])
OprFlg.append(SGData['SGGen'][3])
UsymOp.append(OprNames[9])
OprFlg.append(SGData['SGGen'][9])
elif Nsyms == 12 and '6' in OprNames[1]: #Hexagonal
if 'mz' in OprNames[9]: #6/m
UsymOp.append(OprNames[1])
OprFlg.append(SGData['SGGen'][1])
UsymOp.append(OprNames[9])
OprFlg.append(SGData['SGGen'][9])
else: #6mm, -62m, -6m2 or 622
UsymOp.append(OprNames[6])
OprFlg.append(18)
if 'm' in UsymOp[-1]: OprFlg[-1] = 20
UsymOp.append(OprNames[7])
OprFlg.append(24)
elif Nsyms in [16,24]:
if '3' in OprNames[1]:
UsymOp.append('')
OprFlg.append(SGData['SGGen'][3])
for i in range(Nsyms):
if 'mx' in OprNames[i]:
UsymOp[-1] = OprNames[i]
elif 'm11' in OprNames[i]:
UsymOp[-1] = OprNames[i]
elif '211' in OprNames[i]:
UsymOp[-1] = OprNames[i]
OprFlg[-1] = 24
else: #4/mmm or 6/mmm
UsymOp.append(' mz ')
OprFlg.append(1)
if '4' in OprNames[1]: #4/mmm
UsymOp.append(' mx ')
OprFlg.append(20)
UsymOp.append(' m110 ')
OprFlg.append(24)
else: #6/mmm
UsymOp.append(' m110 ')
OprFlg.append(4)
UsymOp.append(' m+-0 ')
OprFlg.append(8)
else: #System is cubic
if Nsyms == 48:
UsymOp.append(' mx ')
OprFlg.append(4)
UsymOp.append(' m110 ')
OprFlg.append(24)
if 'P' in SGData['SGLatt']:
if SGData['SGSys'] == 'triclinic':
BNSsym = {'P_a':[.5,0,0],'P_b':[0,.5,0],'P_c':[0,0,.5]}
elif SGData['SGSys'] == 'monoclinic':
BNSsym = {'P_a':[.5,0,0],'P_b':[0,.5,0],'P_c':[0,0,.5],'P_I':[.5,.5,.5]}
if SGData['SGUniq'] == 'a':
BNSsym.update({'P_B':[.5,0,.5],'P_C':[.5,.5,0]})
elif SGData['SGUniq'] == 'b':
BNSsym.update({'P_A':[.5,.5,0],'P_C':[0,.5,.5]})
elif SGData['SGUniq'] == 'c':
BNSsym.update({'P_A':[0,.5,.5],'P_B':[.5,0,.5]})
elif SGData['SGSys'] == 'orthorhombic':
BNSsym = {'P_a':[.5,0,0],'P_b':[0,.5,0],'P_c':[0,0,.5],
'P_A':[0,.5,.5],'P_B':[.5,0,.5],'P_C':[.5,.5,0],'P_I':[.5,.5,.5]}
elif SGData['SGSys'] == 'tetragonal':
BNSsym = {'P_c':[0,0,.5],'P_C':[.5,.5,0],'P_I':[.5,.5,.5]}
elif SGData['SGSys'] in ['trigonal','hexagonal']:
BNSsym = {'P_c':[0,0,.5]}
elif SGData['SGSys'] == 'cubic':
BNSsym = {'P_I':[.5,.5,.5]}
elif 'A' in SGData['SGLatt']:
if SGData['SGSys'] == 'monoclinic':
BNSsym = {}
if SGData['SGUniq'] == 'b':
BNSsym.update({'A_a':[.5,0,0],'A_c':[0,0,.5]})
elif SGData['SGUniq'] == 'c':
BNSsym.update({'A_a':[.5,0,0],'A_b':[0,.5,0]})
elif SGData['SGSys'] == 'orthorhombic':
BNSsym = {'A_a':[.5,0,0],'A_b':[0,.5,0],'A_c':[0,0,.5],
'A_B':[.5,0,.5],'A_C':[.5,.5,0]}
elif SGData['SGSys'] == 'triclinic':
BNSsym = {'A_a':[.5,0,0],'A_b':[0,.5,0],'A_c':[0,0,.5]}
elif 'B' in SGData['SGLatt']:
if SGData['SGSys'] == 'monoclinic':
BNSsym = {}
if SGData['SGUniq'] == 'a':
BNSsym.update({'B_b':[0,.5,0],'B_c':[0,0,.5]})
elif SGData['SGUniq'] == 'c':
BNSsym.update({'B_a':[.5,0,0],'B_b':[0,.5,0]})
elif SGData['SGSys'] == 'orthorhombic':
BNSsym = {'B_a':[.5,0,0],'B_b':[0,.5,0],'B_c':[0,0,.5],
'B_A':[0,.5,.5],'B_C':[.5,.5,0]}
elif SGData['SGSys'] == 'triclinic':
BNSsym = {'B_a':[.5,0,0],'B_b':[0,.5,0],'B_c':[0,0,.5]}
elif 'C' in SGData['SGLatt']:
if SGData['SGSys'] == 'monoclinic':
BNSsym = {}
if SGData['SGUniq'] == 'a':
BNSsym.update({'C_b':[0,.5,.0],'C_c':[0,0,.5]})
elif SGData['SGUniq'] == 'b':
BNSsym.update({'C_a':[.5,0,0],'C_c':[0,0,.5],'C_B':[.5,0.,.5]})
elif SGData['SGSys'] == 'orthorhombic':
BNSsym = {'C_a':[.5,0,0],'C_b':[0,.5,0],'C_c':[0,0,.5],
'C_A':[0,.5,.5],'C_B':[.5,0,.5]}
elif SGData['SGSys'] == 'triclinic':
BNSsym = {'C_a':[.5,0,0],'C_b':[0,.5,0],'C_c':[0,0,.5]}
elif 'I' in SGData['SGLatt']:
if SGData['SGSys'] in ['monoclinic','orthorhombic','triclinic']:
BNSsym = {'I_a':[.5,0,0],'I_b':[0,.5,0],'I_c':[0,0,.5]}
elif SGData['SGSys'] == 'tetragonal':
BNSsym = {'I_c':[0,0,.5]}
elif SGData['SGSys'] == 'cubic':
BNSsym = {}
elif 'F' in SGData['SGLatt']:
if SGData['SGSys'] in ['monoclinic','orthorhombic','cubic','triclinic']:
BNSsym = {'F_S':[.5,.5,.5]}
elif 'R' in SGData['SGLatt']:
BNSsym = {'R_I':[0,0,.5]}
if SGData['SGGray']:
for bns in BNSsym:
BNSsym[bns].append(0.5)
return UsymOp,OprFlg,BNSsym
def ApplyBNSlatt(SGData,BNSlatt):
Tmat = np.eye(3)
BNS = BNSlatt[0]
A = np.array(BNSlatt[1])
Laue = SGData['SGLaue']
SGCen = SGData['SGCen']
if '_a' in BNS:
Tmat[0,0] = 2.0
elif '_b' in BNS:
Tmat[1,1] = 2.0
elif '_c' in BNS:
Tmat[2,2] = 2.0
elif '_A' in BNS:
Tmat[0,0] = 2.0
elif '_B' in BNS:
Tmat[1,1] = 2.0
elif '_C' in BNS:
Tmat[2,2] = 2.0
elif '_I' in BNS:
Tmat *= 2.0
if 'R' in Laue:
SGData['SGSpin'][-1] = -1
else:
SGData['SGSpin'].append(-1)
elif '_S' in BNS:
SGData['SGSpin'][-1] = -1
SGData['SGSpin'] += [-1,-1,-1,]
Tmat *= 2.0
else:
return Tmat
if SGData.get('SGGray',False):
SGData['SGSpin'].append(1) #BNS centering are spin invrsion
else:
SGData['SGSpin'].append(-1) #BNS centering in grey are not spin invrsion
C = SGCen+A[:3]
SGData['SGCen'] = np.vstack((SGCen,C))%1.
return Tmat
[docs]
def CheckSpin(isym,SGData):
''' Check for exceptions in spin rules
'''
if SGData['SGPtGrp'] in ['222','mm2','2mm','m2m']: #only 2/3 can be red; not 1/3 or 3/3
if SGData['SGSpin'][1]*SGData['SGSpin'][2]*SGData['SGSpin'][3] < 0:
SGData['SGSpin'][(isym+1)%3+1] *= -1
if SGData['SpGrp'][0] == 'F' and isym > 2:
SGData['SGSpin'][(isym+1)%3+3] == 1
elif SGData['SGPtGrp'] == 'mmm':
if SGData['SpGrp'][0] == 'F' and isym > 2:
SGData['SGSpin'][(isym+1)%3+3] == 1
def MagSGSym(SGData): #needs to use SGPtGrp not SGLaue!
SGLaue = SGData['SGLaue']
if '1' not in SGData['GenSym']: #patch for old gpx files
SGData['GenSym'] = ['1',]+SGData['GenSym']
SGData['SGSpin'] = [1,]+list(SGData['SGSpin'])
if len(SGData['SGSpin'])<len(SGData['GenSym']):
SGData['SGSpin'] = [1,]+list(SGData['SGSpin']) #end patch
GenSym = SGData['GenSym'][1:] #skip identity
SpnFlp = SGData['SGSpin']
# print('SpnFlp',SpnFlp,' GenSym',GenSym)
SGPtGrp = SGData['SGPtGrp']
if len(SpnFlp) == 1:
SGData['MagPtGp'] = SGPtGrp
return SGData['SpGrp']
magSym = SGData['SpGrp'].split()
if SGLaue in ['-1',]:
SGData['MagPtGp'] = SGPtGrp
if SpnFlp[1] == -1:
magSym[1] += "'"
SGData['MagPtGp'] += "'"
elif SGLaue in ['2/m','4/m','6/m']: #all ok
Uniq = {'a':1,'b':2,'c':3,'':1}
Id = [0,1]
if len(magSym) > 2:
Id = [0,Uniq[SGData['SGUniq']]]
sym = magSym[Id[1]].split('/')
Ptsym = SGLaue.split('/')
if len(GenSym) == 3:
for i in [0,1,2]:
if SpnFlp[i+1] < 0:
sym[i] += "'"
Ptsym[i] += "'"
else:
for i in range(len(GenSym)):
if SpnFlp[i+1] < 0:
sym[i] += "'"
Ptsym[i] += "'"
SGData['MagPtGp'] = '/'.join(Ptsym)
magSym[Id[1]] = '/'.join(sym)
elif SGPtGrp in ['mmm','mm2','m2m','2mm','222']:
SGData['MagPtGp'] = ''
for i in [0,1,2]:
SGData['MagPtGp'] += SGPtGrp[i]
if SpnFlp[i+1] < 0:
magSym[i+1] += "'"
SGData['MagPtGp'] += "'"
elif SGLaue == '6/mmm': #ok
if '-' in SGPtGrp:
magPtGp = list(SGPtGrp[1:])
magPtGp[0] = '-'+magPtGp[0]
else:
magPtGp = list(SGPtGrp)
if len(GenSym) == 2:
for i in [0,1]:
if SpnFlp[i+1] < 0:
magSym[i+2] += "'"
magPtGp[i+1] += "'"
if SpnFlp[1]*SpnFlp[2] < 0:
magSym[1] += "'"
magPtGp[0] += "'"
else:
sym = magSym[1].split('/')
Ptsym = ['6','m']
magPtGp = ['','m','m']
for i in [0,1,2]:
if SpnFlp[i+1] < 0:
if i:
magSym[i+1] += "'"
magPtGp[i] += "'"
else:
sym[1] += "'"
Ptsym[0] += "'"
if SpnFlp[2]*SpnFlp[3] < 0:
sym[0] += "'"
Ptsym[0] += "'"
magSym[1] = '/'.join(sym)
magPtGp[0] = '/'.join(Ptsym)
SGData['MagPtGp'] = ''.join(magPtGp)
elif SGLaue == '4/mmm':
if '-' in SGPtGrp:
magPtGp = list(SGPtGrp[1:])
magPtGp[0] = '-'+magPtGp[0]
else:
magPtGp = list(SGPtGrp)
if len(GenSym) == 2:
for i in [0,1]:
if SpnFlp[i+1] < 0:
magSym[i+2] += "'"
magPtGp[i+1] += "'"
if SpnFlp[1]*SpnFlp[2] < 0:
magSym[1] += "'"
magPtGp[0] += "'"
else:
if '/' in magSym[1]: #P 4/m m m, etc.
sym = magSym[1].split('/')
Ptsym = ['4','m']
magPtGp = ['','m','m']
for i in [0,1,2]:
if SpnFlp[i+1] < 0:
if i:
magSym[i+1] += "'"
magPtGp[i] += "'"
else:
sym[1] += "'"
Ptsym[1] += "'"
if SpnFlp[2]*SpnFlp[3] < 0:
sym[0] += "'"
Ptsym[0] += "'"
magSym[1] = '/'.join(sym)
magPtGp[0] = '/'.join(Ptsym)
else:
for i in [0,1]:
if SpnFlp[i+1] < 0:
magSym[i+2] += "'"
if SpnFlp[1]*SpnFlp[2] < 0:
magSym[1] += "'"
SGData['MagPtGp'] = ''.join(magPtGp)
elif SGLaue in ['3','3m1','31m']: #ok
if '-' in SGPtGrp:
Ptsym = list(SGPtGrp[1:])
Ptsym[0] = '-'+Ptsym[0]
else:
Ptsym = list(SGPtGrp)
if len(GenSym) == 1: #all ok
Id = 2
if (len(magSym) == 4) and (magSym[2] == '1'):
Id = 3
if '3' in GenSym[0]:
Id = 1
magSym[Id].strip("'")
if SpnFlp[1] < 0:
magSym[Id] += "'"
Ptsym[Id-1] += "'"
elif len(GenSym) == 2:
if 'R' in GenSym[1]:
magSym[-1].strip("'")
if SpnFlp[1] < 0:
magSym[-1] += "'"
Ptsym[-1] += "'"
else:
i,j = [1,2]
if magSym[2] == '1':
i,j = [1,3]
magSym[i].strip("'")
Ptsym[i-1].strip("'")
magSym[j].strip("'")
Ptsym[j-1].strip("'")
if SpnFlp[1:3] == [1,-1]:
magSym[i] += "'"
Ptsym[i-1] += "'"
elif SpnFlp[1:3] == [-1,-1]:
magSym[j] += "'"
Ptsym[j-1] += "'"
elif SpnFlp[1:3] == [-1,1]:
magSym[i] += "'"
Ptsym[i-1] += "'"
magSym[j] += "'"
Ptsym[j-1] += "'"
elif len(GenSym):
if 'c' not in magSym[2]:
i,j = [1,2]
magSym[i].strip("'")
Ptsym[i-1].strip("'")
magSym[j].strip("'")
Ptsym[j-1].strip("'")
if SpnFlp[1:3] == [1,-1]:
magSym[i] += "'"
Ptsym[i-1] += "'"
elif SpnFlp[1:3] == [-1,-1]:
magSym[j] += "'"
Ptsym[j-1] += "'"
elif SpnFlp[2:4] == [-1,1]:
magSym[i] += "'"
Ptsym[i-1] += "'"
magSym[j] += "'"
Ptsym[j-1] += "'"
SGData['MagPtGp'] = ''.join(Ptsym)
elif SGData['SGPtGrp'] == '23' and len(magSym):
SGData['MagPtGp'] = '23'
elif SGData['SGPtGrp'] == 'm3':
SGData['MagPtGp'] = "m3"
if SpnFlp[1] < 0:
magSym[1] += "'"
magSym[2] += "'"
SGData['MagPtGp'] = "m'3'"
if SpnFlp[1] < 0:
if not 'm' in magSym[1]: #only Ia3
magSym[1].strip("'")
SGData['MagPtGp'] = "m3'"
elif SGData['SGPtGrp'] in ['432','-43m']:
Ptsym = SGData['SGPtGrp'].split('3')
if SpnFlp[1] < 0:
magSym[1] += "'"
Ptsym[0] += "'"
magSym[3] += "'"
Ptsym[1] += "'"
SGData['MagPtGp'] = '3'.join(Ptsym)
elif SGData['SGPtGrp'] == 'm3m':
Ptsym = ['m','3','m']
if SpnFlp[1:3] == [-1,1]:
magSym[1] += "'"
Ptsym[0] += "'"
magSym[2] += "'"
Ptsym[1] += "'"
elif SpnFlp[1:3] == [1,-1]:
magSym[3] += "'"
Ptsym[2] += "'"
elif SpnFlp[1:3] == [-1,-1]:
magSym[1] += "'"
Ptsym[0] += "'"
magSym[2] += "'"
Ptsym[1] += "'"
magSym[3] += "'"
Ptsym[2] += "'"
SGData['MagPtGp'] = ''.join(Ptsym)
# print SpnFlp
magSym[0] = SGData.get('BNSlattsym',[SGData['SGLatt'],[0,0,0]])[0]
return ' '.join(magSym)
[docs]
def fixMono(SpGrp):
'fixes b-unique monoclinics in e.g. P 1 2/1c 1 --> P 21/c '
Flds = SpGrp.split()
if len(Flds) == 4:
if Flds[2] != '1':
return '%s %s'%(Flds[0],Flds[2])
else:
return None
else:
return SpGrp
[docs]
def Trans2Text(Trans):
"from transformation matrix to text"
cells = ['a','b','c']
Text = ''
for row in Trans:
Fld = ''
for i in [0,1,2]:
if row[i]:
if Fld and row[i] > 0.:
Fld += '+'
Fld += '%3.1f'%(row[i])+cells[i]
Text += Fld
Text += ','
Text = Text.replace('1.0','').replace('.0','').replace('0.5','1/2')
return Text[:-1]
def getlattSym(Trans):
Fives = {'ababc':'abc','bcbca':'cba','acacb':'acb','cabab':'cab','abcab':'acb'}
transText = Trans2Text(Trans)
lattSym = ''
for fld in transText.split(','):
if 'a' in fld: lattSym += 'a'
if 'b' in fld: lattSym += 'b'
if 'c' in fld: lattSym += 'c'
if len(lattSym) != 3:
lattSym = 'abc'
# lattSym = Fives[lattSym]
return lattSym
[docs]
def Text2MT(mcifOpr,CIF=True):
"From space group cif text returns matrix/translation"
XYZ = {'x':[1,0,0],'+x':[1,0,0],'-x':[-1,0,0],'y':[0,1,0],'+y':[0,1,0],'-y':[0,-1,0],
'z':[0,0,1],'+z':[0,0,1],'-z':[0,0,-1],'x-y':[1,-1,0],'-x+y':[-1,1,0],'y-x':[-1,1,0],
'+x-y':[1,-1,0],'+y-x':[-1,1,0]}
ops = mcifOpr.split(",")
M = []
T = []
for op in ops[:3]:
ip = len(op)
if '/' in op:
try: #mcif format
nP = op.count('+')
opMT = op.split('+')
T.append(eval(opMT[nP]))
if nP == 2:
opMT[0] = '+'.join(opMT[0:2])
except NameError: #normal cif format
ip = op.index('/')
T.append(eval(op[:ip+2]))
opMT = [op[ip+2:],'']
else:
opMT = [op,'']
T.append(0.)
M.append(XYZ[opMT[0].lower()])
return np.array(M),np.array(T)
[docs]
def MagText2MTS(mcifOpr,CIF=True):
"From magnetic space group cif text returns matrix/translation + spin flip"
XYZ = {'x':[1,0,0],'+x':[1,0,0],'-x':[-1,0,0],'y':[0,1,0],'+y':[0,1,0],'-y':[0,-1,0],
'z':[0,0,1],'+z':[0,0,1],'-z':[0,0,-1],'x-y':[1,-1,0],'-x+y':[-1,1,0],'y-x':[-1,1,0],
'+x-y':[1,-1,0],'+y-x':[-1,1,0]}
ops = mcifOpr.split(",")
M = []
T = []
for op in ops[:3]:
ip = len(op)
if '/' in op:
try: #mcif format
nP = op.count('+')
opMT = op.split('+')
T.append(eval(opMT[nP]))
if nP == 2:
opMT[0] = '+'.join(opMT[0:2])
except NameError: #normal cif format
ip = op.index('/')
T.append(eval(op[:ip+2]))
opMT = [op[ip+2:],'']
else:
opMT = [op,'']
T.append(0.)
M.append(XYZ[opMT[0].lower()])
spnflp = 1
if '-1' in ops[3]:
spnflp = -1
return np.array(M),np.array(T),spnflp
[docs]
def MagSSText2MTS(Opr,G2=False):
"From magnetic super space group cif text returns matrix/translation + spin flip"
XYZ = {'x1':[1,0,0,0],'-x1':[-1,0,0,0],
'x2':[0,1,0,0],'-x2':[0,-1,0,0],
'x3':[0,0,1,0],'-x3':[0,0,-1,0],
'x4':[0,0,0,1],'-x4':[0,0,0,-1],
'x1-x2':[1,-1,0,0],'-x1+x2':[-1,1,0,0],
'x1-x4':[1,0,0,-1],'-x1+x4':[-1,0,0,1],
'x2-x4':[0,1,0,-1],'-x2+x4':[0,-1,0,1],
'-x1-x2+x4':[-1,-1,0,1],'x1+x2-x4':[1,1,0,-1]}
if G2:
XYZ = {'x':[1,0,0,0],'+x':[1,0,0,0],'-x':[-1,0,0,0],
'y':[0,1,0,0],'+y':[0,1,0,0],'-y':[0,-1,0,0],
'z':[0,0,1,0],'+z':[0,0,1,0],'-z':[0,0,-1,0],
't':[0,0,0,1],'+t':[0,0,0,1],'-t':[0,0,0,-1],
'x-y':[1,-1,0,0],'+x-y':[1,-1,0,0],'-x+y':[-1,1,0,0],
'x-t':[1,0,0,-1],'+x-t':[1,0,0,-1],'-x+t':[-1,0,0,1],
'y-t':[0,1,0,-1],'+y-t':[0,1,0,-1],'-y+t':[0,-1,0,1],
'x+y-t':[1,1,0,-1],'+x+y-t':[1,1,0,-1],'-x-y+t':[-1,-1,0,1]}
ops = Opr.split(",")
M = []
T = []
for op in ops[:4]:
ip = len(op)
if '/' in op:
ip = op.index('/')
if G2:
T.append(eval(op[:ip+2]))
M.append(XYZ[op[ip+2:]])
else:
T.append(eval(op[ip-2:]))
M.append(XYZ[op[:ip-2]])
else:
T.append(0.)
M.append(XYZ[op])
spnflp = 1
if len(ops) == 5:
if '-1' in ops[4]:
spnflp = -1
return np.array(M),np.array(T),spnflp
[docs]
def GetSGSpin(SGData,MSgSym):
'get spin generators from magnetic space group symbol'
mSgSym = MSgSym+' '
mFlds = mSgSym.split()
mSpn = SGData['SGSpin']
SGPtGrp = SGData['SGPtGrp']
SGLaue = SGData['SGLaue']
GenSym = GetGenSym(SGData)[0][1:] #skip identity
# print('MSgSym',MSgSym,' GenSym',GenSym)
if SGLaue in ['-1',]:
if "'" in mFlds[1]:
mSpn[1] = -1
elif SGLaue in ['2/m','4/m','6/m']: #all ok
Uniq = {'a':1,'b':2,'c':3,'':1}
Id = [0,1]
if len(mFlds) > 2:
Id = [0,Uniq[SGData['SGUniq']]]
sym = mFlds[Id[1]].split('/')
for i in range(len(GenSym)):
if "'" in sym[i]:
mSpn[i+1] = -1
elif SGPtGrp in ['mmm','mm2','m2m','2mm','222']:
for i in [0,1,2]:
if "'" in mFlds[i+1]:
mSpn[i+1] = -1
elif SGLaue in ['4/mmm','6/mmm']: #ok
if len(GenSym) == 2: #422, -4m2, -42m, 4mm, 622, -6m2, -62m, 6mm
for i in [0,1]:
if "'" in mFlds[i+1]:
mSpn[i] = -1
mSpn[2] = mSpn[0]*mSpn[1]
else: #4/mmm, 6/mmm
sym = mFlds[1].split('/')
if "'" in sym[1]:
mSpn[1] = -1
for i in [1,2]:
if "'" in mFlds[i+1]:
mSpn[i+1] = -1
elif SGLaue in ['3','3m1','31m']: #ok
if len(GenSym) == 1: #all ok
Id = 2
if (len(mFlds) == 4) and (mFlds[2] == '1'):
Id = 3
if '3' in GenSym[0]:
Id = 1
if "'" in mFlds[Id]:
mSpn[1] = -1
elif len(GenSym) == 2:
if 'R' in GenSym[1]:
if "'" in mFlds[-1]:
mSpn[1] = -1
else:
i,j = [1,2]
if mFlds[2] == '1':
i,j = [1,3]
if "'" in mFlds[i]:
mSpn[1:3] = [1,-1]
elif "'" in mFlds[i]:
mSpn[1:3] = [-1,-1]
elif "'" in mFlds[i] and "'" in mFlds[i]:
mSpn[1:3] = [-1,1]
elif len(GenSym):
if 'c' not in mFlds[2]:
i,j = [1,2]
if "'" in mFlds[i]:
mSpn[1:3] = [1,-1]
elif "'" in mFlds[i]:
mSpn[1:3] = [-1,-1]
elif "'" in mFlds[i] and "'" in mFlds[i]:
mSpn[2:4] = [-1,1]
elif SGData['SGPtGrp'] == 'm3':
if "'" in mFlds[1] and "'" in mFlds[2]:
mSpn[1] = -1
elif SGData['SGPtGrp'] in ['432','-43m']:
if "'" in mFlds[1] and "'" in mFlds[3]:
mSpn[1] = -1
elif SGData['SGPtGrp'] == 'm3m':
if "'" in mFlds[1] and "'" in mFlds[2]:
mSpn[1:3] = [-1,1]
elif "'" in mFlds[3]:
mSpn[1:3] = [1,-1]
elif "'" in mFlds[1] and "'" in mFlds[2] and "'" in mFlds[3]:
mSpn[1:3] = [-1,-1]
return mSpn
def GenMagOps(SGData):
FlpSpn = SGData['SGSpin']
Nsym = len(SGData['SGOps'])
Ncv = len(SGData['SGCen'])
sgOp = [M for M,T in SGData['SGOps']]
detM = [nl.det(M) for M in sgOp]
oprName = [GetOprPtrName(str(irtx)) for irtx in PackRot(SGData['SGOps'])]
if SGData['SGInv'] and not SGData['SGFixed']:
Nsym *= 2
detM += [nl.det(-M) for M in sgOp]
sgOp += [-M for M,T in SGData['SGOps']]
oprName += [GetOprPtrName(str(-irtx)) for irtx in PackRot(SGData['SGOps'])]
Nsyms = 0
sgOps = []
OprNames = []
detMs = []
for incv in range(Ncv):
Nsyms += Nsym
sgOps += sgOp
detMs += detM
OprNames += oprName
if SGData['SGFixed']:
SpnFlp = SGData['SpnFlp']
else:
SpnFlp = np.ones(Nsym,dtype=np.int32)
GenFlg = SGData.get('GenFlg',[0])
Ngen = len(SGData['SGGen'])
Nfl = len(GenFlg)
for ieqv in range(Nsym):
for iunq in range(Nfl):
if SGData['SGGen'][ieqv%Ngen] & GenFlg[iunq]:
try:
SpnFlp[ieqv] *= FlpSpn[iunq]
except IndexError:
print('index error: ',Nsym,ieqv,Nfl,iunq)
FlpSpn = FlpSpn+[1,]
SpnFlp[ieqv] *= FlpSpn[iunq]
if SGData['SGLaue'] == '6/m': # treat special as algorithm above fails
if SGData['SGSpin'] == [1,-1,1]:
SpnFlp = [1,-1,1,-1,1,-1,1,-1,1,-1,1,-1]
elif SGData['SGSpin'] == [1,1,-1]:
SpnFlp = [1,1,1,1,1,1,-1,-1,-1,-1,-1,-1]
elif SGData['SGSpin'] == [1,-1,-1]:
SpnFlp = [1,-1,1,-1,1,-1,-1,1,-1,1,-1,1]
for incv in range(Ncv):
if incv:
try:
SpnFlp = np.concatenate((SpnFlp,SpnFlp[:Nsym]*FlpSpn[Nfl+incv-1]))
except IndexError:
FlpSpn = [1,]+FlpSpn
SpnFlp = np.concatenate((SpnFlp,SpnFlp[:Nsym]*FlpSpn[Nfl+incv-1]))
if SGData['SGGray']:
SpnFlp = np.concatenate((SpnFlp,-SpnFlp))
detMs = 2*detMs
MagMom = SpnFlp*np.array(detMs) #duplicate for no. centerings
SGData['MagMom'] = MagMom
return OprNames,SpnFlp
def GetOpNum(Opr,SGData):
Nops = len(SGData['SGOps'])
opNum = abs(Opr)%100
cent = abs(Opr)//100
if Opr < 0 and not SGData['SGFixed']:
opNum += Nops
if SGData['SGInv'] and not SGData['SGFixed']:
Nops *= 2
opNum += cent*Nops
return opNum
################################################################################
#### Superspace group codes
################################################################################
[docs]
def SSpcGroup(SGData,SSymbol):
"""
Determines supersymmetry information from superspace group name; currently only for (3+1) superlattices
:param SGData: space group data structure as defined in SpcGroup above (see :ref:`SGData<SGData_table>`).
:param SSymbol: superspace group symbol extension (string) defining modulation direction & generator info.
:returns: (SSGError,SSGData)
* SGError = 0 for no errors; >0 for errors (see SGErrors below for details)
* SSGData - is a dict (see :ref:`Superspace Group object<SSGData_table>`) with entries:
* 'SSpGrp': full superspace group symbol, accidental spaces removed; for display only
* 'SSGCen': 4D cell centering vectors [0,0,0,0] at least
* 'SSGOps': 4D symmetry operations as [M,T] so that M*x+T = x'
"""
def fixMonoOrtho():
mod = ''.join(modsym).replace('1/2','0').replace('1','0')
if SGData['SGPtGrp'] in ['2','m']: #OK
if mod in ['a00','0b0','00g']:
result = [i*-1 for i in SGData['SSGKl']]
else:
result = SGData['SSGKl'][:]
if '/' in mod:
return [i*-1 for i in result]
else:
return result
elif SGData['SGPtGrp'] == '2/m': #OK
if mod in ['a00','0b0','00g']:
result = SGData['SSGKl'][:]
else:
result = [i*-1 for i in SGData['SSGKl']]
if '/' in mod:
return [i*-1 for i in result]
else:
return result
else: #orthorhombic
if mod:
return [-SSGKl[i] if mod[i] in ['a','b','g'] else SSGKl[i] for i in range(3)]
else:
return [SSGKl[i] for i in range(3)]
def extendSSGOps(SSGOps):
for OpA in SSGOps:
OpAtxt = SSMT2text(OpA)
if 't' not in OpAtxt:
continue
for OpB in SSGOps:
OpBtxt = SSMT2text(OpB)
if 't' not in OpBtxt:
continue
OpC = list(SGProd(OpB,OpA))
OpC[1] %= 1.
OpCtxt = SSMT2text(OpC)
# print OpAtxt.replace(' ','')+' * '+OpBtxt.replace(' ','')+' = '+OpCtxt.replace(' ','')
for k,OpD in enumerate(SSGOps):
OpDtxt = SSMT2text(OpD)
OpDtxt2 = ''
if SGData['SGGray']:
OpDtxt2 = SSMT2text([OpD[0],OpD[1]+np.array([0.,0.,0.,.5])])
# print ' ('+OpCtxt.replace(' ','')+' = ? '+OpDtxt.replace(' ','')+')'
if OpCtxt == OpDtxt:
continue
elif OpCtxt == OpDtxt2:
continue
elif OpCtxt.split(',')[:3] == OpDtxt.split(',')[:3]:
if 't' not in OpDtxt:
SSGOps[k] = OpC
# print k,' new:',OpCtxt.replace(' ','')
break
else:
OpCtxt = OpCtxt.replace(' ','')
OpDtxt = OpDtxt.replace(' ','')
Txt = OpCtxt+' conflicts with '+OpDtxt
# print (Txt)
return False,Txt
return True,SSGOps
def findMod(modSym):
for a in ['a','b','g']:
if a in modSym:
return a
def genSSGOps():
SSGOps = SSGData['SSGOps'][:]
iFrac = {}
for i,frac in enumerate(SSGData['modSymb']):
if frac in ['1/2','1/3','1/4','1/6','1']:
iFrac[i] = frac+'.'
# print SGData['SpGrp']+SSymbol
# print 'SSGKl',SSGKl,'genQ',genQ,'iFrac',iFrac,'modSymb',SSGData['modSymb']
# set identity & 1,-1; triclinic
SSGOps[0][0][3,3] = 1.
## expand if centrosymmetric
# if SGData['SGInv']:
# SSGOps += [[-1*M,V] for M,V in SSGOps[:]]
# monoclinic - all done & all checked
if SGData['SGPtGrp'] in ['2','m']: #OK
SSGOps[1][0][3,3] = SSGKl[0]
SSGOps[1][1][3] = genQ[0]
for i in iFrac:
SSGOps[1][0][3,i] = -SSGKl[0]
elif SGData['SGPtGrp'] == '2/m': #OK
SSGOps[1][0][3,3] = SSGKl[1]
if 's' in gensym:
SSGOps[1][1][3] = 0.5
for i in iFrac:
SSGOps[1][0][3,i] = SSGKl[0]
# orthorhombic - all OK not fully checked
elif SGData['SGPtGrp'] in ['222','mm2','m2m','2mm']: #OK
if SGData['SGPtGrp'] == '222':
OrOps = {'g':{0:[1,3],1:[2,3]},'a':{1:[1,2],2:[1,3]},'b':{2:[3,2],0:[1,2]}} #OK
elif SGData['SGPtGrp'] == 'mm2':
OrOps = {'g':{0:[1,3],1:[2,3]},'a':{1:[2,1],2:[3,1]},'b':{0:[1,2],2:[3,2]}} #OK
elif SGData['SGPtGrp'] == 'm2m':
OrOps = {'b':{0:[1,2],2:[3,2]},'g':{0:[1,3],1:[2,3]},'a':{1:[2,1],2:[3,1]}} #OK
elif SGData['SGPtGrp'] == '2mm':
OrOps = {'a':{1:[2,1],2:[3,1]},'b':{0:[1,2],2:[3,2]},'g':{0:[1,3],1:[2,3]}} #OK
a = findMod(SSGData['modSymb'])
OrFrac = OrOps[a]
for j in iFrac:
for i in OrFrac[j]:
SSGOps[i][0][3,j] = -2.*eval(iFrac[j])*SSGKl[i-1]
for i in [0,1,2]:
SSGOps[i+1][0][3,3] = SSGKl[i]
SSGOps[i+1][1][3] = genQ[i]
E,SSGOps = extendSSGOps(SSGOps)
if not E:
return E,SSGOps
elif SGData['SGPtGrp'] == 'mmm': #OK
OrOps = {'g':{0:[1,3],1:[2,3]},'a':{1:[2,1],2:[3,1]},'b':{0:[1,2],2:[3,2]}}
a = findMod(SSGData['modSymb'])
if a == 'g':
SSkl = [1,1,1]
elif a == 'a':
SSkl = [-1,1,-1]
else:
SSkl = [1,-1,-1]
OrFrac = OrOps[a]
for j in iFrac:
for i in OrFrac[j]:
SSGOps[i][0][3,j] = -2.*eval(iFrac[j])*SSkl[i-1]
for i in [0,1,2]:
SSGOps[i+1][0][3,3] = SSkl[i]
SSGOps[i+1][1][3] = genQ[i]
E,SSGOps = extendSSGOps(SSGOps)
if not E:
return E,SSGOps
# tetragonal - all done & checked
elif SGData['SGPtGrp'] == '4': #OK
SSGOps[1][0][3,3] = SSGKl[0]
SSGOps[1][1][3] = genQ[0]
if '1/2' in SSGData['modSymb']:
SSGOps[1][0][3,1] = -1
elif SGData['SGPtGrp'] == '-4': #OK
SSGOps[1][0][3,3] = SSGKl[0]
if '1/2' in SSGData['modSymb']:
SSGOps[1][0][3,1] = 1
elif SGData['SGPtGrp'] in ['4/m',]: #OK
if '1/2' in SSGData['modSymb']:
SSGOps[1][0][3,1] = -SSGKl[0]
for i,j in enumerate([1,3]):
SSGOps[j][0][3,3] = 1
if genQ[i]:
SSGOps[j][1][3] = genQ[i]
E,SSGOps = extendSSGOps(SSGOps)
if not E:
return E,SSGOps
elif SGData['SGPtGrp'] in ['422','4mm','-42m','-4m2',]: #OK
iGens = [1,4,5]
if SGData['SGPtGrp'] in ['4mm','-4m2',]:
iGens = [1,6,7]
for i,j in enumerate(iGens):
if '1/2' in SSGData['modSymb'] and i < 2:
SSGOps[j][0][3,1] = SSGKl[i]
SSGOps[j][0][3,3] = SSGKl[i]
if genQ[i]:
if 's' in gensym and j == 6:
SSGOps[j][1][3] = -genQ[i]
else:
SSGOps[j][1][3] = genQ[i]
E,SSGOps = extendSSGOps(SSGOps)
if not E:
return E,SSGOps
elif SGData['SGPtGrp'] in ['4/mmm',]:#OK
if '1/2' in SSGData['modSymb']:
SSGOps[1][0][3,1] = -SSGKl[0]
SSGOps[6][0][3,1] = SSGKl[1]
if modsym:
SSGOps[1][1][3] = -genQ[3]
for i,j in enumerate([1,2,6,7]):
SSGOps[j][0][3,3] = 1
SSGOps[j][1][3] = genQ[i]
E,Result = extendSSGOps(SSGOps)
if not E:
return E,Result
else:
SSGOps = Result
# trigonal - all done & checked
elif SGData['SGPtGrp'] == '3': #OK
SSGOps[1][0][3,3] = SSGKl[0]
if '1/3' in SSGData['modSymb']:
SSGOps[1][0][3,1] = -1
SSGOps[1][1][3] = genQ[0]
elif SGData['SGPtGrp'] == '-3': #OK
SSGOps[1][0][3,3] = -SSGKl[0]
if '1/3' in SSGData['modSymb']:
SSGOps[1][0][3,1] = -1
SSGOps[1][1][3] = genQ[0]
elif SGData['SGPtGrp'] in ['312','3m','-3m','-3m1','3m1']: #OK
if '1/3' in SSGData['modSymb']:
SSGOps[1][0][3,1] = -1
for i,j in enumerate([1,5]):
if SGData['SGPtGrp'] in ['3m','-3m']:
SSGOps[j][0][3,3] = 1
else:
SSGOps[j][0][3,3] = SSGKl[i+1]
if genQ[i]:
SSGOps[j][1][3] = genQ[i]
elif SGData['SGPtGrp'] in ['321','32']: #OK
for i,j in enumerate([1,4]):
SSGOps[j][0][3,3] = SSGKl[i]
if genQ[i]:
SSGOps[j][1][3] = genQ[i]
elif SGData['SGPtGrp'] in ['31m','-31m']: #OK
ids = [1,3]
if SGData['SGPtGrp'] == '-31m':
ids = [1,3]
if '1/3' in SSGData['modSymb']:
SSGOps[ids[0]][0][3,1] = -SSGKl[0]
for i,j in enumerate(ids):
SSGOps[j][0][3,3] = 1
if genQ[i+1]:
SSGOps[j][1][3] = genQ[i+1]
# hexagonal all done & checked
elif SGData['SGPtGrp'] == '6': #OK
SSGOps[1][0][3,3] = SSGKl[0]
SSGOps[1][1][3] = genQ[0]
elif SGData['SGPtGrp'] == '-6': #OK
SSGOps[1][0][3,3] = SSGKl[0]
elif SGData['SGPtGrp'] in ['6/m',]: #OK
SSGOps[1][0][3,3] = -SSGKl[1]
SSGOps[1][1][3] = genQ[0]
SSGOps[2][1][3] = genQ[1]
elif SGData['SGPtGrp'] in ['622',]: #OK
for i,j in enumerate([1,9,8]):
SSGOps[j][0][3,3] = SSGKl[i]
if genQ[i]:
SSGOps[j][1][3] = -genQ[i]
E,SSGOps = extendSSGOps(SSGOps)
elif SGData['SGPtGrp'] in ['6mm','-62m','-6m2',]: #OK
for i,j in enumerate([1,6,7]):
SSGOps[j][0][3,3] = SSGKl[i]
if genQ[i]:
SSGOps[j][1][3] = genQ[i]
E,SSGOps = extendSSGOps(SSGOps)
elif SGData['SGPtGrp'] in ['6/mmm',]: # OK
for i,j in enumerate([1,2,10,11]):
SSGOps[j][0][3,3] = 1
if genQ[i]:
SSGOps[j][1][3] = genQ[i]
E,SSGOps = extendSSGOps(SSGOps)
elif SGData['SGPtGrp'] in ['1','-1']: #triclinic - done
return True,SSGOps
E,SSGOps = extendSSGOps(SSGOps)
return E,SSGOps
def specialGen(gensym,modsym):
sym = ''.join(gensym)
if SGData['SGPtGrp'] in ['2/m',] and 'n' in SGData['SpGrp']:
if 's' in sym:
gensym = 'ss'
if SGData['SGPtGrp'] in ['-62m',] and sym == '00s':
gensym = '0ss'
elif SGData['SGPtGrp'] in ['222',]:
if sym == '00s':
gensym = '0ss'
elif sym == '0s0':
gensym = 'ss0'
elif sym == 's00':
gensym = 's0s'
elif SGData['SGPtGrp'] in ['mmm',]:
if 'g' in modsym:
if sym == 's00':
gensym = 's0s'
elif sym == '0s0':
gensym = '0ss'
elif 'a' in modsym:
if sym == '0s0':
gensym = 'ss0'
elif sym == '00s':
gensym = 's0s'
elif 'b' in modsym:
if sym == '00s':
gensym = '0ss'
elif sym == 's00':
gensym = 'ss0'
return gensym
Fracs = {'1/2':0.5,'1/3':1./3,'1':1.0,'0':0.,'s':.5,'t':1./3,'q':.25,'h':-1./6,'a':0.,'b':0.,'g':0.}
if SGData['SGLaue'] in ['m3','m3m']:
return '(3+1) superlattices not defined for cubic space groups',None
elif SGData['SGLaue'] in ['3R','3mR']:
return '(3+1) superlattices not defined for rhombohedral settings - use hexagonal setting',None
try:
modsym,gensym = splitSSsym(SSymbol)
except ValueError:
return 'Error in superspace symbol '+SSymbol,None
modQ = [Fracs[mod] for mod in modsym]
SSGKl = SGData['SSGKl'][:]
if SGData['SGLaue'] in ['2/m','mmm']:
SSGKl = fixMonoOrtho()
Ngen = len(gensym)
if SGData.get('SGGray',False):
Ngen -= 1
if len(gensym) and Ngen != len(SSGKl):
return 'Wrong number of items in generator symbol '+''.join(gensym),None
gensym = specialGen(gensym[:Ngen],modsym)
genQ = [Fracs[mod] for mod in gensym[:Ngen]]
if not genQ:
genQ = [0,0,0,0]
SSgSpc = SGData['SpGrp']+SSymbol
if SGData['SGGray']:
SSgSpc = SSgSpc.replace('('," 1'(")
SSGData = {'SSpGrp':SSgSpc,'modQ':modQ,'modSymb':modsym,'SSGKl':SSGKl}
SSCen = np.zeros((len(SGData['SGCen']),4))
for icen,cen in enumerate(SGData['SGCen']):
SSCen[icen,0:3] = cen
if 'BNSlattsym' in SGData and '_' in SGData['BNSlattsym'][0]:
Ncen = len(SGData['SGCen'])
for icen in range(Ncen//2,Ncen):
SSCen[icen,3] = 0.5
SSGData['SSGCen'] = SSCen%1.
SSGData['SSGOps'] = []
for iop,op in enumerate(SGData['SGOps']):
T = np.zeros(4)
ssop = np.zeros((4,4))
ssop[:3,:3] = op[0]
T[:3] = op[1]
SSGData['SSGOps'].append([ssop,T])
E,Result = genSSGOps()
if E:
SSGData['SSGOps'] = Result
if DEBUG:
print ('Super spacegroup operators for '+SSGData['SSpGrp'])
for Op in Result:
print (SSMT2text(Op).replace(' ',''))
if SGData['SGInv']:
for Op in Result:
Op = [-Op[0],-Op[1]%1.]
print (SSMT2text(Op).replace(' ',''))
return None,SSGData
else:
return Result+'\nOperator conflict - incorrect superspace symbol',None
[docs]
def SSChoice(SGData):
'''
Gets the unique set of possible super space groups for a given space group
'''
ptgpSS = {'1':['(abg)',],'-1':['(abg)',],
'2':['(a0g)','(a1/2g)','(0b0)','(1/2b0)','(0b1/2)','(1/2b1/2)'],
'm':['(a0g)','(a1/2g)','(0b0)','(1/2b0)','(0b1/2)','(1/2b1/2)'],
'2/m':['(a0g)','(a1/2g)','(0b0)','(1/2b0)','(0b1/2)','(1/2b1/2)'],
'222':['(00g)','(1/20g)','(01/2g)','(1/21/2g)','(10g)','(01g)',
'(a00)','(a1/20)','(a01/2)','(a1/21/2)','(a10)','(a01)',
'(0b0)','(1/2b0)','(0b1/2)','(1/2b1/2)','(1b0)','(0b1)',],
'mm2':['(00g)','(1/20g)','(01/2g)','(1/21/2g)','(10g)','(01g)',
'(a00)','(a1/20)','(a01/2)','(a1/21/2)','(a10)','(a01)',
'(0b0)','(1/2b0)','(0b1/2)','(1/2b1/2)','(1b0)','(0b1)',],
'm2m':['(00g)','(1/20g)','(01/2g)','(1/21/2g)','(10g)','(01g)',
'(a00)','(a1/20)','(a01/2)','(a1/21/2)','(a10)','(a01)',
'(0b0)','(1/2b0)','(0b1/2)','(1/2b1/2)','(1b0)','(0b1)',],
'2mm':['(00g)','(1/20g)','(01/2g)','(1/21/2g)','(10g)','(01g)',
'(a00)','(a1/20)','(a01/2)','(a1/21/2)','(a10)','(a01)',
'(0b0)','(1/2b0)','(0b1/2)','(1/2b1/2)','(1b0)','(0b1)',],
'mmm':['(00g)','(1/20g)','(01/2g)','(1/21/2g)','(10g)','(01g)',
'(a00)','(a1/20)','(a01/2)','(a1/21/2)','(a10)','(a01)',
'(0b0)','(1/2b0)','(0b1/2)','(1/2b1/2)','(1b0)','(0b1)',],
'4':['(00g)','(1/21/2g)'],'4mm':['(00g)','(1/21/2g)'],
'4/m':['(00g)','(1/21/2g)'],
'422':['(00g)','(1/21/2g)'],'-4m2':['(00g)','(1/21/2g)'],'-42m':['(00g)','(1/21/2g)'],
'4/mmm':['(00g)','(1/21/2g)'],
'3':['(00g)','(1/31/3g)'],'-3':['(00g)','(1/31/3g)'],
'32':['(00g)'],'3m':['(00g)'],'-3m':['(00g)'],
'321':['(00g)'],'3m1':['(00g)'],'-3m1':['(00g)'],
'312':['(00g)','(1/31/3g)'],'31m':['(00g)','(1/31/3g)'],'-31m':['(00g)','(1/31/3g)'],
'6':['(00g)',],'6/m':['(00g)',],'-62m':['(00g)',],'-6m2':['(00g)',],
'622':['(00g)',],'6/mmm':['(00g)',],'6mm':['(00g)',],
'23':['',],'m3':['',],'432':['',],'-43m':['',],'m3m':['',]}
ptgpTS = {'1':['0',],'-1':['0',],
'2':['0','s'],'m':['0','s'],
'2/m':['00','0s','ss','s0'],
'222':['000','s00','0s0','00s',],
'mm2':['000','s00','0s0','00s','ss0','s0s','0ss','q00','0q0','00q','0qq','q0q','qq0'],
'm2m':['000','s00','0s0','00s','ss0','s0s','0ss','q00','0q0','00q','0qq','q0q','qq0'],
'2mm':['000','s00','0s0','00s','ss0','s0s','0ss','q00','0q0','00q','0qq','q0q','qq0'],
'mmm':['000','s00','0s0','00s','ss0','s0s','0ss','q00','0q0','00q','0qq','q0q','qq0'],
'4':['0','q','s'],'4mm':['000','q00','s00','s0s','ss0','0ss','qq0','qqs'],
'4/m':['00','s0'],'-4m2':['000','0s0','0q0'],'-42m':['000','00s'],
'422':['000','q00','s00','s0s','ss0','0ss','qq0','qqs','0q0'],
'4/mmm':['0000','s0s0','00ss','s00s','ss00','0ss0','0s0s'],
'3':['0','t'],'-3':['0','t'],
'32':['00','t0'],'3m':['00','0s'],'-3m':['00','0s'],
'321':['000','t00'],'3m1':['000','0s0'],'-3m1':['000','0s0'],
'312':['000','t00'],'31m':['000','00s'],'-31m':['000','00s'],
'6':['0','h','t','s'],
'6/m':['00','s0'],'-62m':['000','00s'],'-6m2':['000','0s0'],
'622':['000','h00','t00','s00',],'6mm':['000','ss0','s0s','0ss',],
'6/mmm':['0000','s0s0','00ss','s00s','ss00','0ss0','0s0s'],
'23':['',],'m3':['',],'432':['',],'-43m':['',],'m3m':['',]}
ptgp = SGData['SGPtGrp']
SSChoice = []
for ax in ptgpSS[ptgp]:
for sx in ptgpTS[ptgp]:
SSChoice.append(ax+sx)
if SGData['SGGray']: SSChoice[-1] += 's'
ssChoice = []
ssHash = []
for item in SSChoice:
E,SSG = SSpcGroup(SGData,item)
if SSG:
sshash = hash(str(SSGPrint(SGData,SSG)[1]))
if sshash not in ssHash:
ssHash.append(sshash)
ssChoice.append(item)
return ssChoice
[docs]
def splitSSsym(SSymbol):
'''
Splits supersymmetry symbol into two lists of strings
'''
mssym = SSymbol.replace(' ','').split(')')
if len(mssym) > 1:
modsym,gensym = mssym
else:
modsym = mssym[0]
gensym = ''
modsym = modsym.replace(',','')
if "1'" in modsym:
gensym = gensym[:-1]
modsym = modsym.replace("1'",'')
if gensym in ['0','00','000','0000']: #get rid of extraneous symbols
gensym = ''
nfrac = modsym.count('/')
modsym = modsym.lstrip('(')
if nfrac == 0:
modsym = list(modsym)
elif nfrac == 1:
pos = modsym.find('/')
if pos == 1:
modsym = [modsym[:3],modsym[3],modsym[4]]
elif pos == 2:
modsym = [modsym[0],modsym[1:4],modsym[4]]
else:
modsym = [modsym[0],modsym[1],modsym[2:]]
else:
lpos = modsym.find('/')
rpos = modsym.rfind('/')
if lpos == 1 and rpos == 4:
modsym = [modsym[:3],modsym[3:6],modsym[6]]
elif lpos == 1 and rpos == 5:
modsym = [modsym[:3],modsym[3],modsym[4:]]
else:
modsym = [modsym[0],modsym[1:4],modsym[4:]]
gensym = list(gensym)
return modsym,gensym
[docs]
def SSGPrint(SGData,SSGData,AddInv=False):
'''
Print the output of SSpcGroup in a nicely formatted way. Used in SSpaceGroup
:param SGData: space group data structure as defined in SpcGroup above.
:param SSGData: from :func:`SSpcGroup`
:returns:
SSGText - list of strings with the superspace group details
SGTable - list of strings for each of the operations
'''
nCen = len(SSGData['SSGCen'])
Mult = nCen*len(SSGData['SSGOps'])*(int(SGData['SGInv'])+1)
if SGData.get('SGFixed',False):
Mult = len(SSGData['SSGCen'])*len(SSGData['SSGOps'])
SSsymb = SSGData['SSpGrp']
if 'BNSlattsym' in SGData and '_' in SGData['BNSlattsym'][0]:
SSsymb = SGData['BNSlattsym'][0]+SSsymb[1:]
SSGCen = list(SSGData['SSGCen'])
if SGData.get('SGGray',False):
if SGData.get('SGFixed',False):
Mult //= 2
else:
SSGCen += list(SSGData['SSGCen']+[0,0,0,0.5])
SSGCen = np.array(SSGCen)%1.
else:
if "1'" in SSsymb: #leftover in nonmag phase in mcif file
nCen //= 2
Mult //= 2
SSsymb = SSsymb.replace("1'",'')[:-1]
SSGText = []
SSGText.append(' Superspace Group: '+SSsymb)
CentStr = 'centrosymmetric'
if not SGData['SGInv']:
CentStr = 'non'+CentStr
if SGData['SGLatt'] in 'ABCIFR':
SSGText.append(' The lattice is '+CentStr+' '+SGData['SGLatt']+'-centered '+SGData['SGSys'].lower())
else:
SSGText.append(' The superlattice is '+CentStr+' '+'primitive '+SGData['SGSys'].lower())
SSGText.append(' The Laue symmetry is '+SGData['SGLaue'])
SGptGp = SGData['SGPtGrp']
if SGData['SGGray']:
SGptGp += "1'"
SSGText.append(' The superlattice point group is '+SGptGp+', '+''.join([str(i) for i in SSGData['SSGKl']]))
SSGText.append(' The number of superspace group generators is '+str(len(SGData['SSGKl'])))
SSGText.append(' Multiplicity of a general site is '+str(Mult))
if SGData['SGUniq'] in ['a','b','c']:
SSGText.append(' The unique monoclinic axis is '+SGData['SGUniq'])
if SGData['SGInv']:
SSGText.append(' The inversion center is located at 0,0,0')
if SGData['SGPolax']:
SSGText.append(' The location of the origin is arbitrary in '+SGData['SGPolax'])
SSGText.append(' ')
if len(SSGCen) > 1:
SSGText.append(' The equivalent positions are:')
SSGText.append(' ('+SSLatt2text(SSGCen)+')+\n')
else:
SSGText.append(' The equivalent positions are:\n')
SSGTable = []
for i,Opr in enumerate(SSGData['SSGOps']):
SSGTable.append('(%2d) %s'%(i+1,SSMT2text(Opr)))
if AddInv and SGData['SGInv']:
for i,Opr in enumerate(SSGData['SSGOps']):
IOpr = [-Opr[0],-Opr[1]]
SSGTable.append('(%2d) %s'%(i+1+len(SSGData['SSGOps']),SSMT2text(IOpr)))
return SSGText,SSGTable
[docs]
def SSGModCheck(Vec,modSymb,newMod=True):
''' Checks modulation vector compatibility with supersymmetry space group symbol.
if newMod: Superspace group symbol takes precidence & the vector will be modified accordingly
'''
Fracs = {'1/2':0.5,'1/3':1./3,'1':1.0,'0':0.,'a':0.,'b':0.,'g':0.}
modQ = [Fracs[mod] for mod in modSymb]
if newMod:
newVec = Vec
if not np.any(Vec):
newVec = [0.1 if (vec == 0.0 and mod in ['a','b','g']) else vec for [vec,mod] in zip(Vec,modSymb)]
return [Q if mod not in ['a','b','g'] and vec != Q else vec for [vec,mod,Q] in zip(newVec,modSymb,modQ)], \
[True if mod in ['a','b','g'] else False for mod in modSymb]
else:
return Vec,[True if mod in ['a','b','g'] else False for mod in modSymb]
[docs]
def SSMT2text(Opr):
"From superspace group matrix/translation operator returns text version"
XYZS = ('x','y','z','t') #Stokes, Campbell & van Smaalen notation
TRA = (' ','ERR','1/6','1/4','1/3','ERR','1/2','ERR','2/3','3/4','5/6','ERR')
Fld = ''
M,T = Opr
for j in range(4):
IJ = ''
for k in range(4):
txt = str(int(round(M[j][k])))
txt = txt.replace('1',XYZS[k]).replace('0','')
if '2' in txt:
txt += XYZS[k]
if IJ and M[j][k] > 0:
IJ += '+'+txt
else:
IJ += txt
IK = int(round(T[j]*12))%12
if IK:
if not IJ:
break
if IJ[0] == '-':
Fld += (TRA[IK]+IJ).rjust(8)
else:
Fld += (TRA[IK]+'+'+IJ).rjust(8)
else:
Fld += IJ.rjust(8)
if j != 3: Fld += ', '
return Fld
[docs]
def SSLatt2text(SSGCen):
"Lattice centering vectors to text"
lattTxt = ''
lattDir = {4:'1/3',6:'1/2',8:'2/3',0:'0'}
for vec in SSGCen:
lattTxt += ' '
for item in vec:
lattTxt += '%s,'%(lattDir[int(item*12)])
lattTxt = lattTxt.rstrip(',')
lattTxt += ';'
lattTxt = lattTxt.rstrip(';').lstrip(' ')
return lattTxt
[docs]
def SSpaceGroup(SGSymbol,SSymbol):
'''
Print the output of SSpcGroup in a nicely formatted way.
:param SGSymbol: space group symbol with spaces between axial fields.
:param SSymbol: superspace group symbol extension (string).
:returns: nothing
'''
E,A = SpcGroup(SGSymbol)
if E > 0:
print (SGErrors(E))
return
E,B = SSpcGroup(A,SSymbol)
if E > 0:
print (E)
return
for l in SSGPrint(B):
print (l)
[docs]
def SGProd(OpA,OpB):
'''
Form space group operator product. OpA & OpB are [M,V] pairs;
both must be of same dimension (3 or 4). Returns [M,V] pair
'''
A,U = OpA
B,V = OpB
M = np.inner(B,A.T)
W = np.inner(B,U)+V
return M,W
[docs]
def GetLittleGrpOps(SGData,vec):
''' Find rotation part of operators that leave vec unchanged
:param SGData: space group data structure as defined in SpcGroup above.
:param vec: a numpy array of fractional vector coordinates
:returns: Little - list of operators [M,T] that form the little gropu
'''
Little = []
Ops = SGData['SGOps'][:]
if SGData['SGInv']:
Ops += [[-M,-T] for [M,T] in Ops]
for [M,T] in Ops:
tvec = np.inner(M,vec)%1.
if np.allclose(tvec,vec%1.):
Little.append([M,T])
return Little
[docs]
def MoveToUnitCell(xyz):
'''
Translates a set of coordinates so that all values are >=0 and < 1
:param xyz: a list or numpy array of fractional coordinates
:returns: XYZ - numpy array of new coordinates now 0 or greater and less than 1
'''
XYZ = np.array(xyz)%1.
cell = np.asarray(np.rint(XYZ-xyz),dtype=np.int32)
return XYZ,cell
[docs]
def Opposite(XYZ,toler=0.0002):
'''
Gives opposite corner, edge or face of unit cell for position within tolerance.
Result may be just outside the cell within tolerance
:param XYZ: 0 >= np.array[x,y,z] > 1 as by MoveToUnitCell
:param toler: unit cell fraction tolerance making opposite
:returns:
XYZ: dict of opposite positions; key=unit cell & always contains XYZ
'''
perm3 = [[1,1,1],[0,1,1],[1,0,1],[1,1,0],[1,0,0],[0,1,0],[0,0,1],[0,0,0]]
TB = np.where(abs(XYZ-1)<toler,-1,0)+np.where(abs(XYZ)<toler,1,0)
perm = TB*perm3
cperm = ['%d,%d,%d'%(i,j,k) for i,j,k in perm]
D = dict(zip(cperm,perm))
new = {}
for key in D:
new[key] = np.array(D[key])+np.array(XYZ)
return new
[docs]
def GenAtom(XYZ,SGData,All=False,Uij=[],Move=True):
'''
Generates the equivalent positions for a specified coordinate and space group
:param XYZ: an array, tuple or list containing 3 elements: x, y & z
:param SGData: from :func:`SpcGroup`
:param All: True return all equivalent positions including duplicates;
False return only unique positions
:param Uij: [U11,U22,U33,U12,U13,U23] or [] if no Uij
:param Move: True move generated atom positions to be inside cell
False do not move atoms
:return: [[XYZEquiv],Idup,[UijEquiv],spnflp]
* [XYZEquiv] is list of equivalent positions (XYZ is first entry)
* Idup = [-][C]SS where SS is the symmetry operator number (1-24), C (if not 0,0,0)
* is centering operator number (1-4) and - is for inversion
Cell = unit cell translations needed to put new positions inside cell
[UijEquiv] - equivalent Uij; absent if no Uij given
* +1/-1 for spin inversion of operator - empty if not magnetic
'''
XYZEquiv = []
UijEquiv = []
Idup = []
Cell = []
inv = int(SGData['SGInv']+1)
icen = SGData['SGCen']
if SGData.get('SGFixed',False):
inv = 1
SpnFlp = SGData.get('SpnFlp',[])
spnflp = []
X = np.array(XYZ)
mj = 0
for ic,cen in enumerate(icen):
C = np.array(cen)
for invers in range(inv):
for io,[M,T] in enumerate(SGData['SGOps']):
idup = ((io+1)+100*ic)*(1-2*invers)
XT = np.inner(M,X)+T
if len(Uij):
U = Uij2U(Uij)
U = np.inner(M,np.inner(U,M).T)
newUij = U2Uij(U)
if invers:
XT = -XT
XT += C
cell = np.zeros(3,dtype=np.int32)
if Move:
newX,cell = MoveToUnitCell(XT)
else:
newX = XT
if All:
if np.allclose(newX,X,atol=0.0002): #do we want %1. here?
idup = False
else:
if True in [np.allclose(newX%1.,oldX%1.,atol=0.0002) for oldX in XYZEquiv]:
idup = False
if All or idup:
XYZEquiv.append(newX)
Idup.append(idup)
Cell.append(cell)
if len(Uij):
UijEquiv.append(newUij)
if len(SpnFlp):
spnflp.append(SpnFlp[mj])
else:
spnflp.append(1)
mj += 1
if len(Uij):
return zip(XYZEquiv,UijEquiv,Idup,Cell,spnflp)
else:
return zip(XYZEquiv,Idup,Cell,spnflp)
[docs]
def GenHKL(HKL,SGData):
''' Generates all equivlent reflections including Friedel pairs
:param HKL: [h,k,l] must be integral values
:param SGData: space group data obtained from SpcGroup
:returns: array Uniq: equivalent reflections
'''
Ops = SGData['SGOps']
OpM = np.array([op[0] for op in Ops])
Uniq = np.inner(OpM,HKL)
Uniq = list(Uniq)+list(-1*Uniq)
return np.array(Uniq)
[docs]
def GenHKLf(HKL,SGData):
'''
Uses old GSAS Fortran routine genhkl.for
:param HKL: [h,k,l] must be integral values for genhkl.for to work
:param SGData: space group data obtained from SpcGroup
:returns: iabsnt,mulp,Uniq,phi
* iabsnt = True if reflection is forbidden by symmetry
* mulp = reflection multiplicity including Friedel pairs
* Uniq = numpy array of equivalent hkl in descending order of h,k,l
* phi = phase offset for each equivalent h,k,l
'''
hklf = list(HKL)+[0,] #could be numpy array!
Ops = SGData['SGOps']
OpM = np.array([op[0] for op in Ops],order='F')
OpT = np.array([op[1] for op in Ops])
Cen = np.array([cen for cen in SGData['SGCen']],order='F')
Nuniq,Uniq,iabsnt,mulp = pyspg.genhklpy(hklf,len(Ops),OpM,OpT,SGData['SGInv'],len(Cen),Cen)
h,k,l,f = Uniq
Uniq=np.array(list(zip(h[:Nuniq],k[:Nuniq],l[:Nuniq])))
phi = f[:Nuniq]
return iabsnt,mulp,Uniq,phi
def checkSSLaue(HKL,SGData,SSGData):
#Laue check here - Toss HKL if outside unique Laue part
h,k,l,m = HKL
if SGData['SGLaue'] == '2/m':
if SGData['SGUniq'] == 'a':
if 'a' in SSGData['modSymb'] and h == 0 and m < 0:
return False
elif 'b' in SSGData['modSymb'] and k == 0 and l ==0 and m < 0:
return False
else:
return True
elif SGData['SGUniq'] == 'b':
if 'b' in SSGData['modSymb'] and k == 0 and m < 0:
return False
elif 'a' in SSGData['modSymb'] and h == 0 and l ==0 and m < 0:
return False
else:
return True
elif SGData['SGUniq'] == 'c':
if 'g' in SSGData['modSymb'] and l == 0 and m < 0:
return False
elif 'a' in SSGData['modSymb'] and h == 0 and k ==0 and m < 0:
return False
else:
return True
elif SGData['SGLaue'] == 'mmm':
if 'a' in SSGData['modSymb']:
if h == 0 and m < 0:
return False
else:
return True
elif 'b' in SSGData['modSymb']:
if k == 0 and m < 0:
return False
else:
return True
elif 'g' in SSGData['modSymb']:
if l == 0 and m < 0:
return False
else:
return True
else: #tetragonal, trigonal, hexagonal (& triclinic?)
if l == 0 and m < 0:
return False
else:
return True
[docs]
def checkHKLextc(HKL,SGData):
'''
Checks if reflection extinct - does not check centering
:param HKL: [h,k,l]
:param SGData: space group data obtained from SpcGroup
:returns: True if extinct; False if allowed
'''
Ops = SGData['SGOps']
OpM = np.array([op[0] for op in Ops])
OpT = np.array([op[1] for op in Ops])
HKLS = np.array([HKL,-HKL]) #Freidel's Law
DHKL = np.reshape(np.inner(HKLS,OpM)-HKL,(-1,3))
PHKL = np.reshape(np.inner(HKLS,OpT),(-1,))
for dhkl,phkl in zip(DHKL,PHKL)[1:]: #skip identity
if dhkl.any():
continue
else:
if phkl%1.:
return True
return False
[docs]
def checkMagextc(HKL,SGData):
'''
Checks if reflection magnetically extinct; does fullcheck (centering, too)
uses algorthm from Gallego, et al., J. Appl. Cryst. 45, 1236-1247 (2012)
:param HKL: [h,k,l]
:param SGData: space group data obtained from SpcGroup; must have magnetic symmetry SpnFlp data
:returns: True if magnetically extinct; False if allowed (to match GenHKLf)
'''
Ops = SGData['SGOps']
Ncen = len(SGData['SGCen'])
OpM = np.array([op[0] for op in Ops])
OpT = np.array([op[1] for op in Ops])
if SGData['SGInv'] and not SGData['SGFixed']:
OpM = np.vstack((OpM,-OpM))
OpT = np.vstack((OpT,-OpT))%1.
OpM = np.reshape(np.array(list(OpM)*Ncen),(-1,3,3))
OpT = np.reshape(np.array([OpT+cen for cen in SGData['SGCen']]),(-1,3))
Spn = SGData['SpnFlp'][:len(OpM)]
Mag = np.array([nl.det(opm) for opm in OpM])*Spn
DHKL = np.reshape(np.inner(HKL,OpM),(-1,3))
PHKL = np.reshape(np.cos(2.0*np.pi*np.inner(HKL,OpT))*Mag,(-1,))[:,nxs,nxs]*OpM #compute T(R,theta) eq(7)
Ftest = np.random.rand(3) #random magnetic moment
Psum = np.zeros(3)
nsum = 0.
nA = 0
for dhkl,phkl in zip(DHKL,PHKL):
if not np.allclose(dhkl,HKL,atol=1.e-3): #test for eq(5)
continue
else:
nA += 1
nsum += np.trace(phkl) #eq(8)
pterm = np.inner(Ftest,phkl) #eq(9)
Psum += pterm
if nsum/nA > 1.: #only need to look at nA=1 from eq(8)
return False
if np.allclose(Psum,np.zeros(3),atol=1.e-3):
return True
else:
if np.abs(np.inner(HKL,Psum)) > 1.e-3:
return True
return False
def checkSSextc(HKL,SSGData):
Ops = SSGData['SSGOps']
OpM = np.array([op[0] for op in Ops])
OpT = np.array([op[1] for op in Ops])
HKLS = np.array([HKL,-HKL]) #Freidel's Law
DHKL = np.reshape(np.inner(HKLS,OpM)-HKL,(-1,4))
PHKL = np.reshape(np.inner(HKLS,OpT),(-1,))
for dhkl,phkl in list(zip(DHKL,PHKL))[1:]: #skip identity
if dhkl.any():
continue
else:
if phkl%1.:
return False
return True
################################################################################
#### Site symmetry tables
################################################################################
OprName = {
'-6643': ['-1',1],'6479' : ['2(z)',2],'-6479': ['m(z)',3],
'6481' : ['m(y)',4],'-6481': ['2(y)',5],'6641' : ['m(x)',6],
'-6641': ['2(x)',7],'6591' : ['m(+-0)',8],'-6591': ['2(+-0)',9],
'6531' : ['m(110)',10],'-6531': ['2(110)',11],'6537' : ['4(z)',12],
'-6537': ['-4(z)',13],'975' : ['3(111)',14],'6456' : ['3',15],
'-489' : ['3(+--)',16],'483' : ['3(-+-)',17],'-969' : ['3(--+)',18],
'819' : ['m(+0-)',19],'-819' : ['2(+0-)',20],'2431' : ['m(0+-)',21],
'-2431': ['2(0+-)',22],'-657' : ['m(xz)',23],'657' : ['2(xz)',24],
'1943' : ['-4(x)',25],'-1943': ['4(x)',26],'-2429': ['m(yz)',27],
'2429' : ['2(yz)',28],'639' : ['-4(y)',29],'-639' : ['4(y)',30],
'-6484': ['2(010)',4],'6484' : ['m(010)',5],'-6668': ['2(100)',6],
'6668' : ['m(100)',7],'-6454': ['2(120)',18],'6454' : ['m(120)',19],
'-6638': ['2(210)',20],'6638' : ['m(210)',21], #search in SytSym ends at m(210)
'2223' : ['3(+++)2',39],
'6538' : ['6(z)1',40],'-2169':['3(--+)2',41],'2151' : ['3(+--)2',42],
'2205' :['-3(-+-)2',43],'-2205':[' (-+-)2',44],'489' :['-3(+--)1',45],
'801' : ['4(y)1',46],'1945' : ['4(x)3',47],'-6585': ['-4(z)3 ',48],
'6585' : ['4(z)3',49],'6584' : ['3(z)2',50],'6666' : ['6(z)5 ',51],
'6643' : ['1',52],'-801' : ['-4(y)1',53],'-1945': ['-4(x)3 ',54],
'-6666': ['-6(z)5',55],'-6538': ['-6(z)1',56],'-2223':['-3(+++)2',57],
'-975' :['-3(+++)1',58],'-6456': ['-3(z)1',59],'-483' :['-3(-+-)1',60],
'969' :['-3(--+)1',61],'-6584': ['-3(z)2',62],'2169' :['-3(--+)2',63],
'-2151':['-3(+--)2',64], }
KNsym = {
'0' :' 1 ','1' :' -1 ','64' :' 2(x)','32' :' m(x)',
'97' :' 2/m(x)','16' :' 2(y)','8' :' m(y)','25' :' 2/m(y)',
'2' :' 2(z)','4' :' m(z)','7' :' 2/m(z)','134217728' :' 2(yz)',
'67108864' :' m(yz)','201326593' :' 2/m(yz)','2097152' :' 2(0+-)','1048576' :' m(0+-)',
'3145729' :'2/m(0+-)','8388608' :' 2(xz)','4194304' :' m(xz)','12582913' :' 2/m(xz)',
'524288' :' 2(+0-)','262144' :' m(+0-)','796433' :'2/m(+0-)','1024' :' 2(xy)',
'512' :' m(xy)','1537' :' 2/m(xy)','256' :' 2(+-0)','128' :' m(+-0)',
'385' :'2/m(+-0)','76' :' mm2(x)','52' :' mm2(y)','42' :' mm2(z)',
'135266336' :' mm2(yz)','69206048' :'mm2(0+-)','8650760' :' mm2(xz)','4718600' :'mm2(+0-)',
'1156' :' mm2(xy)','772' :'mm2(+-0)','82' :' 222 ','136314944' :' 222(x)',
'8912912' :' 222(y)','1282' :' 222(z)','127' :' mmm ','204472417' :' mmm(x)',
'13369369' :' mmm(y)','1927' :' mmm(z)','33554496' :' 4(x)','16777280' :' -4(x)',
'50331745' :'4/m(x)' ,'169869394' :'422(x)','84934738' :'-42m(x)','101711948' :'4mm(x)',
'254804095' :'4/mmm(x)','536870928 ':' 4(y)','268435472' :' -4(y)','805306393' :'4/m(y)',
'545783890' :'422(y)','272891986' :'-42m(y)','541327412' :'4mm(y)','818675839' :'4/mmm(y)',
'2050' :' 4(z)','4098' :' -4(z)','6151' :'4/m(z)','3410' :'422(z)',
'4818' :'-42m(z)','2730' :'4mm(z)','8191' :'4/mmm(z)','8192' :' 3(111)',
'8193' :' -3(111)','2629888' :' 32(111)','1319040' :' 3m(111)','3940737' :'-3m(111)',
'32768' :' 3(+--)','32769' :' -3(+--)','10519552' :' 32(+--)','5276160' :' 3m(+--)',
'15762945' :'-3m(+--)','65536' :' 3(-+-)','65537' :' -3(-+-)','134808576' :' 32(-+-)',
'67437056' :' 3m(-+-)','202180097' :'-3m(-+-)','131072' :' 3(--+)','131073' :' -3(--+)',
'142737664' :' 32(--+)','71434368' :' 3m(--+)','214040961' :'-3m(--+)','237650' :' 23 ',
'237695' :' m3 ','715894098' :' 432 ','358068946' :' -43m ','1073725439':' m3m ',
'68157504' :' mm2(d100)','4456464' :' mm2(d010)','642' :' mm2(d001)','153092172' :'-4m2(x)',
'277348404' :'-4m2(y)','5418' :'-4m2(z)','1075726335':' 6/mmm ','1074414420':'-6m2(100)',
'1075070124':'-6m2(120)','1075069650':' 6mm ','1074414890':' 622 ','1073758215':' 6/m ',
'1073758212':' -6 ','1073758210':' 6 ','1073759865':'-3m(100)','1075724673':'-3m(120)',
'1073758800':' 3m(100)','1075069056':' 3m(120)','1073759272':' 32(100)','1074413824':' 32(120)',
'1073758209':' -3 ','1073758208':' 3 ','1074135143':'mmm(100)','1075314719':'mmm(010)',
'1073743751':'mmm(110)','1074004034':' mm2(z100)','1074790418':' mm2(z010)','1073742466':' mm2(z110)',
'1074004004':'mm2(100)','1074790412':'mm2(010)','1073742980':'mm2(110)','1073872964':'mm2(120)',
'1074266132':'mm2(210)','1073742596':'mm2(+-0)','1073872930':'222(100)','1074266122':'222(010)',
'1073743106':'222(110)','1073741831':'2/m(001)','1073741921':'2/m(100)','1073741849':'2/m(010)',
'1073743361':'2/m(110)','1074135041':'2/m(120)','1075314689':'2/m(210)','1073742209':'2/m(+-0)',
'1073741828':' m(001) ','1073741888':' m(100) ','1073741840':' m(010) ','1073742336':' m(110) ',
'1074003968':' m(120) ','1074790400':' m(210) ','1073741952':' m(+-0) ','1073741826':' 2(001) ',
'1073741856':' 2(100) ','1073741832':' 2(010) ','1073742848':' 2(110) ','1073872896':' 2(120) ',
'1074266112':' 2(210) ','1073742080':' 2(+-0) ','1073741825':' -1 ',
}
NXUPQsym = {
'1' :(28,29,28,28),'-1' :( 1,29,28, 0),'2(x)' :(12,18,12,25),'m(x)' :(25,18,12,25),
'2/m(x)' :( 1,18, 0,-1),'2(y)' :(13,17,13,24),'m(y)' :(24,17,13,24),'2/m(y)' :( 1,17, 0,-1),
'2(z)' :(14,16,14,23),'m(z)' :(23,16,14,23),'2/m(z)' :( 1,16, 0,-1),'2(yz)' :(10,23,10,22),
'm(yz)' :(22,23,10,22),' 2/m(yz)' :( 1,23, 0,-1),'2(0+-)' :(11,24,11,21),'m(0+-)' :(21,24,11,21),
'2/m(0+-)' :( 1,24, 0,-1),'2(xz)' :( 8,21, 8,20),'m(xz)' :(20,21, 8,20),'2/m(xz)' :( 1,21, 0,-1),
'2(+0-)' :( 9,22, 9,19),'m(+0-)' :(19,22, 9,19),'2/m(+0-)' :( 1,22, 0,-1),'2(xy)' :( 6,19, 6,18),
'm(xy)' :(18,19, 6,18),' 2/m(xy)' :( 1,19, 0,-1),'2(+-0)' :( 7,20, 7,17),'m(+-0)' :(17,20, 7,17),
'mm2(x)' :(12,10, 0,-1),'mm2(y)' :(13,10, 0,-1),'mm2(z)' :(14,10, 0,-1),
'mm2(yz)' :(10,13, 0,-1),'mm2(0+-)' :(11,13, 0,-1),'mm2(xz)' :( 8,12, 0,-1),'mm2(+0-)' :( 9,12, 0,-1),
'mm2(xy)' :( 6,11, 0,-1),'222' :( 1,10, 0,-1),'222(x)' :( 1,13, 0,-1),
'222(y)' :( 1,12, 0,-1),'222(z)' :( 1,11, 0,-1),'mmm' :( 1,10, 0,-1),'mmm(x)' :( 1,13, 0,-1),
'mmm(y)' :( 1,12, 0,-1),'mmm(z)' :( 1,11, 0,-1),'4(x)' :(12, 4,12, 0),'-4(x)' :( 1, 4,12, 0),
'4/m(x)' :( 1, 4,12,-1),'422(x)' :( 1, 4, 0,-1),'-42m(x)' :( 1, 4, 0,-1),'4mm(x)' :(12, 4, 0,-1),
'4/mmm(x)' :( 1, 4, 0,-1),'4(y)' :(13, 3,13, 0),'-4(y)' :( 1, 3,13, 0),'4/m(y)' :( 1, 3,13,-1),
'422(y)' :( 1, 3, 0,-1),'-42m(y)' :( 1, 3, 0,-1),'4mm(y)' :(13, 3, 0,-1),'4/mmm(y)' :(1, 3, 0,-1,),
'4(z)' :(14, 2,14, 0),'-4(z)' :( 1, 2,14, 0),'4/m(z)' :( 1, 2,14,-1),'422(z)' :( 1, 2, 0,-1),
'-42m(z)' :( 1, 2, 0,-1),'4mm(z)' :(14, 2, 0,-1),'4/mmm(z)' :( 1, 2, 0,-1),'3(111)' :( 2, 5, 2, 0),
'-3(111)' :( 1, 5, 2, 0),'32(111)' :( 1, 5, 0, 2),'3m(111)' :( 2, 5, 0, 2),'-3m(111)' :( 1, 5, 0,-1),
'3(+--)' :( 5, 8, 5, 0),'-3(+--)' :( 1, 8, 5, 0),'32(+--)' :( 1, 8, 0, 5),'3m(+--)' :( 5, 8, 0, 5),
'-3m(+--)' :( 1, 8, 0,-1),'3(-+-)' :( 4, 7, 4, 0),'-3(-+-)' :( 1, 7, 4, 0),'32(-+-)' :( 1, 7, 0, 4),
'3m(-+-)' :( 4, 7, 0, 4),'-3m(-+-)' :( 1, 7, 0,-1),'3(--+)' :( 3, 6, 3, 0),'-3(--+)' :( 1, 6, 3, 0),
'32(--+)' :( 1, 6, 0, 3),'3m(--+)' :( 3, 6, 0, 3),'-3m(--+)' :( 1, 6, 0,-1),'23' :( 1, 1, 0, 0),
'm3' :( 1, 1, 0, 0),'432' :( 1, 1, 0, 0),'-43m' :( 1, 1, 0, 0),'m3m' :( 1, 1, 0, 0),
'mm2(d100)':(12,13, 0,-1),'mm2(d010)':(13,12, 0,-1),'mm2(d001)':(14,11, 0,-1),'-4m2(x)' :( 1, 4, 0,-1),
'-4m2(y)' :( 1, 3, 0,-1),'-4m2(z)' :( 1, 2, 0,-1),'6/mmm' :( 1, 9, 0,-1),'-6m2(100)':( 1, 9, 0,-1),
'-6m2(120)':( 1, 9, 0,-1),'6mm' :(14, 9, 0,-1),'622' :( 1, 9, 0,-1),'6/m' :( 1, 9,14,-1),
'-6' :( 1, 9,14, 0),'6' :(14, 9,14, 0),'-3m(100)' :( 1, 9, 0,-1),'-3m(120)' :( 1, 9, 0,-1),
'3m(100)' :(14, 9, 0,14),'3m(120)' :(14, 9, 0,14),'32(100)' :( 1, 9, 0,14),'32(120)' :( 1, 9, 0,14),
'-3' :( 1, 9,14, 0),'3' :(14, 9,14, 0),'mmm(100)' :( 1,14, 0,-1),'mmm(010)' :( 1,15, 0,-1),
'mmm(110)' :( 1,11, 0,-1),'mm2(z100)':(14,14, 0,-1),'mm2(z010)':(14,15, 0,-1),'mm2(z110)':(14,11, 0,-1),
'mm2(100)' :(12,14, 0,-1),'mm2(010)' :(13,15, 0,-1),'mm2(110)' :( 6,11, 0,-1),'mm2(120)' :(15,14, 0,-1),
'mm2(210)' :(16,15, 0,-1),'mm2(+-0)' :( 7,11, 0,-1),'222(100)' :( 1,14, 0,-1),'222(010)' :( 1,15, 0,-1),
'222(110)' :( 1,11, 0,-1),'2/m(001)' :( 1,16,14,-1),'2/m(100)' :( 1,25,12,-1),'2/m(010)' :( 1,28,13,-1),
'2/m(110)' :( 1,19, 6,-1),'2/m(120)' :( 1,27,15,-1),'2/m(210)' :( 1,26,16,-1),'2/m(+-0)' :( 1,20,17,-1),
'm(001)' :(23,16,14,23),'m(100)' :(26,25,12,26),'m(010)' :(27,28,13,27),'m(110)' :(18,19, 6,18),
'm(120)' :(24,27,15,24),'m(210)' :(25,26,16,25),'m(+-0)' :(17,20, 7,17),'2(001)' :(14,16,14,23),
'2(100)' :(12,25,12,26),'2(010)' :(13,28,13,27),'2(110)' :( 6,19, 6,18),'2(120)' :(15,27,15,24),
'2(210)' :(16,26,16,25),'2(+-0)' :( 7,20, 7,17),'-1' :( 1,29,28, 0)
}
CSxinel = [[], # 0th empty - indices are Fortran style
[[0,0,0],[ 0.0, 0.0, 0.0],[0,0,0]], #1 0 0 0
[[1,1,1],[ 1.0, 1.0, 1.0],[1,1,1]], #2 X X X
[[1,1,1],[ 1.0, 1.0,-1.0],[1,1,1]], #3 X X -X
[[1,1,1],[ 1.0,-1.0, 1.0],[1,1,1]], #4 X -X X
[[1,1,1],[ 1.0,-1.0,-1.0],[1,1,1]], #5 -X X X
[[1,1,0],[ 1.0, 1.0, 0.0],[1,1,0]], #6 X X 0
[[1,1,0],[ 1.0,-1.0, 0.0],[1,1,0]], #7 X -X 0
[[1,0,1],[ 1.0, 0.0, 1.0],[1,0,1]], #8 X 0 X
[[1,0,1],[ 1.0, 0.0,-1.0],[1,0,1]], #9 X 0 -X
[[0,1,1],[ 0.0, 1.0, 1.0],[0,2,2]], #10 0 Y Y
[[0,1,1],[ 0.0, 1.0,-1.0],[0,2,2]], #11 0 Y -Y
[[1,0,0],[ 1.0, 0.0, 0.0],[1,0,0]], #12 X 0 0
[[0,1,0],[ 0.0, 1.0, 0.0],[0,2,0]], #13 0 Y 0
[[0,0,1],[ 0.0, 0.0, 1.0],[0,0,3]], #14 0 0 Z
[[1,1,0],[ 1.0, 2.0, 0.0],[1,1,0]], #15 X 2X 0
[[1,1,0],[ 2.0, 1.0, 0.0],[1,1,0]], #16 2X X 0
[[1,1,2],[ 1.0, 1.0, 1.0],[1,1,3]], #17 X X Z
[[1,1,2],[ 1.0,-1.0, 1.0],[1,1,3]], #18 X -X Z
[[1,2,1],[ 1.0, 1.0, 1.0],[1,2,1]], #19 X Y X
[[1,2,1],[ 1.0, 1.0,-1.0],[1,2,1]], #20 X Y -X
[[1,2,2],[ 1.0, 1.0, 1.0],[1,2,2]], #21 X Y Y
[[1,2,2],[ 1.0, 1.0,-1.0],[1,2,2]], #22 X Y -Y
[[1,2,0],[ 1.0, 1.0, 0.0],[1,2,0]], #23 X Y 0
[[1,0,2],[ 1.0, 0.0, 1.0],[1,0,3]], #24 X 0 Z
[[0,1,2],[ 0.0, 1.0, 1.0],[0,2,3]], #25 0 Y Z
[[1,1,2],[ 1.0, 2.0, 1.0],[1,1,3]], #26 X 2X Z
[[1,1,2],[ 2.0, 1.0, 1.0],[1,1,3]], #27 2X X Z
[[1,2,3],[ 1.0, 1.0, 1.0],[1,2,3]], #28 X Y Z
]
CSuinel = [[], # 0th empty - indices are Fortran style
[[1,1,1,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,0,0,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #1 A A A 0 0 0
[[1,1,2,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,0,1,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #2 A A C 0 0 0
[[1,2,1,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,1,0,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #3 A B A 0 0 0
[[1,2,2,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,1,0,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #4 A B B 0 0 0
[[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #5 A A A D D D
[[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0,-1.0,-1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #6 A A A D -D -D
[[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0,-1.0, 1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #7 A A A D -D D
[[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0, 1.0,-1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #8 A A A D D -D
[[1,1,2,1,0,0],[ 1.0, 1.0, 1.0, 0.5, 0.0, 0.0],[1,0,1,0,0,0],[1.0,1.0,1.0,0.5,0.0,0.0]], #9 A A C A/2 0 0
[[1,2,3,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,1,1,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #10 A B C 0 0 0
[[1,1,2,3,0,0],[ 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],[1,0,1,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #11 A A C D 0 0
[[1,2,1,0,3,0],[ 1.0, 1.0, 1.0, 0.0, 1.0, 0.0],[1,1,0,0,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #12 A B A 0 E 0
[[1,2,2,0,0,3],[ 1.0, 1.0, 1.0, 0.0, 0.0, 1.0],[1,1,0,0,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #13 A B B 0 0 F
[[1,2,3,2,0,0],[ 1.0, 1.0, 1.0, 0.5, 0.0, 0.0],[1,1,1,0,0,0],[1.0,1.0,1.0,0.0,0.5,0.0]], #14 A B C B/2 0 0
[[1,2,3,1,0,0],[ 1.0, 1.0, 1.0, 0.5, 0.0, 0.0],[1,1,1,0,0,0],[1.0,1.0,1.0,0.0,0.5,0.0]], #15 A B C A/2 0 0
[[1,2,3,4,0,0],[ 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],[1,1,1,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #16 A B C D 0 0
[[1,2,3,0,4,0],[ 1.0, 1.0, 1.0, 0.0, 1.0, 0.0],[1,1,1,0,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #17 A B C 0 E 0
[[1,2,3,0,0,4],[ 1.0, 1.0, 1.0, 0.0, 0.0, 1.0],[1,1,1,0,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #18 A B C 0 0 F
[[1,1,2,3,4,4],[ 1.0, 1.0, 1.0, 1.0, 1.0,-1.0],[1,0,1,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #19 A A C D E -E
[[1,1,2,3,4,4],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,0,1,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #20 A A C D E E
[[1,2,1,3,4,3],[ 1.0, 1.0, 1.0, 1.0, 1.0,-1.0],[1,1,0,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #21 A B A D E -D
[[1,2,1,3,4,3],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,1,0,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #22 A B A D E D
[[1,2,2,3,3,4],[ 1.0, 1.0, 1.0, 1.0,-1.0, 1.0],[1,1,0,1,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #23 A B B D -D F
[[1,2,2,3,3,4],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,1,0,1,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #24 A B B D D F
[[1,2,3,2,4,4],[ 1.0, 1.0, 1.0, 0.5, 1.0, 2.0],[1,1,1,0,0,1],[1.0,1.0,1.0,0.5,0.0,0.0]], #25 A B C B/2 F/2 F
[[1,2,3,1,0,4],[ 1.0, 1.0, 1.0, 0.5, 0.0, 1.0],[1,1,1,0,0,1],[1.0,1.0,1.0,0.5,0.0,0.0]], #26 A B C A/2 0 F
[[1,2,3,2,4,0],[ 1.0, 1.0, 1.0, 0.5, 1.0, 0.0],[1,1,1,0,1,0],[1.0,1.0,1.0,0.5,0.0,0.0]], #27 A B C B/2 E 0
[[1,2,3,1,4,4],[ 1.0, 1.0, 1.0, 0.5, 1.0, 0.5],[1,1,1,0,1,0],[1.0,1.0,1.0,0.5,0.0,0.0]], #28 A B C A/2 E E/2
[[1,2,3,4,5,6],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,1,1,1,1,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #29 A B C D E F
]
################################################################################
#### Site symmetry routines
################################################################################
[docs]
def GetOprPtrName(key):
'Needs a doc string'
try:
oprName = OprName[key][0]
except KeyError:
return key
return oprName.replace('(','').replace(')','')
[docs]
def GetOprPtrNumber(key):
'Needs a doc string'
try:
return OprName[key][1]
except KeyError:
return key
[docs]
def GetOprName(key):
'Needs a doc string'
return OprName[key][0]
[docs]
def GetKNsym(key):
'Needs a doc string'
try:
return KNsym[key].strip()
except KeyError:
return 'sp'
[docs]
def GetNXUPQsym(siteSym):
'''
The codes XUPQ are for lookup of symmetry constraints for position(X), thermal parm(U) & magnetic moments (P & Q)
'''
return NXUPQsym[siteSym]
[docs]
def GetCSxinel(siteSym):
"returns Xyz terms, multipliers, GUI flags"
indx = GetNXUPQsym(siteSym.strip())
return CSxinel[indx[0]]
[docs]
def GetCSuinel(siteSym):
"returns Uij terms, multipliers, GUI flags & Uiso2Uij multipliers"
indx = GetNXUPQsym(siteSym.strip())
return CSuinel[indx[1]]
[docs]
def GetCSpqinel(SpnFlp,dupDir):
"returns Mxyz terms, multipliers, GUI flags"
CSI = [[1,2,3],[1.0,1.0,1.0]]
for sopr in dupDir:
# print (sopr,dupDir[sopr])
opr = sopr.replace("'",'')
indx = GetNXUPQsym(opr)
if SpnFlp[dupDir[sopr]] > 0:
csi = CSxinel[indx[2]] #P
else:
csi = CSxinel[indx[3]] #Q
# print(opr,indx,csi,CSI)
if not len(csi):
return [[0,0,0],[0.,0.,0.]]
for kcs in [0,1,2]:
if csi[0][kcs] == 0 and CSI[0][kcs] != 0:
jcs = CSI[0][kcs]
for ics in [0,1,2]:
if CSI[0][ics] == jcs:
CSI[0][ics] = 0
CSI[1][ics] = 0.
elif CSI[0][ics] > jcs:
CSI[0][ics] = CSI[0][ics]-1
elif (CSI[0][kcs] == csi[0][kcs]) and (CSI[1][kcs] != csi[1][kcs]):
CSI[1][kcs] = csi[1][kcs]
elif CSI[0][kcs] >= csi[0][kcs]:
CSI[0][kcs] = min(CSI[0][kcs],csi[0][kcs])
if CSI[1][kcs] != csi[1][kcs]:
if CSI[1][kcs] == 1.:
CSI[1][kcs] = csi[1][kcs]
# print(CSI)
return CSI
def getTauT(tau,sop,ssop,XYZ,wave=np.zeros(3)):
phase = np.sum(XYZ*wave)
ssopinv = nl.inv(ssop[0])
mst = ssopinv[3][:3]
epsinv = ssopinv[3][3]
sdet = nl.det(sop[0])
ssdet = nl.det(ssop[0])
dtau = mst*(XYZ-sop[1])-epsinv*ssop[1][3]
dT = 1.0
if np.any(dtau%.5):
sumdtau = np.sum(dtau%.5)
dT = 0.
if np.abs(sumdtau-.5) > 1.e-4:
dT = np.tan(np.pi*sumdtau)
tauT = np.inner(mst,XYZ-sop[1])+epsinv*(tau-ssop[1][3]+phase)
return sdet,ssdet,dtau,dT,tauT
def OpsfromStringOps(A,SGData,SSGData):
SGOps = SGData['SGOps']
SSGOps = SSGData['SSGOps']
Ax = A.split('+')
Ax[0] = int(Ax[0])
iC = 1
if Ax[0] < 0:
iC = -1
iAx = abs(Ax[0])
nA = iAx%100-1
nC = iAx//100
unit = [0,0,0]
if len(Ax) > 1:
unit = eval('['+Ax[1]+']')
return SGOps[nA],SSGOps[nA],iC,SGData['SGCen'][nC],unit
def GetSSfxuinel(waveType,Stype,nH,XYZ,SGData,SSGData,debug=False):
def orderParms(CSI):
parms = [0,]
for csi in CSI:
for i in [0,1,2]:
if csi[i] not in parms:
parms.append(csi[i])
for csi in CSI:
for i in [0,1,2]:
csi[i] = parms.index(csi[i])
return CSI
def fracCrenel(tau,Toff,Twid):
Tau = (tau-Toff[:,nxs])%1.
A = np.where(Tau<Twid[:,nxs],1.,0.)
return A
def fracFourier(tau,nH,fsin,fcos):
SA = np.sin(2.*nH*np.pi*tau)
CB = np.cos(2.*nH*np.pi*tau)
A = SA[nxs,nxs,:]*fsin[:,:,nxs]
B = CB[nxs,nxs,:]*fcos[:,:,nxs]
return A+B
def posFourier(tau,nH,psin,pcos):
SA = np.sin(2*nH*np.pi*tau)
CB = np.cos(2*nH*np.pi*tau)
A = SA[nxs,nxs,:]*psin[:,:,nxs]
B = CB[nxs,nxs,:]*pcos[:,:,nxs]
return A+B
def posZigZag(tau,Tmm,XYZmax):
DT = Tmm[1]-Tmm[0]
slopeUp = 2.*XYZmax/DT
slopeDn = 2.*XYZmax/(1.-DT)
A = np.array([np.where(0. < t-(Tmm[0])%1. <= DT,-XYZmax+slopeUp*((t-Tmm[0])%1.),XYZmax-slopeDn*((t-Tmm[1])%1.)) for t in tau])
return A
def posBlock(tau,Tmm,XYZmax):
A = np.array([np.where(Tmm[0] < t <= Tmm[1],XYZmax,-XYZmax) for t in tau])
return A
def DoFrac():
delt2 = np.eye(2)*0.001
dF = fracFourier(tau,nH,delt2[:1],delt2[1:]).squeeze()
dFTP = []
if siteSym == '1':
CSI = [[1,0],[2,0]],2*[[1.,0.],]
elif siteSym == '-1':
CSI = [[1,0],[0,0]],2*[[1.,0.],]
else:
FSC = np.ones(2,dtype='i')
CSI = [np.zeros((2),dtype='i'),np.zeros(2)]
if 'Crenel' in waveType:
dF = np.zeros_like(tau)
else:
dF = fracFourier(tau,nH,delt2[:1],delt2[1:]).squeeze()
dFT = np.zeros_like(dF)
dFTP = []
for i in SdIndx:
sop = Sop[i]
ssop = SSop[i]
sdet,ssdet,dtau,dT,tauT = getTauT(tau,sop,ssop,XYZ)
fsc = np.ones(2,dtype='i')
if 'Crenel' in waveType:
dFT = np.zeros_like(tau)
fsc = [1,1]
else: #Fourier
dFT = fracFourier(tauT,nH,delt2[:1],delt2[1:]).squeeze()
dFT = nl.det(sop[0])*dFT
dFT = dFT[:,np.argsort(tauT)]
dFT[0] *= ssdet
dFT[1] *= sdet
dFTP.append(dFT)
if np.any(dtau%.5) and ('1/2' in SSGData['modSymb'] or '1' in SSGData['modSymb']):
fsc = [1,1]
if dT:
CSI = [[[1,0],[1,0]],[[1.,0.],[1/dT,0.]]]
else:
CSI = [[[1,0],[0,0]],[[1.,0.],[0.,0.]]]
FSC = np.zeros(2,dtype='i')
return CSI,dF,dFTP
else:
for i in range(2):
if np.allclose(dF[i,:],dFT[i,:],atol=1.e-6):
fsc[i] = 1
else:
fsc[i] = 0
FSC &= fsc
if debug: print (SSMT2text(ssop).replace(' ',''),sdet,ssdet,epsinv,fsc)
n = -1
for i,F in enumerate(FSC):
if F:
n += 1
CSI[0][i] = n+1
CSI[1][i] = 1.0
return CSI,dF,dFTP
def DoXYZ():
delt5 = np.ones(5)*0.001
delt6 = np.eye(6)*0.001
if 'Fourier' in waveType:
dX = posFourier(tau,nH,delt6[:3],delt6[3:]) #+np.array(XYZ)[:,nxs,nxs]
#3x6x12 modulated position array (X,Spos,tau)& force positive
elif waveType in ['ZigZag','Block']:
if waveType == 'ZigZag':
dX = posZigZag(tau,delt5[:2],delt5[2:])
else:
dX = posBlock(tau,delt5[:2],delt5[2:])
dXTP = []
if siteSym == '1':
CSI = [[1,0,0],[2,0,0],[3,0,0], [4,0,0],[5,0,0],[6,0,0]],6*[[1.,0.,0.],]
elif siteSym == '-1':
CSI = [[1,0,0],[2,0,0],[3,0,0], [0,0,0],[0,0,0],[0,0,0]],3*[[1.,0.,0.],]+3*[[0.,0.,0.],]
else:
if 'Fourier' in waveType:
CSI = [np.zeros((6,3),dtype='i'),np.zeros((6,3))]
elif waveType in ['ZigZag','Block']:
CSI = [np.array([[1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0]]),
np.array([[1.0,.0,.0],[1.0,.0,.0],[1.0,.0,.0],[1.0,.0,.0],[1.0,.0,.0]])]
XSC = np.ones(6,dtype='i')
dXTP = []
for i in SdIndx:
sop = Sop[i]
ssop = SSop[i]
sdet,ssdet,dtau,dT,tauT = getTauT(tau,sop,ssop,XYZ)
xsc = np.ones(6,dtype='i')
if 'Fourier' in waveType:
dXT = posFourier(np.sort(tauT),nH,delt6[:3],delt6[3:]) #+np.array(XYZ)[:,nxs,nxs]
elif waveType == 'ZigZag':
dXT = posZigZag(tauT,delt5[:2],delt5[2:])+np.array(XYZ)[:,nxs,nxs]
elif waveType == 'Block':
dXT = posBlock(tauT,delt5[:2],delt5[2:])+np.array(XYZ)[:,nxs,nxs]
dXT = np.inner(sop[0],dXT.T) # X modulations array(3x6x49) -> array(3x49x6)
dXT = np.swapaxes(dXT,1,2) # back to array(3x6x49)
dXT[:,:3,:] *= (ssdet*sdet) # modify the sin component
dXTP.append(dXT)
if waveType == 'Fourier':
for i in range(3):
if not np.allclose(dX[i,i,:],dXT[i,i,:]):
xsc[i] = 0
if not np.allclose(dX[i,i+3,:],dXT[i,i+3,:]):
xsc[i+3] = 0
if np.any(dtau%.5) and ('1/2' in SSGData['modSymb'] or '1' in SSGData['modSymb']):
xsc[3:6] = 0
CSI = [[[1,0,0],[2,0,0],[3,0,0], [1,0,0],[2,0,0],[3,0,0]],
[[1.,0.,0.],[1.,0.,0.],[1.,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.]]]
if dT:
if '(x)' in siteSym:
CSI[1][3:] = [1./dT,0.,0.],[-dT,0.,0.],[-dT,0.,0.]
if 'm' in siteSym and len(SdIndx) == 1:
CSI[1][3:] = [-dT,0.,0.],[1./dT,0.,0.],[1./dT,0.,0.]
elif '(y)' in siteSym:
CSI[1][3:] = [-dT,0.,0.],[1./dT,0.,0.],[-dT,0.,0.]
if 'm' in siteSym and len(SdIndx) == 1:
CSI[1][3:] = [1./dT,0.,0.],[-dT,0.,0.],[1./dT,0.,0.]
elif '(z)' in siteSym:
CSI[1][3:] = [-dT,0.,0.],[-dT,0.,0.],[1./dT,0.,0.]
if 'm' in siteSym and len(SdIndx) == 1:
CSI[1][3:] = [1./dT,0.,0.],[1./dT,0.,0.],[-dT,0.,0.]
else:
CSI[1][3:] = [0.,0.,0.],[0.,0.,0.],[0.,0.,0.]
if '4/mmm' in laue:
if np.any(dtau%.5) and '1/2' in SSGData['modSymb']:
if '(xy)' in siteSym:
CSI[0] = [[1,0,0],[1,0,0],[2,0,0], [1,0,0],[1,0,0],[2,0,0]]
if dT:
CSI[1][3:] = [[1./dT,0.,0.],[1./dT,0.,0.],[-dT,0.,0.]]
else:
CSI[1][3:] = [0.,0.,0.],[0.,0.,0.],[0.,0.,0.]
if '(xy)' in siteSym or '(+-0)' in siteSym:
mul = 1
if '(+-0)' in siteSym:
mul = -1
if np.allclose(dX[0,0,:],dXT[1,0,:]):
CSI[0][3:5] = [[11,0,0],[11,0,0]]
CSI[1][3:5] = [[1.,0,0],[mul,0,0]]
xsc[3:5] = 0
if np.allclose(dX[0,3,:],dXT[0,4,:]):
CSI[0][:2] = [[12,0,0],[12,0,0]]
CSI[1][:2] = [[1.,0,0],[mul,0,0]]
xsc[:2] = 0
else:
for i in range(3):
if not np.allclose(dX[:,i],dXT[i,:,i]):
xsc[i] = 0
XSC &= xsc
if debug: print (SSMT2text(ssop).replace(' ',''),sdet,ssdet,epsinv,xsc)
if waveType == 'Fourier':
n = -1
if debug: print (XSC)
for i,X in enumerate(XSC):
if X:
n += 1
CSI[0][i][0] = n+1
CSI[1][i][0] = 1.0
return list(CSI),dX,dXTP
def DoUij():
delt12 = np.eye(12)*0.0001
dU = posFourier(tau,nH,delt12[:6],delt12[6:]) #Uij modulations - 6x12x12 array
dUTP = []
if siteSym == '1':
CSI = [[1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0],[6,0,0],
[7,0,0],[8,0,0],[9,0,0],[10,0,0],[11,0,0],[12,0,0]],12*[[1.,0.,0.],]
elif siteSym == '-1':
CSI = 6*[[0,0,0],]+[[1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0],[6,0,0]], \
6*[[0.,0.,0.],]+[[1.,0.,0.],[1.,0.,0.],[1.,0.,0.],[1.,0.,0.],[1.,0.,0.],[1.,0.,0.]]
else:
CSI = [np.zeros((12,3),dtype='i'),np.zeros((12,3))]
USC = np.ones(12,dtype='i')
dUTP = []
dtau = 0.
for i in SdIndx:
sop = Sop[i]
ssop = SSop[i]
sdet,ssdet,dtau,dT,tauT = getTauT(tau,sop,ssop,XYZ)
usc = np.ones(12,dtype='i')
dUT = posFourier(tauT,nH,delt12[:6],delt12[6:]) #Uij modulations - 6x12x49 array
dUijT = np.rollaxis(np.rollaxis(np.array(Uij2U(dUT)),3),3) #convert dUT to 12x49x3x3
dUijT = np.rollaxis(np.inner(np.inner(sop[0],dUijT),sop[0].T),3) #transform by sop - 3x3x12x49
dUT = np.array(U2Uij(dUijT)) #convert to 6x12x49
dUT = dUT[:,:,np.argsort(tauT)]
dUT[:,:6,:] *=(ssdet*sdet)
dUTP.append(dUT)
if np.any(dtau%.5) and ('1/2' in SSGData['modSymb'] or '1' in SSGData['modSymb']):
if dT:
CSI = [[[1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0],[6,0,0],
[1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0],[6,0,0]],
[[1.,0.,0.],[1.,0.,0.],[1.,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.],
[1./dT,0.,0.],[1./dT,0.,0.],[1./dT,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.]]]
else:
CSI = [[[1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0],[6,0,0],
[1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0],[6,0,0]],
[[1.,0.,0.],[1.,0.,0.],[1.,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.],
[0.,0.,0.],[0.,0.,0.],[0.,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.]]]
if 'mm2(x)' in siteSym and dT:
CSI[1][9:] = [0.,0.,0.],[-dT,0.,0.],[0.,0.,0.]
USC = [1,1,1,0,1,0,1,1,1,0,1,0]
elif '(xy)' in siteSym and dT:
CSI[0] = [[1,0,0],[1,0,0],[2,0,0],[3,0,0],[4,0,0],[4,0,0],
[1,0,0],[1,0,0],[2,0,0],[3,0,0],[4,0,0],[4,0,0]]
CSI[1][9:] = [[1./dT,0.,0.],[-dT,0.,0.],[-dT,0.,0.]]
USC = [1,1,1,1,1,1,1,1,1,1,1,1]
elif '(x)' in siteSym and dT:
CSI[1][9:] = [-dT,0.,0.],[-dT,0.,0.],[1./dT,0.,0.]
elif '(y)' in siteSym and dT:
CSI[1][9:] = [-dT,0.,0.],[1./dT,0.,0.],[-dT,0.,0.]
elif '(z)' in siteSym and dT:
CSI[1][9:] = [1./dT,0.,0.],[-dT,0.,0.],[-dT,0.,0.]
for i in range(6):
if not USC[i]:
CSI[0][i] = [0,0,0]
CSI[1][i] = [0.,0.,0.]
CSI[0][i+6] = [0,0,0]
CSI[1][i+6] = [0.,0.,0.]
else:
for i in range(6):
if not np.allclose(dU[i,i,:],dUT[i,i,:]): #sin part
usc[i] = 0
if not np.allclose(dU[i,i+6,:],dUT[i,i+6,:]): #cos part
usc[i+6] = 0
if np.any(dUT[1,0,:]):
if '4/m' in siteSym:
CSI[0][6:8] = [[12,0,0],[12,0,0]]
if ssop[1][3]:
CSI[1][6:8] = [[1.,0.,0.],[-1.,0.,0.]]
usc[9] = 1
else:
CSI[1][6:8] = [[1.,0.,0.],[1.,0.,0.]]
usc[9] = 0
elif '4' in siteSym:
CSI[0][6:8] = [[12,0,0],[12,0,0]]
CSI[0][:2] = [[11,0,0],[11,0,0]]
if ssop[1][3]:
CSI[1][:2] = [[1.,0.,0.],[-1.,0.,0.]]
CSI[1][6:8] = [[1.,0.,0.],[-1.,0.,0.]]
usc[2] = 0
usc[8] = 0
usc[3] = 1
usc[9] = 1
else:
CSI[1][:2] = [[1.,0.,0.],[1.,0.,0.]]
CSI[1][6:8] = [[1.,0.,0.],[1.,0.,0.]]
usc[2] = 1
usc[8] = 1
usc[3] = 0
usc[9] = 0
elif 'xy' in siteSym or '+-0' in siteSym:
if np.allclose(dU[0,0,:],dUT[0,1,:]*sdet):
CSI[0][4:6] = [[12,0,0],[12,0,0]]
CSI[0][6:8] = [[11,0,0],[11,0,0]]
CSI[1][4:6] = [[1.,0.,0.],[sdet,0.,0.]]
CSI[1][6:8] = [[1.,0.,0.],[sdet,0.,0.]]
usc[4:6] = 0
usc[6:8] = 0
if debug: print (SSMT2text(ssop).replace(' ',''),sdet,ssdet,epsinv,usc)
USC &= usc
if debug: print (USC)
if not np.any(dtau%.5):
n = -1
for i,U in enumerate(USC):
if U:
n += 1
CSI[0][i][0] = n+1
CSI[1][i][0] = 1.0
return list(CSI),dU,dUTP
def DoMag():
delt6 = np.eye(6)*0.001
dM = posFourier(tau,nH,delt6[:3],delt6[3:]) #+np.array(Mxyz)[:,nxs,nxs]
dMTP = []
CSI = [np.zeros((6,3),dtype='i'),np.zeros((6,3))]
if siteSym == '1':
CSI = [[1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0],[6,0,0]],6*[[1.,0.,0.],]
elif siteSym in ['-1','mmm',]:
CSI = 3*[[0,0,0],]+[[1,0,0],[2,0,0],[3,0,0]],3*[[0.,0.,0.],]+3*[[1.,0.,0.],]
elif siteSym in ['4(z)','422(z)']:
CSI[0][0][0] = CSI[0][4][1] = 1
CSI[1][0][0] = 1.0
CSI[1][4][1] = -1.0
elif siteSym in ['-4m2(z)','422(z)',]:
CSI[0][5][0] = 1
CSI[1][5][0] = 1.0
elif siteSym in ['-32(100)','-3',]:
CSI[0][2][0] = 1
CSI[1][2][0] = 1.0
elif siteSym in ['3',]:
CSI[0][0][0] = CSI[0][3][0] = CSI[0][4][0] = 1
CSI[1][0][0] = -np.sqrt(3.0)
CSI[1][3][0] = 2.0
CSI[1][4][0] = 1.0
elif siteSym in ['622','2(100)','32(100)',]:
CSI[0][0][0] = CSI[0][1][0] = CSI[0][3][0] = 1
CSI[1][0][0] = 1.0
CSI[1][1][0] = 2.0
CSI[1][3][0] = np.sqrt(3.0)
else:
#3x6x12 modulated moment array (M,Spos,tau)& force positive
CSI = [np.zeros((6,3),dtype='i'),np.zeros((6,3))]
MSC = np.ones(6,dtype='i')
dMTP = []
for i in SdIndx:
sop = Sop[i]
ssop = SSop[i]
sdet,ssdet,dtau,dT,tauT = getTauT(tau,sop,ssop,XYZ)
msc = np.ones(6,dtype='i')
dMT = posFourier(np.sort(tauT),nH,delt6[:3],delt6[3:]) #+np.array(XYZ)[:,nxs,nxs]
dMT = np.inner(sop[0],dMT.T) # X modulations array(3x6x49) -> array(3x49x6)
dMT = np.swapaxes(dMT,1,2) # back to array(3x6x49)
dMT[:,:3,:] *= (ssdet*sdet) # modify the sin component
dMTP.append(dMT)
for i in range(3):
if not np.allclose(dM[i,i,:],sdet*dMT[i,i,:]):
msc[i] = 0
if not np.allclose(dM[i,i+3,:],sdet*dMT[i,i+3,:]):
msc[i+3] = 0
if np.any(dtau%.5) and ('1/2' in SSGData['modSymb'] or '1' in SSGData['modSymb']):
msc[3:6] = 0
CSI = [[[1,0,0],[2,0,0],[3,0,0], [1,0,0],[2,0,0],[3,0,0]],
[[1.,0.,0.],[1.,0.,0.],[1.,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.]]]
if dT:
if '(x)' in siteSym:
CSI[1][3:] = [1./dT,0.,0.],[-dT,0.,0.],[-dT,0.,0.]
if 'm' in siteSym and len(SdIndx) == 1:
CSI[1][3:] = [1./dT,0.,0.],[-dT,0.,0.],[-dT,0.,0.]
elif '(y)' in siteSym:
CSI[1][3:] = [-dT,0.,0.],[1./dT,0.,0.],[-dT,0.,0.]
if 'm' in siteSym and len(SdIndx) == 1:
CSI[1][3:] = [-dT,0.,0.],[1./dT,0.,0.],[-dT,0.,0.]
elif '(z)' in siteSym:
CSI[1][3:] = [-dT,0.,0.],[-dT,0.,0.],[1./dT,0.,0.]
if 'm' in siteSym and len(SdIndx) == 1:
CSI[1][3:] = [-dT,0.,0.],[-dT,0.,0.],[1./dT,0.,0.]
else:
CSI[1][3:] = [0.,0.,0.],[0.,0.,0.],[0.,0.,0.]
if '4/mmm' in laue:
if siteSym in ['4/mmm(z)',]:
CSI = 3*[[0,0,0],]+[[0,0,0],[0,0,0],[1,0,0]],3*[[0.,0.,0.],]+3*[[1.,0.,0.],]
if np.any(dtau%.5) and '1/2' in SSGData['modSymb']:
if '(xy)' in siteSym:
CSI[0] = [[1,0,0],[1,0,0],[2,0,0], [1,0,0],[1,0,0],[2,0,0]]
if dT:
CSI[1][3:] = [[1./dT,0.,0.],[1./dT,0.,0.],[-dT,0.,0.]]
else:
CSI[1][3:] = [0.,0.,0.],[0.,0.,0.],[0.,0.,0.]
if '(xy)' in siteSym or '(+-0)' in siteSym:
mul = 1
if '(+-0)' in siteSym:
mul = -1
if np.allclose(dM[0,0,:],dMT[1,0,:]):
CSI[0][3:5] = [[11,0,0],[11,0,0]]
CSI[1][3:5] = [[1.,0,0],[mul,0,0]]
msc[3:5] = 0
if np.allclose(dM[0,3,:],dMT[0,4,:]):
CSI[0][:2] = [[12,0,0],[12,0,0]]
CSI[1][:2] = [[1.,0,0],[mul,0,0]]
msc[:2] = 0
MSC &= msc
if debug: print (SSMT2text(ssop).replace(' ',''),sdet,ssdet,epsinv,msc)
n = -1
if debug: print (MSC)
for i,M in enumerate(MSC):
if M:
n += 1
CSI[0][i][0] = n+1
CSI[1][i][0] = 1.0
return list(CSI),dM,dMTP
if debug: print ('super space group: '+SSGData['SSpGrp'])
xyz = np.array(XYZ)%1.
SGOps = copy.deepcopy(SGData['SGOps'])
laue = SGData['SGLaue']
siteSym = SytSym(XYZ,SGData)[0].strip()
if debug: print ('siteSym: '+siteSym)
SSGOps = copy.deepcopy(SSGData['SSGOps'])
#expand ops to include inversions if any
if SGData['SGInv'] and not SGData['SGFixed']:
for op,sop in zip(SGData['SGOps'],SSGData['SSGOps']):
SGOps.append([-op[0],-op[1]%1.])
SSGOps.append([-sop[0],-sop[1]%1.])
#build set of sym ops around special position
SSop = []
Sop = []
Sdtau = []
for iop,Op in enumerate(SGOps):
nxyz = (np.inner(Op[0],xyz)+Op[1])%1.
if np.allclose(xyz,nxyz,1.e-4) and iop and MT2text(Op).replace(' ','') != '-X,-Y,-Z':
SSop.append(SSGOps[iop])
Sop.append(SGOps[iop])
ssopinv = nl.inv(SSGOps[iop][0])
mst = ssopinv[3][:3]
epsinv = ssopinv[3][3]
Sdtau.append(np.sum(mst*(XYZ-SGOps[iop][1])-epsinv*SSGOps[iop][1][3]))
SdIndx = np.argsort(np.array(Sdtau)) # just to do in sensible order
if debug: print ('special pos super operators: ',[SSMT2text(ss).replace(' ','') for ss in SSop])
#setup displacement arrays
tau = np.linspace(-1,1,49,True)
#make modulation arrays - one parameter at a time
if Stype == 'Sfrac':
CSI,dF,dFTP = DoFrac()
elif Stype == 'Spos':
CSI,dF,dFTP = DoXYZ()
CSI[0] = orderParms(CSI[0])
elif Stype == 'Sadp':
CSI,dF,dFTP = DoUij()
CSI[0] = orderParms(CSI[0])
elif Stype == 'Smag':
CSI,dF,dFTP = DoMag()
if debug:
return CSI,dF,dFTP
else:
return CSI,[],[]
[docs]
def MustrainNames(SGData):
'Needs a doc string'
laue = SGData['SGLaue']
uniq = SGData['SGUniq']
if laue in ['m3','m3m']:
return ['S400','S220']
elif laue in ['6/m','6/mmm','3m1','3']:
return ['S400','S004','S202']
elif laue in ['31m',]:
return ['S400','S004','S202','S301']
elif laue in ['3R','3mR']:
return ['S400','S220','S310','S211']
elif laue in ['4/m','4/mmm']:
return ['S400','S004','S220','S022']
elif laue in ['mmm']:
return ['S400','S040','S004','S220','S202','S022']
elif laue in ['2/m']:
SHKL = ['S400','S040','S004','S220','S202','S022']
if uniq == 'a':
SHKL += ['S013','S031','S211']
elif uniq == 'b':
SHKL += ['S301','S103','S121']
elif uniq == 'c':
SHKL += ['S130','S310','S112']
return SHKL
else:
SHKL = ['S400','S040','S004','S220','S202','S022']
SHKL += ['S310','S103','S031','S130','S301','S013']
SHKL += ['S211','S121','S112']
return SHKL
def HStrainVals(HSvals,SGData):
laue = SGData['SGLaue']
uniq = SGData['SGUniq']
DIJ = np.zeros(6)
if laue in ['m3','m3m']:
DIJ[:3] = [HSvals[0],HSvals[0],HSvals[0]]
elif laue in ['6/m','6/mmm','3m1','31m','3']:
DIJ[:4] = [HSvals[0],HSvals[0],HSvals[1],HSvals[0]]
elif laue in ['3R','3mR']:
DIJ = [HSvals[0],HSvals[0],HSvals[0],HSvals[1],HSvals[1],HSvals[1]]
elif laue in ['4/m','4/mmm']:
DIJ[:3] = [HSvals[0],HSvals[0],HSvals[1]]
elif laue in ['mmm']:
DIJ[:3] = [HSvals[0],HSvals[1],HSvals[2]]
elif laue in ['2/m']:
DIJ[:3] = [HSvals[0],HSvals[1],HSvals[2]]
if uniq == 'a':
DIJ[5] = HSvals[3]
elif uniq == 'b':
DIJ[4] = HSvals[3]
elif uniq == 'c':
DIJ[3] = HSvals[3]
else:
DIJ = [HSvals[0],HSvals[1],HSvals[2],HSvals[3],HSvals[4],HSvals[5]]
return DIJ
[docs]
def HStrainNames(SGData):
'Needs a doc string'
laue = SGData['SGLaue']
uniq = SGData['SGUniq']
if laue in ['m3','m3m']:
return ['D11','eA'] #add cubic strain term
elif laue in ['6/m','6/mmm','3m1','31m','3']:
return ['D11','D33']
elif laue in ['3R','3mR']:
return ['D11','D12']
elif laue in ['4/m','4/mmm']:
return ['D11','D33']
elif laue in ['mmm']:
return ['D11','D22','D33']
elif laue in ['2/m']:
Dij = ['D11','D22','D33']
if uniq == 'a':
Dij += ['D23']
elif uniq == 'b':
Dij += ['D13']
elif uniq == 'c':
Dij += ['D12']
return Dij
else:
Dij = ['D11','D22','D33','D12','D13','D23']
return Dij
[docs]
def MustrainCoeff(HKL,SGData):
'Needs a doc string'
#NB: order of terms is the same as returned by MustrainNames
laue = SGData['SGLaue']
uniq = SGData['SGUniq']
h,k,l = HKL
Strm = []
if laue in ['m3','m3m']:
Strm.append(h**4+k**4+l**4)
Strm.append(3.0*((h*k)**2+(h*l)**2+(k*l)**2))
elif laue in ['6/m','6/mmm','3m1','3']:
Strm.append(h**4+k**4+2.0*k*h**3+2.0*h*k**3+3.0*(h*k)**2)
Strm.append(l**4)
Strm.append(3.0*((h*l)**2+(k*l)**2+h*k*l**2))
elif laue in ['31m',]:
Strm.append(h**4+k**4+2.0*k*h**3+2.0*h*k**3+3.0*(h*k)**2)
Strm.append(l**4)
Strm.append(3.0*((h*l)**2+(k*l)**2+h*k*l**2))
Strm.append(4.0*l*h**3)
elif laue in ['3R','3mR']:
Strm.append(h**4+k**4+l**4)
Strm.append(3.0*((h*k)**2+(h*l)**2+(k*l)**2))
Strm.append(2.0*(h*l**3+l*k**3+k*h**3)+2.0*(l*h**3+k*l**3+l*k**3))
Strm.append(4.0*(k*l*h**2+h*l*k**2+h*k*l**2))
elif laue in ['4/m','4/mmm']:
Strm.append(h**4+k**4)
Strm.append(l**4)
Strm.append(3.0*(h*k)**2)
Strm.append(3.0*((h*l)**2+(k*l)**2))
elif laue in ['mmm']:
Strm.append(h**4)
Strm.append(k**4)
Strm.append(l**4)
Strm.append(3.0*(h*k)**2)
Strm.append(3.0*(h*l)**2)
Strm.append(3.0*(k*l)**2)
elif laue in ['2/m']:
Strm.append(h**4)
Strm.append(k**4)
Strm.append(l**4)
Strm.append(3.0*(h*k)**2)
Strm.append(3.0*(h*l)**2)
Strm.append(3.0*(k*l)**2)
if uniq == 'a':
Strm.append(2.0*k*l**3)
Strm.append(2.0*l*k**3)
Strm.append(4.0*k*l*h**2)
elif uniq == 'b':
Strm.append(2.0*l*h**3)
Strm.append(2.0*h*l**3)
Strm.append(4.0*h*l*k**2)
elif uniq == 'c':
Strm.append(2.0*h*k**3)
Strm.append(2.0*k*h**3)
Strm.append(4.0*h*k*l**2)
else:
Strm.append(h**4)
Strm.append(k**4)
Strm.append(l**4)
Strm.append(3.0*(h*k)**2)
Strm.append(3.0*(h*l)**2)
Strm.append(3.0*(k*l)**2)
Strm.append(2.0*k*h**3)
Strm.append(2.0*h*l**3)
Strm.append(2.0*l*k**3)
Strm.append(2.0*h*k**3)
Strm.append(2.0*l*h**3)
Strm.append(2.0*k*l**3)
Strm.append(4.0*k*l*h**2)
Strm.append(4.0*h*l*k**2)
Strm.append(4.0*k*h*l**2)
return Strm
def MuShklMean(SGData,Amat,Shkl):
def genMustrain(xyz,Shkl):
uvw = np.inner(Amat.T,xyz)
Strm = np.array(MustrainCoeff(uvw,SGData))
Sum = np.sum(np.multiply(Shkl,Strm))
Sum = np.where(Sum > 0.01,Sum,0.01)
Sum = np.sqrt(Sum)
return Sum*xyz
PHI = np.linspace(0.,360.,30,True)
PSI = np.linspace(0.,180.,30,True)
X = np.outer(npcosd(PHI),npsind(PSI))
Y = np.outer(npsind(PHI),npsind(PSI))
Z = np.outer(np.ones(np.size(PHI)),npcosd(PSI))
XYZ = np.dstack((X,Y,Z))
XYZ = np.nan_to_num(np.apply_along_axis(genMustrain,2,XYZ,Shkl))
return np.sqrt(np.sum(XYZ**2)/900.)
[docs]
def Muiso2Shkl(muiso,SGData,cell):
"this is to convert isotropic mustrain to generalized Shkls"
A = G2lat.cell2AB(cell)[0]
def minMus(Shkl,muiso,H,SGData,A):
U = np.inner(A.T,H)
S = np.array(MustrainCoeff(U,SGData))
nS = S.shape[0]
Sum = np.sqrt(np.sum(np.multiply(S,Shkl[:nS,nxs]),axis=0))
rad = np.sqrt(np.sum((Sum[:,nxs]*H)**2,axis=1))
return (muiso-rad)**2
laue = SGData['SGLaue']
PHI = np.linspace(0.,360.,60,True)
PSI = np.linspace(0.,180.,60,True)
X = np.outer(npsind(PHI),npsind(PSI))
Y = np.outer(npcosd(PHI),npsind(PSI))
Z = np.outer(np.ones(np.size(PHI)),npcosd(PSI))
HKL = np.dstack((X,Y,Z))
if laue in ['m3','m3m']:
S0 = [1000.,1000.]
elif laue in ['6/m','6/mmm']:
S0 = [1000.,1000.,1000.]
elif laue in ['31m','3','3m1']:
S0 = [1000.,1000.,1000.]
elif laue in ['3R','3mR']:
S0 = [1000.,1000.,1000.,1000.]
elif laue in ['4/m','4/mmm']:
S0 = [1000.,1000.,1000.,1000.]
elif laue in ['mmm']:
S0 = [1000.,1000.,1000.,1000.,1000.,1000.]
elif laue in ['2/m']:
S0 = [1000.,1000.,1000.,0.,0.,0.,0.,0.,0.]
else:
S0 = [1000.,1000.,1000.,1000.,1000., 1000.,1000.,1000.,1000.,1000.,
1000.,1000.,0.,0.,0.]
S0 = np.array(S0)
HKL = np.reshape(HKL,(-1,3))
result = so.leastsq(minMus,S0,(np.ones(HKL.shape[0])*muiso,HKL,SGData,A))
return result[0]
def PackRot(SGOps):
IRT = []
for ops in SGOps:
M = ops[0]
irt = 0
for j in range(2,-1,-1):
for k in range(2,-1,-1):
irt *= 3
irt += M[k][j]
IRT.append(int(irt))
return IRT
[docs]
def SytSym(XYZ,SGData):
'''
Generates the number of equivalent positions and a site symmetry code for a specified coordinate and space group
:param XYZ: an array, tuple or list containing 3 elements: x, y & z
:param SGData: from SpcGroup
:Returns: a four element tuple:
* The 1st element is a code for the site symmetry (see GetKNsym)
* The 2nd element is the site multiplicity
* Ndup number of overlapping operators
* dupDir Dict - dictionary of overlapping operators
'''
if SGData['SpGrp'] == 'P 1':
return '1',1,1,{}
Mult = 1
Isym = 0
if SGData['SGLaue'] in ['3','3m1','31m','6/m','6/mmm']:
Isym = 1073741824
Jdup = 0
Ndup = 0
dupDir = {}
inv = SGData['SGInv']+1
icen = SGData['SGCen']
Ncen = len(icen)
if SGData['SGFixed']: #already in list of operators
inv = 1
if SGData['SGGray'] and Ncen > 1: Ncen //= 2
Xeqv = list(GenAtom(np.array(XYZ)%1.,SGData,True))
# for xeqv in Xeqv: print(xeqv)
IRT = PackRot(SGData['SGOps'])
L = -1
for ic,cen in enumerate(icen[:Ncen]):
for invers in range(int(inv)):
for io,ops in enumerate(SGData['SGOps']):
irtx = (1-2*invers)*IRT[io]
L += 1
if not Xeqv[L][1]:
Ndup = io
Jdup += 1
jx = GetOprPtrNumber(str(irtx)) #[KN table no,op name,KNsym ptr]
if jx < 39:
px = GetOprName(str(irtx))
if Xeqv[L][-1] < 0:
if '(' in px:
px = px.split('(')
px[0] += "'"
px = '('.join(px)
else:
px += "'"
dupDir[px] = L
Isym += 2**(jx-1)
if Isym == 1073741824: Isym = 0
try:
Mult = len(SGData['SGOps'])*Ncen*inv//Jdup
except: # patch because Jdup is not getting incremented for most atoms!
Mult = 0
return GetKNsym(str(Isym)),Mult,Ndup,dupDir
[docs]
def AtomDxSymFix(Dx,SytSym,CSIX):
''' Applies site symmetry restrictions to atom position shifts. 1st parameter value
of each kind encountered is assumed to be the independent one. Needed for ISODISTORT mode shifts.
'''
if SytSym == '1':
return Dx
newDx = []
for ix in [0,1,2]:
cx = CSIX[2][ix]
if cx > 0:
newDx.append(CSIX[1][ix]*Dx[cx-1])
else:
newDx.append(0.0)
return np.array(newDx)
[docs]
def MagSytSym(SytSym,dupDir,SGData):
'''
site sym operations: 1,-1,2,3,-3,4,-4,6,-6,m need to be marked if spin inversion
'''
SGData['GenSym'],SGData['GenFlg'] = GetGenSym(SGData)[:2]
# print('SGPtGrp',SGData['SGPtGrp'],'SytSym',SytSym,'MagSpGrp',SGData['MagSpGrp'])
# print('dupDir',dupDir)
SplitSytSym = SytSym.split('(')
if SGData['SGGray']:
return SytSym+"1'"
if SytSym in ['1','-1','2','3','6','m']: #axial position
return SytSym
if SplitSytSym[0] == SGData['SGPtGrp']: #simple cases
try:
MagSytSym = SGData['MagSpGrp'].split()[1]
except IndexError:
MagSytSym = SGData['MagSpGrp'][1:].strip("1'")
if len(SplitSytSym) > 1:
MagSytSym += '('+SplitSytSym[1]
return MagSytSym
if len(dupDir) == 1:
return list(dupDir.keys())[0]
if '2/m' in SytSym: #done I think; last 2wo might be not needed
ops = {'(x)':['2(x)','m(x)'],'(y)':['2(y)','m(y)'],'(z)':['2(z)','m(z)'],
'(100)':['2(100)','m(100)'],'(010)':['2(010)','m(010)'],'(001)':['2(001)','m(001)'],
'(120)':['2(120)','m(120)'],'(210)':['2(210)','m(210)'],'(+-0)':['2(+-0)','m(+-0)'],
'(110)':['2(110)','m(110)']}
elif '4/mmm' in SytSym:
ops = {'(x)':['4(x)','m(x)','m(y)','m(0+-)'], #m(0+-) for cubic m3m?
'(y)':['4(y)','m(y)','m(z)','m(+0-)'], #m(+0-)
'(z)':['4(z)','m(z)','m(x)','m(+-0)']} #m(+-0)
elif '4mm' in SytSym:
ops = {'(x)':['4(x)','m(y)','m(yz)'],'(y)':['4(y)','m(z)','m(xz)'],'(z)':['4(z)','m(x)','m(110)']}
elif '422' in SytSym:
ops = {'(x)':['4(x)','2(y)','2(yz)'],'(y)':['4(y)','2(z)','2(xz)'],'(z)':['4(z)','2(x)','2(110)']}
elif '-4m2' in SytSym:
ops = {'(x)':['-4(x)','m(x)','2(yz)'],'(y)':['-4(y)','m(y)','2(xz)'],'(z)':['-4(z)','m(z)','2(110)']}
elif '-42m' in SytSym:
ops = {'(x)':['-4(x)','2(y)','m(yz)'],'(y)':['-4(y)','2(z)','m(xz)'],'(z)':['-4(z)','2(x)','m(110)']}
elif '-4' in SytSym:
ops = {'(x)':['-4(x)',],'(y)':['-4(y)',],'(z)':['-4(z)',],}
elif '4' in SytSym:
ops = {'(x)':['4(x)',],'(y)':['4(y)',],'(z)':['4(z)',],}
elif '222' in SytSym:
ops = {'':['2(x)','2(y)','2(z)'],
'(x)':['2(y)','2(z)','2(x)'],'(y)':['2(x)','2(z)','2(y)'],'(z)':['2(x)','2(y)','2(z)'],
'(100)':['2(z)','2(100)','2(120)',],'(010)':['2(z)','2(010)','2(210)',],
'(110)':['2(z)','2(110)','2(+-0)',],}
elif 'mm2' in SytSym:
ops = {'(x)':['m(y)','m(z)','2(x)'],'(y)':['m(x)','m(z)','2(y)'],'(z)':['m(x)','m(y)','2(z)'],
'(xy)':['m(+-0)','m(z)','2(110)'],'(yz)':['m(0+-)','m(xz)','2(yz)'], #not 2(xy)!
'(xz)':['m(+0-)','m(y)','2(xz)'],'(z100)':['m(100)','m(120)','2(z)'],
'(z010)':['m(010)','m(210)','2(z)'],'(z110)':['m(110)','m(+-0)','2(z)'],
'(+-0)':[ 'm(110)','m(z)','2(+-0)'],'(d100)':['m(yz)','m(0+-)','2(xz)'],
'(d010)':['m(xz)','m(+0-)','2(y)'],'(d001)':['m(110)','m(+-0)','2(z)'],
'(210)':['m(z)','m(010)','2(210)'],'(120)':['m(z)','m(100)','2(120)'],
'(100)':['m(z)','m(120)','2(100)',],'(010)':['m(z)','m(210)','2(010)',],
'(110)':['m(z)','m(+-0)','2(110)',],}
elif 'mmm' in SytSym:
ops = {'':['m(x)','m(y)','m(z)'],
'(100)':['m(z)','m(100)','m(120)',],'(010)':['m(z)','m(010)','m(210)',],
'(110)':['m(z)','m(110)','m(+-0)',],
'(x)':['m(x)','m(y)','m(z)'],'(y)':['m(x)','m(y)','m(z)'],'(z)':['m(x)','m(y)','m(z)'],}
elif '32' in SytSym:
ops = {'(120)':['3','2(120)',],'(100)':['3','2(100)'],'(111)':['3(111)','2(x)']}
elif '23' in SytSym:
ops = {'':['2(x)','3(111)']}
elif 'm3' in SytSym:
ops = {'':['m(x)','3(111)',]}
elif '3m' in SytSym:
ops = {'(111)':['3(111)','m(+-0)',],'(+--)':['3(+--)','m(0+-)',],
'(-+-)':['3(-+-)','m(+0-)',],'(--+)':['3(--+)','m(+-0)',],
'(100)':['3','m(100)'],'(120)':['3','m(210)',]}
if SytSym.split('(')[0] in ['6/m','6mm','-6m2','622','-6','-3','-3m','-43m',]: #not simple cases
MagSytSym = SytSym
if "-1'" in dupDir:
if '-6' in SytSym:
MagSytSym = MagSytSym.replace('-6',"-6'")
elif '-3m' in SytSym:
MagSytSym = MagSytSym.replace('-3m',"-3'm'")
elif '-3' in SytSym:
MagSytSym = MagSytSym.replace('-3',"-3'")
elif '-6m2' in SytSym:
if "m'(110)" in dupDir:
MagSytSym = "-6m'2'("+SytSym.split('(')[1]
elif '6/m' in SytSym:
if "m'(z)" in dupDir:
MagSytSym = "6'/m'"
elif '6mm' in SytSym:
if "m'(110)" in dupDir:
MagSytSym = "6'm'm"
elif '-43m' in SytSym:
if "m'(110)" in dupDir:
MagSytSym = "-43m'"
return MagSytSym
try:
axis = '('+SytSym.split('(')[1]
except IndexError:
axis = ''
MagSytSym = ''
for m in ops[axis]:
if m in dupDir:
MagSytSym += m.split('(')[0]
else:
MagSytSym += m.split('(')[0]+"'"
if '2/m' in SytSym and '2' in m:
MagSytSym += '/'
if '-3/m' in SytSym:
MagSytSym = '-'+MagSytSym
MagSytSym += axis
# some exceptions & special rules
if MagSytSym == "4'/m'm'm'": MagSytSym = "4/m'm'm'"
return MagSytSym
# if len(GenSym) == 3:
# if SGSpin[1] < 0:
# if 'mm2' in SytSym:
# MagSytSym = "m'm'2"+'('+SplitSytSym[1]
# else: #bad rule for I41/a
# MagSytSym = SplitSytSym[0]+"'"
# if len(SplitSytSym) > 1:
# MagSytSym += '('+SplitSytSym[1]
# else:
# MagSytSym = SytSym
# if len(SplitSytSym) >1:
# if "-4'"+'('+SplitSytSym[1] in dupDir:
# MagSytSym = MagSytSym.replace('-4',"-4'")
# if "-6'"+'('+SplitSytSym[1] in dupDir:
# MagSytSym = MagSytSym.replace('-6',"-6'")
# return MagSytSym
#
return SytSym
[docs]
def UpdateSytSym(Phase):
''' Update site symmetry/site multiplicity after space group/BNS lattice change
'''
generalData = Phase['General']
SGData = generalData['SGData']
Atoms = Phase['Atoms']
cx,ct,cs,cia = generalData['AtomPtrs']
for atom in Atoms:
XYZ = atom[cx:cx+3]
sytsym,Mult = SytSym(XYZ,SGData)[:2]
sytSym,Mul,Nop,dupDir = SytSym(XYZ,SGData)
atom[cs] = sytsym
if generalData['Type'] == 'magnetic':
magSytSym = MagSytSym(sytSym,dupDir,SGData)
atom[cs] = magSytSym
atom[cs+1] = Mult
return
[docs]
def ElemPosition(SGData):
''' Under development.
Object here is to return a list of symmetry element types and locations suitable
for say drawing them.
So far I have the element type... getting all possible locations without lookup may be impossible!
'''
Inv = SGData['SGInv']
eleSym = {-3:['','-1'],-2:['',-6],-1:['2','-4'],0:['3','-3'],1:['4','m'],2:['6',''],3:['1','']}
# get operators & expand if centrosymmetric
SymElements = []
Ops = SGData['SGOps']
opM = np.array([op[0].T for op in Ops])
opT = np.array([op[1] for op in Ops])
if Inv:
opM = np.concatenate((opM,-opM))
opT = np.concatenate((opT,-opT))
opMT = list(zip(opM,opT))
for M,T in opMT[1:]: #skip I
Dt = int(nl.det(M))
Tr = int(np.trace(M))
Dt = -(Dt-1)//2
Es = eleSym[Tr][Dt]
if Dt: #rotation-inversion
I = np.eye(3)
if Tr == 1: #mirrors/glides
if np.any(T): #glide
M2 = np.inner(M,M)
MT = np.inner(M,T)+T
print ('glide',Es,MT)
print (M2)
else: #mirror
print ('mirror',Es,T)
print (I-M)
X = [-1,-1,-1]
elif Tr == -3: # pure inversion
X = np.inner(nl.inv(I-M),T)
print ('inversion',Es,X)
else: #other rotation-inversion
M2 = np.inner(M,M)
MT = np.inner(M,T)+T
print ('rot-inv',Es,MT)
print (M2)
X = [-1,-1,-1]
else: #rotations
print ('rotation',Es)
X = [-1,-1,-1]
SymElements.append([Es,X])
return SymElements
[docs]
def ApplyStringOps(A,SGData,X,Uij=[]):
'Needs a doc string'
SGOps = SGData['SGOps']
SGCen = SGData['SGCen']
Ax = A.split('+')
Ax[0] = int(Ax[0])
iC = 1
if Ax[0] < 0:
iC = -1
Ax[0] = abs(Ax[0])
nA = Ax[0]%100-1
cA = Ax[0]//100
Cen = SGCen[cA]
M,T = SGOps[nA]
if len(Ax)>1:
cellA = Ax[1].split(',')
cellA = np.array([int(a) for a in cellA])
else:
cellA = np.zeros(3)
newX = Cen+iC*(np.inner(M,X).T+T)+cellA
if len(Uij):
U = Uij2U(Uij)
U = np.inner(M,np.inner(U,M).T)
newUij = U2Uij(U)
return [newX,newUij]
else:
return newX
[docs]
def ApplyStringOpsMom(A,SGData,SSGData,Mom):
'''Applies string operations to modulated magnetic moment components used in drawing
Drawing matches Bilbao MVISUALIZE
'''
SGOps = SGData['SGOps']
Ax = A.split('+')
Ax[0] = int(Ax[0])
iAx = abs(Ax[0])
nA = iAx%100-1
if SGData['SGInv'] and not SGData['SGFixed']:
nC = 2*len(SGOps)*(iAx//100)
else:
nC = len(SGOps)*(iAx//100)
NA = nA
if Ax[0] < 0:
NA += len(SGOps)
M,T = SGOps[nA]
newMom = np.inner(Mom,M).T*SGData['SpnFlp'][NA+nC]*nl.det(M)
if SSGData is not None:
if SSGData['SSGCen'][iAx//100][3]: #flip spin for BNS centered atoms
newMom *= -1.
return newMom
[docs]
def StringOpsProd(A,B,SGData):
"""
Find A*B where A & B are in strings '-' + '100*c+n' + '+ijk'
where '-' indicates inversion, c(>0) is the cell centering operator,
n is operator number from SgOps and ijk are unit cell translations (each may be <0).
Should return resultant string - C. SGData - dictionary using entries:
* 'SGCen': cell centering vectors [0,0,0] at least
* 'SGOps': symmetry operations as [M,T] so that M*x+T = x'
"""
SGOps = SGData['SGOps']
SGCen = SGData['SGCen']
#1st split out the cell translation part & work on the operator parts
Ax = A.split('+'); Bx = B.split('+')
Ax[0] = int(Ax[0]); Bx[0] = int(Bx[0])
iC = 0
if Ax[0]*Bx[0] < 0:
iC = 1
Ax[0] = abs(Ax[0]); Bx[0] = abs(Bx[0])
nA = Ax[0]%100-1; nB = Bx[0]%100-1
cA = Ax[0]//100; cB = Bx[0]//100
Cen = (SGCen[cA]+SGCen[cB])%1.0
cC = np.nonzero([np.allclose(C,Cen) for C in SGCen])[0][0]
Ma,Ta = SGOps[nA]; Mb,Tb = SGOps[nB]
Mc = np.inner(Ma,Mb.T)
# print Ma,Mb,Mc
Tc = (np.add(np.inner(Mb,Ta)+1.,Tb))%1.0
# print Ta,Tb,Tc
# print [np.allclose(M,Mc)&np.allclose(T,Tc) for M,T in SGOps]
nC = np.nonzero([np.allclose(M,Mc)&np.allclose(T,Tc) for M,T in SGOps])[0][0]
#now the cell translation part
if len(Ax)>1:
cellA = Ax[1].split(',')
cellA = [int(a) for a in cellA]
else:
cellA = [0,0,0]
if len(Bx)>1:
cellB = Bx[1].split(',')
cellB = [int(b) for b in cellB]
else:
cellB = [0,0,0]
cellC = np.add(cellA,cellB)
C = str(((nC+1)+(100*cC))*(1-2*iC))+'+'+ \
str(int(cellC[0]))+','+str(int(cellC[1]))+','+str(int(cellC[2]))
return C
def U2Uij(U):
#returns the UIJ vector U11,U22,U33,U12,U13,U23 from tensor U
return [U[0][0],U[1][1],U[2][2],U[0][1],U[0][2],U[1][2]]
def Uij2U(Uij):
#returns the thermal motion tensor U from Uij as numpy array
return np.array([[Uij[0],Uij[3],Uij[4]],[Uij[3],Uij[1],Uij[5]],[Uij[4],Uij[5],Uij[2]]])
[docs]
def StandardizeSpcName(spcgroup):
'''Accept a spacegroup name where spaces may have not been used
in the names according to the GSAS convention (spaces between symmetry
for each axis) and return the space group name as used in GSAS
'''
rspc = spcgroup.replace(' ','').upper()
# deal with rhombohedral and hexagonal setting designations
rhomb = ''
if rspc[-1:] == 'R':
rspc = rspc[:-1]
rhomb = ' R'
gray = ''
if "1'" in rspc:
gray = " 1'"
rspc = rspc.replace("1'",'')
rspc = rspc.replace("'",'')
if rspc[-1:] == 'H': # hexagonal is assumed and thus can be ignored
rspc = rspc[:-1]
if rspc[1:3] in ['M3','N3','A3','D3']: #fix cubic old style
rspc.replace('3','-3')
bns = -1
try:
bns = rspc.index('_')
rspc = rspc.replace(rspc[bns:bns+2],'')
except ValueError:
pass
# look for a match in the spacegroup lists
for i in spglist.values():
for spc in i:
if rspc == spc.replace(' ','').upper():
return spc+gray+rhomb
# how about the post-2002 orthorhombic names?
if rspc in sgequiv_2002_orthorhombic:
return sgequiv_2002_orthorhombic[rspc]+gray
else:
# not found
return ''
[docs]
def fullHM2shortHM(SpcGp):
''' Accepts a full H-M space group symbol and returns a short H-M symbol that the space group
interpreter can translate
'''
fields = SpcGp.split()
if len(fields) == 4 and fields[1] == '1' and fields[3] == '1': #b-unique monoclinics
return fields[0]+' '+fields[2]
if '/' not in SpcGp or len(fields) < 3:
return SpcGp
if '-3' in fields[1]: #trigonals
fields[2] = fields.split('/')[1]
return ' '.join(fields)
if '-3' in fields[2]: #cubics
fields[1] = fields.split('/')[1]
if len(fields) == 4:
fields[3].split('/')[1]
return ' '.join(fields)
if '6' in fields[1] and '/' in fields[2]: #hexagonals
fields[2] = fields[2].split('/')[1]
fields[3] = fields[3].split('/')[1]
return ' '.join(fields)
if '4' in fields[1] and '/' in fields[2] and len(fields) == 4: #tetragonals
fields[2] = fields[2].split('/')[1]
fields[3] = fields[3].split('/')[1]
return ' '.join(fields)
if len(fields) == 4 and '/' in fields[1] and '/' in fields[2] and '/' in fields[3]: #orthorhombics
if fields[2] == '1': #skip a-unique monoclinics
return SpcGp
fields[1] = fields[1].split('/')[1]
fields[2] = fields[2].split('/')[1]
fields[3] = fields[3].split('/')[1]
return ' '.join(fields)
return SpcGp
[docs]
def offsetNorm(x):
'''Translate a coordinate (or vector of symmetry offsets) into
the range -1/6 < x <= 5/6, matching GSAS-II use.
'''
negoff = 1/6 # negative offset
return np.round(((x + negoff - 1e-9) % 1) - negoff + 1e-9, 8)
[docs]
def ParseXYZ(sym):
'''Parse a set of space group operations, such as '-x,-y,-z'
or 'x-y,z,-x' etc. into an algebraic form returning a
3x3 matrix, M, and a length 3 vector, O, where the symmetry
operation can be applied as
M . (x,y,z) + O
where M is a 3x3 matrix and O is a displacement vector.
This is the same form generated by :func:`SpcGroup`.
Note that this code will process offsets either before the coordinate
multipliers or after, so that either of these
1/2-y,1/2+x,z or
-y+1/2,x-0.5,z
will both be parsed properly. Returns None if a symbol cannot be parsed.
'''
xyz = sym.split(',')
if len(xyz) != 3:
print(f'error with: {sym}')
return None
multMat = []
offsetVec = []
for o in xyz:
o = o.lower()
op = [0,0,0]
offset = copy.copy(o)
for i,v in enumerate(('x','y','z')):
if '-'+v in o:
op[i] = -1
offset = offset.replace('-'+v,'')
elif v in o:
op[i] = 1
offset = offset.replace('+'+v,'')
offset = offset.replace(v,'')
if not offset.strip():
offset = 0.0
else:
offset = eval(offset)
offsetVec.append(offset)
# offsetVec.append(offsetNorm(offset))
multMat.append(op)
return np.array(multMat),np.array(offsetVec)
[docs]
def CompareSym(symList,sgName=None,SGData=None):
'''Compare symmetry generated by GSAS-II from a space group name
with a list of operators from some other source.
:param list symList: a list of symmetry operations (such as 'x,y,z'
or '-Y,X,Z'). The code is fairly forgiving in that 1/2-X or X-1/2 or
even -X+0.5 can all be accepted. This is typically read from a CIF.
:param str sgName: a space group name. Need not follow GSAS-II
convention for spaces, etc (see :func:`GSASIIspc.StandardizeSpcName`)
:param SGData: a GSAS-II symmetry objectspace group name. Need not follow GSAS-II
convention for spaces, etc (see :func:`GSASIIspc.StandardizeSpcName`)
'''
if sgName:
sgName = StandardizeSpcName(sgName) # Deal with non-standard spaces in name
# use GSAS-II sym code to get a list of symmetry matrices from name
matList = AllOps(SpcGroup(sgName)[1])[2]
elif SGData:
matList = AllOps(SGData)[2]
else:
raise Exception('CompareSym called without symmetry input')
for sym in symList:
try:
syMat = ParseXYZ(sym)
except:
print(f'Ignoring unparsable sym op {sym}')
continue
for i,mat in enumerate(matList):
if np.allclose(mat[0],syMat[0]) and np.allclose(offsetNorm(mat[1]),offsetNorm(syMat[1])):
break
else:
print(f'Symmetry element from input, {sym}, not matched in GSAS-II setting')
return False
del matList[i] # matched to this, remove it
return True
[docs]
def SpaceGroupNumber(spcgroup):
'''Determine the space group number for a space group from H-M name.
Will work for non-standard groups insofar as we can normalize -- far
from perfect.
'''
SGNo = -1
SpcGp = StandardizeSpcName(spcgroup)
if not SpcGp:
return SGNo
try:
SGNo = spgbyNum.index(SpcGp)
except ValueError:
pass
return SGNo
[docs]
def GetHallSpaceGroup(SGData):
'''Determine the Hall space group symbol for a GSAS-II space group object,
if it exists (it will not if non-standard centering is used, perhaps also
for other cases). Will return None if not found.
'''
try:
key = SGData['SpGrp'].lower().replace(' ','')
return spgHall[key][0]
except:
pass
# H is also allowed as suffix for Hexagonal & trigonal SGs (remove it)
if key[0] == 'p' and key[-1] == 'h':
try:
return spgHall[key[:-1]][0]
except:
pass
if key[1:3] in ['m3','n3','a3','d3']: # fix old-style cubic names
keyB3 = key.replace('3','-3')
if keyB3 in spgHall: return spgHall[keyB3][0]
# give up
return None
spgbyNum = []
'''Space groups indexed by number'''
if 'sphinx' not in sys.modules: # skip if generating sphinx docs to unclutter
spgbyNum = [None,
'P 1','P -1', #1-2
'P 2','P 21','C 2','P m','P c','C m','C c','P 2/m','P 21/m',
'C 2/m','P 2/c','P 21/c','C 2/c', #3-15
'P 2 2 2','P 2 2 21','P 21 21 2','P 21 21 21',
'C 2 2 21','C 2 2 2','F 2 2 2','I 2 2 2','I 21 21 21',
'P m m 2','P m c 21','P c c 2','P m a 2','P c a 21',
'P n c 2','P m n 21','P b a 2','P n a 21','P n n 2',
'C m m 2','C m c 21','C c c 2',
'A m m 2','A b m 2','A m a 2','A b a 2',
'F m m 2','F d d 2','I m m 2','I b a 2','I m a 2',
'P m m m','P n n n','P c c m','P b a n',
'P m m a','P n n a','P m n a','P c c a','P b a m','P c c n',
'P b c m','P n n m','P m m n','P b c n','P b c a','P n m a',
'C m c m','C m c a','C m m m','C c c m','C m m a','C c c a',
'F m m m', 'F d d d',
'I m m m','I b a m','I b c a','I m m a', #16-74
'P 4','P 41','P 42','P 43',
'I 4','I 41',
'P -4','I -4','P 4/m','P 42/m','P 4/n','P 42/n',
'I 4/m','I 41/a',
'P 4 2 2','P 4 21 2','P 41 2 2','P 41 21 2','P 42 2 2',
'P 42 21 2','P 43 2 2','P 43 21 2',
'I 4 2 2','I 41 2 2',
'P 4 m m','P 4 b m','P 42 c m','P 42 n m','P 4 c c','P 4 n c',
'P 42 m c','P 42 b c',
'I 4 m m','I 4 c m','I 41 m d','I 41 c d',
'P -4 2 m','P -4 2 c','P -4 21 m','P -4 21 c','P -4 m 2',
'P -4 c 2','P -4 b 2','P -4 n 2',
'I -4 m 2','I -4 c 2','I -4 2 m','I -4 2 d',
'P 4/m m m','P 4/m c c','P 4/n b m','P 4/n n c','P 4/m b m',
'P 4/m n c','P 4/n m m','P 4/n c c','P 42/m m c','P 42/m c m',
'P 42/n b c','P 42/n n m','P 42/m b c','P 42/m n m','P 42/n m c',
'P 42/n c m',
'I 4/m m m','I 4/m c m','I 41/a m d','I 41/a c d',
'P 3','P 31','P 32','R 3','P -3','R -3',
'P 3 1 2','P 3 2 1','P 31 1 2','P 31 2 1','P 32 1 2','P 32 2 1',
'R 3 2',
'P 3 m 1','P 3 1 m','P 3 c 1','P 3 1 c',
'R 3 m','R 3 c',
'P -3 1 m','P -3 1 c','P -3 m 1','P -3 c 1',
'R -3 m','R -3 c', #75-167
'P 6','P 61',
'P 65','P 62','P 64','P 63','P -6','P 6/m','P 63/m','P 6 2 2',
'P 61 2 2','P 65 2 2','P 62 2 2','P 64 2 2','P 63 2 2','P 6 m m',
'P 6 c c','P 63 c m','P 63 m c','P -6 m 2','P -6 c 2','P -6 2 m',
'P -6 2 c','P 6/m m m','P 6/m c c','P 63/m c m','P 63/m m c', #168-194
'P 2 3','F 2 3','I 2 3','P 21 3','I 21 3','P m 3','P n 3',
'F m -3','F d -3','I m -3',
'P a -3','I a -3','P 4 3 2','P 42 3 2','F 4 3 2','F 41 3 2',
'I 4 3 2','P 43 3 2','P 41 3 2','I 41 3 2','P -4 3 m',
'F -4 3 m','I -4 3 m','P -4 3 n','F -4 3 c','I -4 3 d',
'P m -3 m','P n -3 n','P m -3 n','P n -3 m',
'F m -3 m','F m -3 c','F d -3 m','F d -3 c',
'I m -3 m','I a -3 d',] #195-230
altSettingOrtho = {}
''' A dictionary of alternate settings for orthorhombic unit cells
'''
if 'sphinx' not in sys.modules: # skip if generating sphinx docs to unclutter
altSettingOrtho = {
'P 2 2 2' :{'abc':'P 2 2 2','cab':'P 2 2 2','bca':'P 2 2 2','acb':'P 2 2 2','bac':'P 2 2 2','cba':'P 2 2 2'},
'P 2 2 21' :{'abc':'P 2 2 21','cab':'P 21 2 2','bca':'P 2 21 2','acb':'P 2 21 2','bac':'P 2 2 21','cba':'P 21 2 2'},
'P 21 21 2':{'abc':'P 21 21 2','cab':'P 2 21 21','bca':'P 21 2 21','acb':'P 21 2 21','bac':'P 21 21 2','cba':'P 2 21 21'},
'P 21 21 21':{'abc':'P 21 21 21','cab':'P 21 21 21','bca':'P 21 21 21','acb':'P 21 21 21','bac':'P 21 21 21','cba':'P 21 21 21'},
'C 2 2 21':{'abc':'C 2 2 21','cab':'A 21 2 2','bca':'B 2 21 2','acb':'B 2 21 2','bac':'C 2 2 21','cba':'A 21 2 2'},
'C 2 2 2':{'abc':'C 2 2 2','cab':'A 2 2 2','bca':'B 2 2 2','acb':'B 2 2 2','bac':'C 2 2 2','cba':'A 2 2 2'},
'F 2 2 2':{'abc':'F 2 2 2','cab':'F 2 2 2','bca':'F 2 2 2','acb':'F 2 2 2','bac':'F 2 2 2','cba':'F 2 2 2'},
'I 2 2 2':{'abc':'I 2 2 2','cab':'I 2 2 2','bca':'I 2 2 2','acb':'I 2 2 2','bac':'I 2 2 2','cba':'I 2 2 2'},
'I 21 21 21':{'abc':'I 21 21 21','cab':'I 21 21 21','bca':'I 21 21 21','acb':'I 21 21 21','bac':'I 21 21 21','cba':'I 21 21 21'},
'P m m 2':{'abc':'P m m 2','cab':'P 2 m m','bca':'P m 2 m','acb':'P m 2 m','bac':'P m m 2','cba':'P 2 m m'},
'P m c 21':{'abc':'P m c 21','cab':'P 21 m a','bca':'P b 21 m','acb':'P m 21 b','bac':'P c m 21','cba':'P 21 a m'},
'P c c 2':{'abc':'P c c 2','cab':'P 2 a a','bca':'P b 2 b','acb':'P b 2 b','bac':'P c c 2','cba':'P 2 a a'},
'P m a 2':{'abc':'P m a 2','cab':'P 2 m b','bca':'P c 2 m','acb':'P m 2 a','bac':'P b m 2','cba':'P 2 c m'},
'P c a 21':{'abc':'P c a 21','cab':'P 21 a b','bca':'P c 21 b','acb':'P b 21 a','bac':'P b c 21','cba':'P 21 c a'},
'P n c 2':{'abc':'P n c 2','cab':'P 2 n a','bca':'P b 2 n','acb':'P n 2 b','bac':'P c n 2','cba':'P 2 a n'},
'P m n 21':{'abc':'P m n 21','cab':'P 21 m n','bca':'P n 21 m','acb':'P m 21 n','bac':'P n m 21','cba':'P 21 n m'},
'P b a 2':{'abc':'P b a 2','cab':'P 2 c b','bca':'P c 2 a','acb':'P c 2 a','bac':'P b a 2','cba':'P 2 c b'},
'P n a 21':{'abc':'P n a 21','cab':'P 21 n b','bca':'P c 21 n','acb':'P n 21 a','bac':'P b n 21','cba':'P 21 c n'},
'P n n 2':{'abc':'P n n 2','cab':'P 2 n n','bca':'P n 2 n','acb':'P n 2 n','bac':'P n n 2','cba':'P 2 n n'},
'C m m 2':{'abc':'C m m 2','cab':'A 2 m m','bca':'B m 2 m','acb':'B m 2 m','bac':'C m m 2','cba':'A 2 m m'},
'C m c 21':{'abc':'C m c 21','cab':'A 21 m a','bca':'B b 21 m','acb':'B m 21 b','bac':'C c m 21','cba':'A 21 a m'},
'C c c 2':{'abc':'C c c 2','cab':'A 2 a a','bca':'B b 2 b','acb':'B b 2 b','bac':'C c c 2','cba':'A 2 a a'},
'A m m 2':{'abc':'A m m 2','cab':'B 2 m m','bca':'C m 2 m','acb':'A m 2 m','bac':'B m m 2','cba':'C 2 m m'},
'A b m 2':{'abc':'A b m 2','cab':'B 2 c m','bca':'C m 2 a','acb':'A c 2 m','bac':'B m a 2','cba':'C 2 m b'},
'A m a 2':{'abc':'A m a 2','cab':'B 2 m b','bca':'C c 2 m','acb':'A m 2 a','bac':'B b m 2','cba':'C 2 c m'},
'A b a 2':{'abc':'A b a 2','cab':'B 2 c b','bca':'C c 2 a','acb':'A c 2 a','bac':'B b a 2','cba':'C 2 c b'},
'F m m 2':{'abc':'F m m 2','cab':'F 2 m m','bca':'F m 2 m','acb':'F m 2 m','bac':'F m m 2','cba':'F 2 m m'},
'F d d 2':{'abc':'F d d 2','cab':'F 2 d d','bca':'F d 2 d','acb':'F d 2 d','bac':'F d d 2','cba':'F 2 d d'},
'I m m 2':{'abc':'I m m 2','cab':'I 2 m m','bca':'I m 2 m','acb':'I m 2 m','bac':'I m m 2','cba':'I 2 m m'},
'I b a 2':{'abc':'I b a 2','cab':'I 2 c b','bca':'I c 2 a','acb':'I c 2 a','bac':'I b a 2','cba':'I 2 c b'},
'I m a 2':{'abc':'I m a 2','cab':'I 2 m b','bca':'I c 2 m','acb':'I m 2 a','bac':'I b m 2','cba':'I 2 c m'},
'P m m m':{'abc':'P m m m','cab':'P m m m','bca':'P m m m','acb':'P m m m','bac':'P m m m','cba':'P m m m'},
'P n n n':{'abc':'P n n n','cab':'P n n n','bca':'P n n n','acb':'P n n n','bac':'P n n n','cba':'P n n n'},
'P c c m':{'abc':'P c c m','cab':'P m a a','bca':'P b m b','acb':'P b m b','bac':'P c c m','cba':'P m a a'},
'P b a n':{'abc':'P b a n','cab':'P n c b','bca':'P c n a','acb':'P c n a','bac':'P b a n','cba':'P n c b'},
'P m m a':{'abc':'P m m a','cab':'P b m m','bca':'P m c m','acb':'P m a m','bac':'P m m b','cba':'P c m m'},
'P n n a':{'abc':'P n n a','cab':'P b n n','bca':'P n c n','acb':'P n a n','bac':'P n n b','cba':'P c n n'},
'P m n a':{'abc':'P m n a','cab':'P b m n','bca':'P n c m','acb':'P m a n','bac':'P n m b','cba':'P c n m'},
'P c c a':{'abc':'P c c a','cab':'P b a a','bca':'P b c b','acb':'P b a b','bac':'P c c b','cba':'P c a a'},
'P b a m':{'abc':'P b a m','cab':'P m c b','bca':'P c m a','acb':'P c m a','bac':'P b a m','cba':'P m c b'},
'P c c n':{'abc':'P c c n','cab':'P n a a','bca':'P b n b','acb':'P b n b','bac':'P c c n','cba':'P n a a'},
'P b c m':{'abc':'P b c m','cab':'P m c a','bca':'P b m a','acb':'P c m b','bac':'P c a m','cba':'P m a b'},
'P n n m':{'abc':'P n n m','cab':'P m n n','bca':'P n m n','acb':'P n m n','bac':'P n n m','cba':'P m n n'},
'P m m n':{'abc':'P m m n','cab':'P n m m','bca':'P m n m','acb':'P m n m','bac':'P m m n','cba':'P n m m'},
'P b c n':{'abc':'P b c n','cab':'P n c a','bca':'P b n a','acb':'P c n b','bac':'P c a n','cba':'P n a b'},
'P b c a':{'abc':'P b c a','cab':'P b c a','bca':'P b c a','acb':'P c a b','bac':'P c a b','cba':'P c a b'},
'P n m a':{'abc':'P n m a','cab':'P b n m','bca':'P m c n','acb':'P n a m','bac':'P m n b','cba':'P c m n'},
'C m c m':{'abc':'C m c m','cab':'A m m a','bca':'B b m m','acb':'B m m b','bac':'C c m m','cba':'A m a m'},
'C m c a':{'abc':'C m c a','cab':'A b m a','bca':'B b c m','acb':'B m a b','bac':'C c m b','cba':'A c a m'},
'C m m m':{'abc':'C m m m','cab':'A m m m','bca':'B m m m','acb':'B m m m','bac':'C m m m','cba':'A m m m'},
'C c c m':{'abc':'C c c m','cab':'A m a a','bca':'B b m b','acb':'B b m b','bac':'C c c m','cba':'A m a a'},
'C m m a':{'abc':'C m m a','cab':'A b m m','bca':'B m c m','acb':'B m a m','bac':'C m m b','cba':'A c m m'},
'C c c a':{'abc':'C c a a','cab':'A b a a','bca':'B b c b','acb':'B b a b','bac':'C c c b','cba':'A c a a'},
'F m m m':{'abc':'F m m m','cab':'F m m m','bca':'F m m m','acb':'F m m m','bac':'F m m m','cba':'F m m m'},
'F d d d':{'abc':'F d d d','cab':'F d d d','bca':'F d d d','acb':'F d d d','bac':'F d d d','cba':'F d d d'},
'I m m m':{'abc':'I m m m','cab':'I m m m','bca':'I m m m','acb':'I m m m','bac':'I m m m','cba':'I m m m'},
'I b a m':{'abc':'I b a m','cab':'I m c b','bca':'I c m a','acb':'I c m a','bac':'I b a m','cba':'I m c b'},
'I b c a':{'abc':'I b c a','cab':'I b c a','bca':'I b c a','acb':'I c a b','bac':'I c a b','cba':'I c a b'},
'I m m a':{'abc':'I m m a','cab':'I b m m','bca':'I m c m','acb':'I m a m','bac':'I m m b','cba':'I c m m'},
}
spg2origins = {}
''' A dictionary of all spacegroups that have 2nd settings; the value is the
1st --> 2nd setting transformation vector as X(2nd) = X(1st)-V, nonstandard ones are included.
'''
if 'sphinx' not in sys.modules: # skip if generating sphinx docs to unclutter
spg2origins = {
'P n n n':[-.25,-.25,-.25],
'P b a n':[-.25,-.25,0],'P n c b':[0,-.25,-.25],'P c n a':[-.25,0,-.25],
'P m m n':[-.25,-.25,0],'P n m m':[0,-.25,-.25],'P m n m':[-.25,0,-.25],
'C c c a':[0,-.25,-.25],'C c c b':[-.25,0,-.25],'A b a a':[-.25,0,-.25],
'A c a a':[-.25,-.25,0],'B b c b':[-.25,-.25,0],'B b a b':[0,-.25,-.25],
'F d d d':[-.125,-.125,-.125],
'P 4/n':[-.25,-.25,0],'P 42/n':[-.25,-.25,-.25],'I 41/a':[0,-.25,-.125],
'P 4/n b m':[-.25,-.25,0],'P 4/n n c':[-.25,-.25,-.25],'P 4/n m m':[-.25,-.25,0],'P 4/n c c':[-.25,-.25,0],
'P 42/n b c':[-.25,-.25,-.25],'P 42/n n m':[-.25,.25,-.25],'P 42/n m c':[-.25,.25,-.25],'P 42/n c m':[-.25,.25,-.25],
'I 41/a m d':[0,.25,-.125],'I 41/a c d':[0,.25,-.125],
'p n -3':[-.25,-.25,-.25],'F d -3':[-.125,-.125,-.125],'P n -3 n':[-.25,-.25,-.25],
'P n -3 m':[-.25,-.25,-.25],'F d -3 m':[-.125,-.125,-.125],'F d -3 c':[-.375,-.375,-.375],
'p n 3':[-.25,-.25,-.25],'F d 3':[-.125,-.125,-.125],'P n 3 n':[-.25,-.25,-.25],
'P n 3 m':[-.25,-.25,-.25],'F d 3 m':[-.125,-.125,-.125],'F d - c':[-.375,-.375,-.375]}
spglist = {}
'''A dictionary of space groups as ordered and named in the pre-2002 International
Tables Volume A, except that spaces are used following the GSAS convention to
separate the different crystallographic directions.
Note that the symmetry codes here will recognize many non-standard space group
symbols with different settings. They are ordered by Laue group
'''
if 'sphinx' not in sys.modules: # skip if generating sphinx docs to unclutter
spglist = {
'P1' : ('P 1','P -1',), # 1-2
'C1' : ('C 1','C -1',),
'P2/m': ('P 2','P 21','P m','P a','P c','P n',
'P 2/m','P 21/m','P 2/c','P 2/a','P 2/n','P 21/c','P 21/a','P 21/n',), #3-15
'C2/m':('C 2','C m','C c','C n',
'C 2/m','C 2/c','C 2/n',),
'A2/m':('A 2','A m','A a','A n',
'A 2/m','A 2/a','A 2/n',),
'I2/m':('I 2','I m','I a','I n','I c',
'I 2/m','I 2/a','I 2/c','I 2/n',),
'Pmmm':('P 2 2 2',
'P 2 2 21','P 21 2 2','P 2 21 2',
'P 21 21 2','P 2 21 21','P 21 2 21',
'P 21 21 21',
'P m m 2','P 2 m m','P m 2 m',
'P m c 21','P 21 m a','P b 21 m','P m 21 b','P c m 21','P 21 a m',
'P c c 2','P 2 a a','P b 2 b',
'P m a 2','P 2 m b','P c 2 m','P m 2 a','P b m 2','P 2 c m',
'P c a 21','P 21 a b','P c 21 b','P b 21 a','P b c 21','P 21 c a',
'P n c 2','P 2 n a','P b 2 n','P n 2 b','P c n 2','P 2 a n',
'P m n 21','P 21 m n','P n 21 m','P m 21 n','P n m 21','P 21 n m',
'P b a 2','P 2 c b','P c 2 a',
'P n a 21','P 21 n b','P c 21 n','P n 21 a','P b n 21','P 21 c n',
'P n n 2','P 2 n n','P n 2 n',
'P m m m','P n n n',
'P c c m','P m a a','P b m b',
'P b a n','P n c b','P c n a',
'P m m a','P b m m','P m c m','P m a m','P m m b','P c m m',
'P n n a','P b n n','P n c n','P n a n','P n n b','P c n n',
'P m n a','P b m n','P n c m','P m a n','P n m b','P c n m',
'P c c a','P b a a','P b c b','P b a b','P c c b','P c a a',
'P b a m','P m c b','P c m a',
'P c c n','P n a a','P b n b',
'P b c m','P m c a','P b m a','P c m b','P c a m','P m a b',
'P n n m','P m n n','P n m n',
'P m m n','P n m m','P m n m',
'P b c n','P n c a','P b n a','P c n b','P c a n','P n a b',
'P b c a','P c a b',
'P n m a','P b n m','P m c n','P n a m','P m n b','P c m n',
),
'Cmmm':('C 2 2 21','C 2 2 2','C m m 2',
'C m c 21','C c m 21','C c c 2','C m 2 m','C 2 m m',
'C m 2 a','C 2 m b','C c 2 m','C 2 c m','C c 2 a','C 2 c b',
'C m c m','C c m m','C m c a','C c m b',
'C m m m','C c c m','C m m a','C m m b','C c c a','C c c b',),
'Ammm':('A 21 2 2','A 2 2 2','A 2 m m',
'A 21 m a','A 21 a m','A 2 a a','A m 2 m','A m m 2',
'A b m 2','A c 2 m','A m a 2','A m 2 a','A b a 2','A c 2 a',
'A m m a','A m a m','A b m a','A c a m',
'A m m m','A m a a','A b m m','A c m m','A c a a','A b a a',),
'Bmmm':('B 2 21 2','B 2 2 2','B m 2 m',
'B m 21 b','B b 21 m','B b 2 b','B m m 2','B 2 m m',
'B 2 c m','B m a 2','B 2 m b','B b m 2','B 2 c b','B b a 2',
'B b m m','B m m b','B b c m','B m a b',
'B m m m','B b m b','B m a m','B m c m','B b a b','B b c b',),
'Immm':('I 2 2 2','I 21 21 21',
'I m m 2','I m 2 m','I 2 m m',
'I b a 2','I 2 c b','I c 2 a',
'I m a 2','I 2 m b','I c 2 m','I m 2 a','I b m 2','I 2 c m',
'I m m m','I b a m','I m c b','I c m a',
'I b c a','I c a b',
'I c c m','I m a a','I b m b',
'I m m a','I b m m ','I m c m','I m a m','I m m b','I c m m',),
'Fmmm':('F 2 2 2','F m m m', 'F d d d',
'F m m 2','F m 2 m','F 2 m m',
'F d d 2','F d 2 d','F 2 d d',),
'P4/mmm':('P 4','P 41','P 42','P 43','P -4','P 4/m','P 42/m','P 4/n','P 42/n',
'P 4 2 2','P 4 21 2','P 41 2 2','P 41 21 2','P 42 2 2',
'P 42 21 2','P 43 2 2','P 43 21 2','P 4 m m','P 4 b m','P 42 c m',
'P 42 n m','P 4 c c','P 4 n c','P 42 m c','P 42 b c','P -4 2 m',
'P -4 2 c','P -4 21 m','P -4 21 c','P -4 m 2','P -4 c 2','P -4 b 2',
'P -4 n 2','P 4/m m m','P 4/m c c','P 4/n b m','P 4/n n c','P 4/m b m',
'P 4/m n c','P 4/n m m','P 4/n c c','P 42/m m c','P 42/m c m',
'P 42/n b c','P 42/n n m','P 42/m b c','P 42/m n m','P 42/n m c',
'P 42/n c m',),
'I4/mmm':('I 4','I 41','I -4','I 4/m','I 41/a','I 4 2 2','I 41 2 2','I 4 m m',
'I 4 c m','I 41 m d','I 41 c d',
'I -4 m 2','I -4 c 2','I -4 2 m','I -4 2 d','I 4/m m m','I 4/m c m',
'I 41/a m d','I 41/a c d'),
'R3-H':('R 3','R -3','R 3 2','R 3 m','R 3 c','R -3 m','R -3 c',),
'P6/mmm': ('P 3','P 31','P 32','P -3','P 3 1 2','P 3 2 1','P 31 1 2',
'P 31 2 1','P 32 1 2','P 32 2 1', 'P 3 m 1','P 3 1 m','P 3 c 1',
'P 3 1 c','P -3 1 m','P -3 1 c','P -3 m 1','P -3 c 1','P 6','P 61',
'P 65','P 62','P 64','P 63','P -6','P 6/m','P 63/m','P 6 2 2',
'P 61 2 2','P 65 2 2','P 62 2 2','P 64 2 2','P 63 2 2','P 6 m m',
'P 6 c c','P 63 c m','P 63 m c','P -6 m 2','P -6 c 2','P -6 2 m',
'P -6 2 c','P 6/m m m','P 6/m c c','P 63/m c m','P 63/m m c',),
'Pm3m': ('P 2 3','P 21 3','P m 3','P m -3','P n 3','P n -3','P a 3','P a -3',
'P 4 3 2','P 42 3 2','P 43 3 2','P 41 3 2','P -4 3 m','P -4 3 n',
'P m 3 m','P m -3 m','P n 3 n','P n -3 n',
'P m 3 n','P m -3 n','P n 3 m','P n -3 m',),
'Im3m':('I 2 3','I 21 3','I m 3','I m -3','I a 3','I a -3', 'I 4 3 2','I 41 3 2',
'I -4 3 m', 'I -4 3 d','I m -3 m','I m 3 m','I a 3 d','I a -3 d','I n 3 n','I n -3 n'),
'Fm3m':('F 2 3','F m 3','F m -3','F d 3','F d -3',
'F 4 3 2','F 41 3 2','F -4 3 m','F -4 3 c',
'F m 3 m','F m -3 m','F m 3 c','F m -3 c',
'F d 3 m','F d -3 m','F d 3 c','F d -3 c',),
}
sgequiv_2002_orthorhombic = {}
''' A dictionary of orthorhombic space groups that were renamed in the 2002 Volume A,
along with the pre-2002 name. The e designates a double glide-plane
'''
if 'sphinx' not in sys.modules: # skip if generating sphinx docs to unclutter
sgequiv_2002_orthorhombic = {
'AEM2':'A b m 2','B2EM':'B 2 c m','CM2E':'C m 2 a',
'AE2M':'A c 2 m','BME2':'B m a 2','C2ME':'C 2 m b',
'AEA2':'A b a 2','B2EB':'B 2 c b','CC2E':'C c 2 a',
'AE2A':'A c 2 a','BBE2':'B b a 2','C2CE':'C 2 c b',
'CMCE':'C m c a','AEMA':'A b m a','BBEM':'B b c m',
'BMEB':'B m a b','CCME':'C c m b','AEAM':'A c a m',
'CMME':'C m m a','AEMM':'A b m m','BMEM':'B m c m',
'CCCE':'C c c a','AEAA':'A b a a','BBEB':'B b c b'}
spgHall = []
'''Hall space group symbols indexed by GSAS-II space group name. This is indexed
by a key which is generated from the name used in GSAS-II with spaces removed
and all letters in lowercase. The value associated with the key consists of a
list of two values: the first is the Hall name and the second is a
Hermann-Mauguin name. Note that there may be several names used by
GSAS-II that map to the same symmetry operators and the same Hall symbol
(for example "P 21" and "P 1 21 1" and "P 63/m" and "P 63/m H"). There
are also space group names that GSAS-II will accept that do not have Hall
symbols (such as "I -1" or "F 21 21 21").
'''
# generated from https://cci.lbl.gov/sginfo/hall_symbols.html by Sydney R. Hall & Ralf W. Grosse-Kunstleve
if 'sphinx' not in sys.modules: # skip if generating sphinx docs to unclutter
spgHall = {
'p1':('P 1', 'P 1', 1), # P 1
'p-1':('-P 1', 'P -1', 2), # P -1
'p121':('P 2y', 'P 1 2 1', 3), # P 1 2 1
'p2':('P 2y', 'P 1 2 1', 3), # P 2
'p112':('P 2', 'P 1 1 2', 3), # P 1 1 2
'p211':('P 2x', 'P 2 1 1', 3), # P 2 1 1
'p1211':('P 2yb', 'P 1 21 1', 4), # P 1 21 1
'p21':('P 2yb', 'P 1 21 1', 4), # P 21
'p1121':('P 2c', 'P 1 1 21', 4), # P 1 1 21
'p2111':('P 2xa', 'P 21 1 1', 4), # P 21 1 1
'c121':('C 2y', 'C 1 2 1', 5), # C 1 2 1
'c2':('C 2y', 'C 1 2 1', 5), # C 2
'a121':('A 2y', 'A 1 2 1', 5), # A 1 2 1
'a2':('A 2y', 'A 1 2 1', 5), # A 2
'i121':('I 2y', 'I 1 2 1', 5), # I 1 2 1
'i2':('I 2y', 'I 1 2 1', 5), # I 2
'a112':('A 2', 'A 1 1 2', 5), # A 1 1 2
'b112':('B 2', 'B 1 1 2', 5), # B 1 1 2
'i112':('I 2', 'I 1 1 2', 5), # I 1 1 2
'b211':('B 2x', 'B 2 1 1', 5), # B 2 1 1
'c211':('C 2x', 'C 2 1 1', 5), # C 2 1 1
'i211':('I 2x', 'I 2 1 1', 5), # I 2 1 1
'p1m1':('P -2y', 'P 1 m 1', 6), # P 1 m 1
'pm':('P -2y', 'P 1 m 1', 6), # P m
'p11m':('P -2', 'P 1 1 m', 6), # P 1 1 m
'pm11':('P -2x', 'P m 1 1', 6), # P m 1 1
'p1c1':('P -2yc', 'P 1 c 1', 7), # P 1 c 1
'pc':('P -2yc', 'P 1 c 1', 7), # P c
'p1n1':('P -2yac', 'P 1 n 1', 7), # P 1 n 1
'pn':('P -2yac', 'P 1 n 1', 7), # P n
'p1a1':('P -2ya', 'P 1 a 1', 7), # P 1 a 1
'pa':('P -2ya', 'P 1 a 1', 7), # P a
'p11a':('P -2a', 'P 1 1 a', 7), # P 1 1 a
'p11n':('P -2ab', 'P 1 1 n', 7), # P 1 1 n
'p11b':('P -2b', 'P 1 1 b', 7), # P 1 1 b
'pb11':('P -2xb', 'P b 1 1', 7), # P b 1 1
'pn11':('P -2xbc', 'P n 1 1', 7), # P n 1 1
'pc11':('P -2xc', 'P c 1 1', 7), # P c 1 1
'c1m1':('C -2y', 'C 1 m 1', 8), # C 1 m 1
'cm':('C -2y', 'C 1 m 1', 8), # C m
'a1m1':('A -2y', 'A 1 m 1', 8), # A 1 m 1
'am':('A -2y', 'A 1 m 1', 8), # A m
'i1m1':('I -2y', 'I 1 m 1', 8), # I 1 m 1
'im':('I -2y', 'I 1 m 1', 8), # I m
'a11m':('A -2', 'A 1 1 m', 8), # A 1 1 m
'b11m':('B -2', 'B 1 1 m', 8), # B 1 1 m
'i11m':('I -2', 'I 1 1 m', 8), # I 1 1 m
'bm11':('B -2x', 'B m 1 1', 8), # B m 1 1
'cm11':('C -2x', 'C m 1 1', 8), # C m 1 1
'im11':('I -2x', 'I m 1 1', 8), # I m 1 1
'c1c1':('C -2yc', 'C 1 c 1', 9), # C 1 c 1
'cc':('C -2yc', 'C 1 c 1', 9), # C c
'a1n1':('A -2yac', 'A 1 n 1', 9), # A 1 n 1
'an':('A -2yac', 'A 1 n 1', 9), # A n
'i1a1':('I -2ya', 'I 1 a 1', 9), # I 1 a 1
'ia':('I -2ya', 'I 1 a 1', 9), # I a
'a1a1':('A -2ya', 'A 1 a 1', 9), # A 1 a 1
'aa':('A -2ya', 'A 1 a 1', 9), # A a
'c1n1':('C -2ybc', 'C 1 n 1', 9), # C 1 n 1
'cn':('C -2ybc', 'C 1 n 1', 9), # C n
'i1c1':('I -2yc', 'I 1 c 1', 9), # I 1 c 1
'ic':('I -2yc', 'I 1 c 1', 9), # I c
'a11a':('A -2a', 'A 1 1 a', 9), # A 1 1 a
'b11n':('B -2bc', 'B 1 1 n', 9), # B 1 1 n
'i11b':('I -2b', 'I 1 1 b', 9), # I 1 1 b
'b11b':('B -2b', 'B 1 1 b', 9), # B 1 1 b
'a11n':('A -2ac', 'A 1 1 n', 9), # A 1 1 n
'i11a':('I -2a', 'I 1 1 a', 9), # I 1 1 a
'bb11':('B -2xb', 'B b 1 1', 9), # B b 1 1
'cn11':('C -2xbc', 'C n 1 1', 9), # C n 1 1
'ic11':('I -2xc', 'I c 1 1', 9), # I c 1 1
'cc11':('C -2xc', 'C c 1 1', 9), # C c 1 1
'bn11':('B -2xbc', 'B n 1 1', 9), # B n 1 1
'ib11':('I -2xb', 'I b 1 1', 9), # I b 1 1
'p12/m1':('-P 2y', 'P 1 2/m 1', 10), # P 1 2/m 1
'p2/m':('-P 2y', 'P 1 2/m 1', 10), # P 2/m
'p112/m':('-P 2', 'P 1 1 2/m', 10), # P 1 1 2/m
'p2/m11':('-P 2x', 'P 2/m 1 1', 10), # P 2/m 1 1
'p121/m1':('-P 2yb', 'P 1 21/m 1', 11), # P 1 21/m 1
'p21/m':('-P 2yb', 'P 1 21/m 1', 11), # P 21/m
'p1121/m':('-P 2c', 'P 1 1 21/m', 11), # P 1 1 21/m
'p21/m11':('-P 2xa', 'P 21/m 1 1', 11), # P 21/m 1 1
'c12/m1':('-C 2y', 'C 1 2/m 1', 12), # C 1 2/m 1
'c2/m':('-C 2y', 'C 1 2/m 1', 12), # C 2/m
'a12/m1':('-A 2y', 'A 1 2/m 1', 12), # A 1 2/m 1
'a2/m':('-A 2y', 'A 1 2/m 1', 12), # A 2/m
'i12/m1':('-I 2y', 'I 1 2/m 1', 12), # I 1 2/m 1
'i2/m':('-I 2y', 'I 1 2/m 1', 12), # I 2/m
'a112/m':('-A 2', 'A 1 1 2/m', 12), # A 1 1 2/m
'b112/m':('-B 2', 'B 1 1 2/m', 12), # B 1 1 2/m
'i112/m':('-I 2', 'I 1 1 2/m', 12), # I 1 1 2/m
'b2/m11':('-B 2x', 'B 2/m 1 1', 12), # B 2/m 1 1
'c2/m11':('-C 2x', 'C 2/m 1 1', 12), # C 2/m 1 1
'i2/m11':('-I 2x', 'I 2/m 1 1', 12), # I 2/m 1 1
'p12/c1':('-P 2yc', 'P 1 2/c 1', 13), # P 1 2/c 1
'p2/c':('-P 2yc', 'P 1 2/c 1', 13), # P 2/c
'p12/n1':('-P 2yac', 'P 1 2/n 1', 13), # P 1 2/n 1
'p2/n':('-P 2yac', 'P 1 2/n 1', 13), # P 2/n
'p12/a1':('-P 2ya', 'P 1 2/a 1', 13), # P 1 2/a 1
'p2/a':('-P 2ya', 'P 1 2/a 1', 13), # P 2/a
'p112/a':('-P 2a', 'P 1 1 2/a', 13), # P 1 1 2/a
'p112/n':('-P 2ab', 'P 1 1 2/n', 13), # P 1 1 2/n
'p112/b':('-P 2b', 'P 1 1 2/b', 13), # P 1 1 2/b
'p2/b11':('-P 2xb', 'P 2/b 1 1', 13), # P 2/b 1 1
'p2/n11':('-P 2xbc', 'P 2/n 1 1', 13), # P 2/n 1 1
'p2/c11':('-P 2xc', 'P 2/c 1 1', 13), # P 2/c 1 1
'p121/c1':('-P 2ybc', 'P 1 21/c 1', 14), # P 1 21/c 1
'p21/c':('-P 2ybc', 'P 1 21/c 1', 14), # P 21/c
'p121/n1':('-P 2yn', 'P 1 21/n 1', 14), # P 1 21/n 1
'p21/n':('-P 2yn', 'P 1 21/n 1', 14), # P 21/n
'p121/a1':('-P 2yab', 'P 1 21/a 1', 14), # P 1 21/a 1
'p21/a':('-P 2yab', 'P 1 21/a 1', 14), # P 21/a
'p1121/a':('-P 2ac', 'P 1 1 21/a', 14), # P 1 1 21/a
'p1121/n':('-P 2n', 'P 1 1 21/n', 14), # P 1 1 21/n
'p1121/b':('-P 2bc', 'P 1 1 21/b', 14), # P 1 1 21/b
'p21/b11':('-P 2xab', 'P 21/b 1 1', 14), # P 21/b 1 1
'p21/n11':('-P 2xn', 'P 21/n 1 1', 14), # P 21/n 1 1
'p21/c11':('-P 2xac', 'P 21/c 1 1', 14), # P 21/c 1 1
'c12/c1':('-C 2yc', 'C 1 2/c 1', 15), # C 1 2/c 1
'c2/c':('-C 2yc', 'C 1 2/c 1', 15), # C 2/c
'a12/n1':('-A 2yac', 'A 1 2/n 1', 15), # A 1 2/n 1
'a2/n':('-A 2yac', 'A 1 2/n 1', 15), # A 2/n
'i12/a1':('-I 2ya', 'I 1 2/a 1', 15), # I 1 2/a 1
'i2/a':('-I 2ya', 'I 1 2/a 1', 15), # I 2/a
'a12/a1':('-A 2ya', 'A 1 2/a 1', 15), # A 1 2/a 1
'a2/a':('-A 2ya', 'A 1 2/a 1', 15), # A 2/a
'c12/n1':('-C 2ybc', 'C 1 2/n 1', 15), # C 1 2/n 1
'c2/n':('-C 2ybc', 'C 1 2/n 1', 15), # C 2/n
'i12/c1':('-I 2yc', 'I 1 2/c 1', 15), # I 1 2/c 1
'i2/c':('-I 2yc', 'I 1 2/c 1', 15), # I 2/c
'a112/a':('-A 2a', 'A 1 1 2/a', 15), # A 1 1 2/a
'b112/n':('-B 2bc', 'B 1 1 2/n', 15), # B 1 1 2/n
'i112/b':('-I 2b', 'I 1 1 2/b', 15), # I 1 1 2/b
'b112/b':('-B 2b', 'B 1 1 2/b', 15), # B 1 1 2/b
'a112/n':('-A 2ac', 'A 1 1 2/n', 15), # A 1 1 2/n
'i112/a':('-I 2a', 'I 1 1 2/a', 15), # I 1 1 2/a
'b2/b11':('-B 2xb', 'B 2/b 1 1', 15), # B 2/b 1 1
'c2/n11':('-C 2xbc', 'C 2/n 1 1', 15), # C 2/n 1 1
'i2/c11':('-I 2xc', 'I 2/c 1 1', 15), # I 2/c 1 1
'c2/c11':('-C 2xc', 'C 2/c 1 1', 15), # C 2/c 1 1
'b2/n11':('-B 2xbc', 'B 2/n 1 1', 15), # B 2/n 1 1
'i2/b11':('-I 2xb', 'I 2/b 1 1', 15), # I 2/b 1 1
'p222':('P 2 2', 'P 2 2 2', 16), # P 2 2 2
'p2221':('P 2c 2', 'P 2 2 21', 17), # P 2 2 21
'p2122':('P 2a 2a', 'P 21 2 2', 17), # P 21 2 2
'p2212':('P 2 2b', 'P 2 21 2', 17), # P 2 21 2
'p21212':('P 2 2ab', 'P 21 21 2', 18), # P 21 21 2
'p22121':('P 2bc 2', 'P 2 21 21', 18), # P 2 21 21
'p21221':('P 2ac 2ac', 'P 21 2 21', 18), # P 21 2 21
'p212121':('P 2ac 2ab', 'P 21 21 21', 19), # P 21 21 21
'c2221':('C 2c 2', 'C 2 2 21', 20), # C 2 2 21
'a2122':('A 2a 2a', 'A 21 2 2', 20), # A 21 2 2
'b2212':('B 2 2b', 'B 2 21 2', 20), # B 2 21 2
'c222':('C 2 2', 'C 2 2 2', 21), # C 2 2 2
'a222':('A 2 2', 'A 2 2 2', 21), # A 2 2 2
'b222':('B 2 2', 'B 2 2 2', 21), # B 2 2 2
'f222':('F 2 2', 'F 2 2 2', 22), # F 2 2 2
'i222':('I 2 2', 'I 2 2 2', 23), # I 2 2 2
'i212121':('I 2b 2c', 'I 21 21 21', 24), # I 21 21 21
'pmm2':('P 2 -2', 'P m m 2', 25), # P m m 2
'p2mm':('P -2 2', 'P 2 m m', 25), # P 2 m m
'pm2m':('P -2 -2', 'P m 2 m', 25), # P m 2 m
'pmc21':('P 2c -2', 'P m c 21', 26), # P m c 21
'pcm21':('P 2c -2c', 'P c m 21', 26), # P c m 21
'p21ma':('P -2a 2a', 'P 21 m a', 26), # P 21 m a
'p21am':('P -2 2a', 'P 21 a m', 26), # P 21 a m
'pb21m':('P -2 -2b', 'P b 21 m', 26), # P b 21 m
'pm21b':('P -2b -2', 'P m 21 b', 26), # P m 21 b
'pcc2':('P 2 -2c', 'P c c 2', 27), # P c c 2
'p2aa':('P -2a 2', 'P 2 a a', 27), # P 2 a a
'pb2b':('P -2b -2b', 'P b 2 b', 27), # P b 2 b
'pma2':('P 2 -2a', 'P m a 2', 28), # P m a 2
'pbm2':('P 2 -2b', 'P b m 2', 28), # P b m 2
'p2mb':('P -2b 2', 'P 2 m b', 28), # P 2 m b
'p2cm':('P -2c 2', 'P 2 c m', 28), # P 2 c m
'pc2m':('P -2c -2c', 'P c 2 m', 28), # P c 2 m
'pm2a':('P -2a -2a', 'P m 2 a', 28), # P m 2 a
'pca21':('P 2c -2ac', 'P c a 21', 29), # P c a 21
'pbc21':('P 2c -2b', 'P b c 21', 29), # P b c 21
'p21ab':('P -2b 2a', 'P 21 a b', 29), # P 21 a b
'p21ca':('P -2ac 2a', 'P 21 c a', 29), # P 21 c a
'pc21b':('P -2bc -2c', 'P c 21 b', 29), # P c 21 b
'pb21a':('P -2a -2ab', 'P b 21 a', 29), # P b 21 a
'pnc2':('P 2 -2bc', 'P n c 2', 30), # P n c 2
'pcn2':('P 2 -2ac', 'P c n 2', 30), # P c n 2
'p2na':('P -2ac 2', 'P 2 n a', 30), # P 2 n a
'p2an':('P -2ab 2', 'P 2 a n', 30), # P 2 a n
'pb2n':('P -2ab -2ab', 'P b 2 n', 30), # P b 2 n
'pn2b':('P -2bc -2bc', 'P n 2 b', 30), # P n 2 b
'pmn21':('P 2ac -2', 'P m n 21', 31), # P m n 21
'pnm21':('P 2bc -2bc', 'P n m 21', 31), # P n m 21
'p21mn':('P -2ab 2ab', 'P 21 m n', 31), # P 21 m n
'p21nm':('P -2 2ac', 'P 21 n m', 31), # P 21 n m
'pn21m':('P -2 -2bc', 'P n 21 m', 31), # P n 21 m
'pm21n':('P -2ab -2', 'P m 21 n', 31), # P m 21 n
'pba2':('P 2 -2ab', 'P b a 2', 32), # P b a 2
'p2cb':('P -2bc 2', 'P 2 c b', 32), # P 2 c b
'pc2a':('P -2ac -2ac', 'P c 2 a', 32), # P c 2 a
'pna21':('P 2c -2n', 'P n a 21', 33), # P n a 21
'pbn21':('P 2c -2ab', 'P b n 21', 33), # P b n 21
'p21nb':('P -2bc 2a', 'P 21 n b', 33), # P 21 n b
'p21cn':('P -2n 2a', 'P 21 c n', 33), # P 21 c n
'pc21n':('P -2n -2ac', 'P c 21 n', 33), # P c 21 n
'pn21a':('P -2ac -2n', 'P n 21 a', 33), # P n 21 a
'pnn2':('P 2 -2n', 'P n n 2', 34), # P n n 2
'p2nn':('P -2n 2', 'P 2 n n', 34), # P 2 n n
'pn2n':('P -2n -2n', 'P n 2 n', 34), # P n 2 n
'cmm2':('C 2 -2', 'C m m 2', 35), # C m m 2
'a2mm':('A -2 2', 'A 2 m m', 35), # A 2 m m
'bm2m':('B -2 -2', 'B m 2 m', 35), # B m 2 m
'cmc21':('C 2c -2', 'C m c 21', 36), # C m c 21
'ccm21':('C 2c -2c', 'C c m 21', 36), # C c m 21
'a21ma':('A -2a 2a', 'A 21 m a', 36), # A 21 m a
'a21am':('A -2 2a', 'A 21 a m', 36), # A 21 a m
'bb21m':('B -2 -2b', 'B b 21 m', 36), # B b 21 m
'bm21b':('B -2b -2', 'B m 21 b', 36), # B m 21 b
'ccc2':('C 2 -2c', 'C c c 2', 37), # C c c 2
'a2aa':('A -2a 2', 'A 2 a a', 37), # A 2 a a
'bb2b':('B -2b -2b', 'B b 2 b', 37), # B b 2 b
'amm2':('A 2 -2', 'A m m 2', 38), # A m m 2
'bmm2':('B 2 -2', 'B m m 2', 38), # B m m 2
'b2mm':('B -2 2', 'B 2 m m', 38), # B 2 m m
'c2mm':('C -2 2', 'C 2 m m', 38), # C 2 m m
'cm2m':('C -2 -2', 'C m 2 m', 38), # C m 2 m
'am2m':('A -2 -2', 'A m 2 m', 38), # A m 2 m
'abm2':('A 2 -2c', 'A b m 2', 39), # A b m 2
'bma2':('B 2 -2c', 'B m a 2', 39), # B m a 2
'b2cm':('B -2c 2', 'B 2 c m', 39), # B 2 c m
'c2mb':('C -2b 2', 'C 2 m b', 39), # C 2 m b
'cm2a':('C -2b -2b', 'C m 2 a', 39), # C m 2 a
'ac2m':('A -2c -2c', 'A c 2 m', 39), # A c 2 m
'ama2':('A 2 -2a', 'A m a 2', 40), # A m a 2
'bbm2':('B 2 -2b', 'B b m 2', 40), # B b m 2
'b2mb':('B -2b 2', 'B 2 m b', 40), # B 2 m b
'c2cm':('C -2c 2', 'C 2 c m', 40), # C 2 c m
'cc2m':('C -2c -2c', 'C c 2 m', 40), # C c 2 m
'am2a':('A -2a -2a', 'A m 2 a', 40), # A m 2 a
'aba2':('A 2 -2ac', 'A b a 2', 41), # A b a 2
'bba2':('B 2 -2bc', 'B b a 2', 41), # B b a 2
'b2cb':('B -2bc 2', 'B 2 c b', 41), # B 2 c b
'c2cb':('C -2bc 2', 'C 2 c b', 41), # C 2 c b
'cc2a':('C -2bc -2bc', 'C c 2 a', 41), # C c 2 a
'ac2a':('A -2ac -2ac', 'A c 2 a', 41), # A c 2 a
'fmm2':('F 2 -2', 'F m m 2', 42), # F m m 2
'f2mm':('F -2 2', 'F 2 m m', 42), # F 2 m m
'fm2m':('F -2 -2', 'F m 2 m', 42), # F m 2 m
'fdd2':('F 2 -2d', 'F d d 2', 43), # F d d 2
'f2dd':('F -2d 2', 'F 2 d d', 43), # F 2 d d
'fd2d':('F -2d -2d', 'F d 2 d', 43), # F d 2 d
'imm2':('I 2 -2', 'I m m 2', 44), # I m m 2
'i2mm':('I -2 2', 'I 2 m m', 44), # I 2 m m
'im2m':('I -2 -2', 'I m 2 m', 44), # I m 2 m
'iba2':('I 2 -2c', 'I b a 2', 45), # I b a 2
'i2cb':('I -2a 2', 'I 2 c b', 45), # I 2 c b
'ic2a':('I -2b -2b', 'I c 2 a', 45), # I c 2 a
'ima2':('I 2 -2a', 'I m a 2', 46), # I m a 2
'ibm2':('I 2 -2b', 'I b m 2', 46), # I b m 2
'i2mb':('I -2b 2', 'I 2 m b', 46), # I 2 m b
'i2cm':('I -2c 2', 'I 2 c m', 46), # I 2 c m
'ic2m':('I -2c -2c', 'I c 2 m', 46), # I c 2 m
'im2a':('I -2a -2a', 'I m 2 a', 46), # I m 2 a
'pmmm':('-P 2 2', 'P m m m', 47), # P m m m
'pnnn':('-P 2ab 2bc', 'P n n n', 48), # P n n n
'pccm':('-P 2 2c', 'P c c m', 49), # P c c m
'pmaa':('-P 2a 2', 'P m a a', 49), # P m a a
'pbmb':('-P 2b 2b', 'P b m b', 49), # P b m b
'pban':('-P 2ab 2b', 'P b a n', 50), # P b a n
'pncb':('-P 2b 2bc', 'P n c b', 50), # P n c b
'pcna':('-P 2a 2c', 'P c n a', 50), # P c n a
'pmma':('-P 2a 2a', 'P m m a', 51), # P m m a
'pmmb':('-P 2b 2', 'P m m b', 51), # P m m b
'pbmm':('-P 2 2b', 'P b m m', 51), # P b m m
'pcmm':('-P 2c 2c', 'P c m m', 51), # P c m m
'pmcm':('-P 2c 2', 'P m c m', 51), # P m c m
'pmam':('-P 2 2a', 'P m a m', 51), # P m a m
'pnna':('-P 2a 2bc', 'P n n a', 52), # P n n a
'pnnb':('-P 2b 2n', 'P n n b', 52), # P n n b
'pbnn':('-P 2n 2b', 'P b n n', 52), # P b n n
'pcnn':('-P 2ab 2c', 'P c n n', 52), # P c n n
'pncn':('-P 2ab 2n', 'P n c n', 52), # P n c n
'pnan':('-P 2n 2bc', 'P n a n', 52), # P n a n
'pmna':('-P 2ac 2', 'P m n a', 53), # P m n a
'pnmb':('-P 2bc 2bc', 'P n m b', 53), # P n m b
'pbmn':('-P 2ab 2ab', 'P b m n', 53), # P b m n
'pcnm':('-P 2 2ac', 'P c n m', 53), # P c n m
'pncm':('-P 2 2bc', 'P n c m', 53), # P n c m
'pman':('-P 2ab 2', 'P m a n', 53), # P m a n
'pcca':('-P 2a 2ac', 'P c c a', 54), # P c c a
'pccb':('-P 2b 2c', 'P c c b', 54), # P c c b
'pbaa':('-P 2a 2b', 'P b a a', 54), # P b a a
'pcaa':('-P 2ac 2c', 'P c a a', 54), # P c a a
'pbcb':('-P 2bc 2b', 'P b c b', 54), # P b c b
'pbab':('-P 2b 2ab', 'P b a b', 54), # P b a b
'pbam':('-P 2 2ab', 'P b a m', 55), # P b a m
'pmcb':('-P 2bc 2', 'P m c b', 55), # P m c b
'pcma':('-P 2ac 2ac', 'P c m a', 55), # P c m a
'pccn':('-P 2ab 2ac', 'P c c n', 56), # P c c n
'pnaa':('-P 2ac 2bc', 'P n a a', 56), # P n a a
'pbnb':('-P 2bc 2ab', 'P b n b', 56), # P b n b
'pbcm':('-P 2c 2b', 'P b c m', 57), # P b c m
'pcam':('-P 2c 2ac', 'P c a m', 57), # P c a m
'pmca':('-P 2ac 2a', 'P m c a', 57), # P m c a
'pmab':('-P 2b 2a', 'P m a b', 57), # P m a b
'pbma':('-P 2a 2ab', 'P b m a', 57), # P b m a
'pcmb':('-P 2bc 2c', 'P c m b', 57), # P c m b
'pnnm':('-P 2 2n', 'P n n m', 58), # P n n m
'pmnn':('-P 2n 2', 'P m n n', 58), # P m n n
'pnmn':('-P 2n 2n', 'P n m n', 58), # P n m n
'pmmn':('-P 2ab 2a', 'P m m n', 59), # P m m n
'pnmm':('-P 2c 2bc', 'P n m m', 59), # P n m m
'pmnm':('-P 2c 2a', 'P m n m', 59), # P m n m
'pbcn':('-P 2n 2ab', 'P b c n', 60), # P b c n
'pcan':('-P 2n 2c', 'P c a n', 60), # P c a n
'pnca':('-P 2a 2n', 'P n c a', 60), # P n c a
'pnab':('-P 2bc 2n', 'P n a b', 60), # P n a b
'pbna':('-P 2ac 2b', 'P b n a', 60), # P b n a
'pcnb':('-P 2b 2ac', 'P c n b', 60), # P c n b
'pbca':('-P 2ac 2ab', 'P b c a', 61), # P b c a
'pcab':('-P 2bc 2ac', 'P c a b', 61), # P c a b
'pnma':('-P 2ac 2n', 'P n m a', 62), # P n m a
'pmnb':('-P 2bc 2a', 'P m n b', 62), # P m n b
'pbnm':('-P 2c 2ab', 'P b n m', 62), # P b n m
'pcmn':('-P 2n 2ac', 'P c m n', 62), # P c m n
'pmcn':('-P 2n 2a', 'P m c n', 62), # P m c n
'pnam':('-P 2c 2n', 'P n a m', 62), # P n a m
'cmcm':('-C 2c 2', 'C m c m', 63), # C m c m
'ccmm':('-C 2c 2c', 'C c m m', 63), # C c m m
'amma':('-A 2a 2a', 'A m m a', 63), # A m m a
'amam':('-A 2 2a', 'A m a m', 63), # A m a m
'bbmm':('-B 2 2b', 'B b m m', 63), # B b m m
'bmmb':('-B 2b 2', 'B m m b', 63), # B m m b
'cmca':('-C 2bc 2', 'C m c a', 64), # C m c a
'ccmb':('-C 2bc 2bc', 'C c m b', 64), # C c m b
'abma':('-A 2ac 2ac', 'A b m a', 64), # A b m a
'acam':('-A 2 2ac', 'A c a m', 64), # A c a m
'bbcm':('-B 2 2bc', 'B b c m', 64), # B b c m
'bmab':('-B 2bc 2', 'B m a b', 64), # B m a b
'cmmm':('-C 2 2', 'C m m m', 65), # C m m m
'ammm':('-A 2 2', 'A m m m', 65), # A m m m
'bmmm':('-B 2 2', 'B m m m', 65), # B m m m
'cccm':('-C 2 2c', 'C c c m', 66), # C c c m
'amaa':('-A 2a 2', 'A m a a', 66), # A m a a
'bbmb':('-B 2b 2b', 'B b m b', 66), # B b m b
'cmma':('-C 2b 2', 'C m m a', 67), # C m m a
'cmmb':('-C 2b 2b', 'C m m b', 67), # C m m b
'abmm':('-A 2c 2c', 'A b m m', 67), # A b m m
'acmm':('-A 2 2c', 'A c m m', 67), # A c m m
'bmcm':('-B 2 2c', 'B m c m', 67), # B m c m
'bmam':('-B 2c 2', 'B m a m', 67), # B m a m
'ccca':('-C 2b 2bc', 'C c c a', 68), # C c c a
'cccb':('-C 2b 2c', 'C c c b', 68), # C c c b
'abaa':('-A 2a 2c', 'A b a a', 68), # A b a a
'acaa':('-A 2ac 2c', 'A c a a', 68), # A c a a
'bbcb':('-B 2bc 2b', 'B b c b', 68), # B b c b
'bbab':('-B 2b 2bc', 'B b a b', 68), # B b a b
'fmmm':('-F 2 2', 'F m m m', 69), # F m m m
'fddd':('-F 2uv 2vw', 'F d d d', 70), # F d d d
'immm':('-I 2 2', 'I m m m', 71), # I m m m
'ibam':('-I 2 2c', 'I b a m', 72), # I b a m
'imcb':('-I 2a 2', 'I m c b', 72), # I m c b
'icma':('-I 2b 2b', 'I c m a', 72), # I c m a
'ibca':('-I 2b 2c', 'I b c a', 73), # I b c a
'icab':('-I 2a 2b', 'I c a b', 73), # I c a b
'imma':('-I 2b 2', 'I m m a', 74), # I m m a
'immb':('-I 2a 2a', 'I m m b', 74), # I m m b
'ibmm':('-I 2c 2c', 'I b m m', 74), # I b m m
'icmm':('-I 2 2b', 'I c m m', 74), # I c m m
'imcm':('-I 2 2a', 'I m c m', 74), # I m c m
'imam':('-I 2c 2', 'I m a m', 74), # I m a m
'p4':('P 4', 'P 4', 75), # P 4
'p41':('P 4w', 'P 41', 76), # P 41
'p42':('P 4c', 'P 42', 77), # P 42
'p43':('P 4cw', 'P 43', 78), # P 43
'i4':('I 4', 'I 4', 79), # I 4
'i41':('I 4bw', 'I 41', 80), # I 41
'p-4':('P -4', 'P -4', 81), # P -4
'i-4':('I -4', 'I -4', 82), # I -4
'p4/m':('-P 4', 'P 4/m', 83), # P 4/m
'p42/m':('-P 4c', 'P 42/m', 84), # P 42/m
'p4/n':('-P 4a', 'P 4/n', 85), # P 4/n
'p42/n':('-P 4bc', 'P 42/n', 86), # P 42/n
'i4/m':('-I 4', 'I 4/m', 87), # I 4/m
'i41/a':('-I 4ad', 'I 41/a', 88), # I 41/a
'p422':('P 4 2', 'P 4 2 2', 89), # P 4 2 2
'p4212':('P 4ab 2ab', 'P 42 1 2', 90), # P 42 1 2
'p4122':('P 4w 2c', 'P 41 2 2', 91), # P 41 2 2
'p41212':('P 4abw 2nw', 'P 41 21 2', 92), # P 41 21 2
'p4222':('P 4c 2', 'P 42 2 2', 93), # P 42 2 2
'p42212':('P 4n 2n', 'P 42 21 2', 94), # P 42 21 2
'p4322':('P 4cw 2c', 'P 43 2 2', 95), # P 43 2 2
'p43212':('P 4nw 2abw', 'P 43 21 2', 96), # P 43 21 2
'i422':('I 4 2', 'I 4 2 2', 97), # I 4 2 2
'i4122':('I 4bw 2bw', 'I 41 2 2', 98), # I 41 2 2
'p4mm':('P 4 -2', 'P 4 m m', 99), # P 4 m m
'p4bm':('P 4 -2ab', 'P 4 b m', 100), # P 4 b m
'p42cm':('P 4c -2c', 'P 42 c m', 101), # P 42 c m
'p42nm':('P 4n -2n', 'P 42 n m', 102), # P 42 n m
'p4cc':('P 4 -2c', 'P 4 c c', 103), # P 4 c c
'p4nc':('P 4 -2n', 'P 4 n c', 104), # P 4 n c
'p42mc':('P 4c -2', 'P 42 m c', 105), # P 42 m c
'p42bc':('P 4c -2ab', 'P 42 b c', 106), # P 42 b c
'i4mm':('I 4 -2', 'I 4 m m', 107), # I 4 m m
'i4cm':('I 4 -2c', 'I 4 c m', 108), # I 4 c m
'i41md':('I 4bw -2', 'I 41 m d', 109), # I 41 m d
'i41cd':('I 4bw -2c', 'I 41 c d', 110), # I 41 c d
'p-42m':('P -4 2', 'P -4 2 m', 111), # P -4 2 m
'p-42c':('P -4 2c', 'P -4 2 c', 112), # P -4 2 c
'p-421m':('P -4 2ab', 'P -4 21 m', 113), # P -4 21 m
'p-421c':('P -4 2n', 'P -4 21 c', 114), # P -4 21 c
'p-4m2':('P -4 -2', 'P -4 m 2', 115), # P -4 m 2
'p-4c2':('P -4 -2c', 'P -4 c 2', 116), # P -4 c 2
'p-4b2':('P -4 -2ab', 'P -4 b 2', 117), # P -4 b 2
'p-4n2':('P -4 -2n', 'P -4 n 2', 118), # P -4 n 2
'i-4m2':('I -4 -2', 'I -4 m 2', 119), # I -4 m 2
'i-4c2':('I -4 -2c', 'I -4 c 2', 120), # I -4 c 2
'i-42m':('I -4 2', 'I -4 2 m', 121), # I -4 2 m
'i-42d':('I -4 2bw', 'I -4 2 d', 122), # I -4 2 d
'p4/mmm':('-P 4 2', 'P 4/m m m', 123), # P 4/m m m
'p4/mcc':('-P 4 2c', 'P 4/m c c', 124), # P 4/m c c
'p4/nbm':('-P 4a 2b', 'P 4/n b m', 125), # P 4/n b m
'p4/nnc':('-P 4a 2bc', 'P 4/n n c', 126), # P 4/n n c
'p4/mbm':('-P 4 2ab', 'P 4/m b m', 127), # P 4/m b m
'p4/mnc':('-P 4 2n', 'P 4/m n c', 128), # P 4/m n c
'p4/nmm':('-P 4a 2a', 'P 4/n m m', 129), # P 4/n m m
'p4/ncc':('-P 4a 2ac', 'P 4/n c c', 130), # P 4/n c c
'p42/mmc':('-P 4c 2', 'P 42/m m c', 131), # P 42/m m c
'p42/mcm':('-P 4c 2c', 'P 42/m c m', 132), # P 42/m c m
'p42/nbc':('-P 4ac 2b', 'P 42/n b c', 133), # P 42/n b c
'p42/nnm':('-P 4ac 2bc', 'P 42/n n m', 134), # P 42/n n m
'p42/mbc':('-P 4c 2ab', 'P 42/m b c', 135), # P 42/m b c
'p42/mnm':('-P 4n 2n', 'P 42/m n m', 136), # P 42/m n m
'p42/nmc':('-P 4ac 2a', 'P 42/n m c', 137), # P 42/n m c
'p42/ncm':('-P 4ac 2ac', 'P 42/n c m', 138), # P 42/n c m
'i4/mmm':('-I 4 2', 'I 4/m m m', 139), # I 4/m m m
'i4/mcm':('-I 4 2c', 'I 4/m c m', 140), # I 4/m c m
'i41/amd':('-I 4bd 2', 'I 41/a m d', 141), # I 41/a m d
'i41/acd':('-I 4bd 2c', 'I 41/a c d', 142), # I 41/a c d
'p3':('P 3', 'P 3', 143), # P 3
'p31':('P 31', 'P 31', 144), # P 31
'p32':('P 32', 'P 32', 145), # P 32
'r3h':('R 3', 'R 3 H', 146), # R 3 H
'r3':('R 3', 'R 3 H', 146), # R 3
'r3r':('P 3*', 'R 3 R', 146), # R 3 R
'p-3':('-P 3', 'P -3', 147), # P -3
'r-3h':('-R 3', 'R -3 H', 148), # R -3 H
'r-3':('-R 3', 'R -3 H', 148), # R -3
'r-3r':('-P 3*', 'R -3 R', 148), # R -3 R
'p312':('P 3 2', 'P 3 1 2', 149), # P 3 1 2
'p321':('P 3 2"', 'P 3 2 1', 150), # P 3 2 1
'p3112':('P 31 2c (0 0 1)', 'P 31 1 2', 151), # P 31 1 2
'p3121':('P 31 2"', 'P 31 2 1', 152), # P 31 2 1
'p3212':('P 32 2c (0 0 -1)', 'P 32 1 2', 153), # P 32 1 2
'p3221':('P 32 2"', 'P 32 2 1', 154), # P 32 2 1
'r32h':('R 3 2"', 'R 32 H', 155), # R 32 H
'r32':('R 3 2"', 'R 32 H', 155), # R 32
'r32r':('P 3* 2', 'R 32 R', 155), # R 32 R
'p3m1':('P 3 -2"', 'P 3 m 1', 156), # P 3 m 1
'p31m':('P 3 -2', 'P 3 1 m', 157), # P 3 1 m
'p3c1':('P 3 -2"c', 'P 3 c 1', 158), # P 3 c 1
'p31c':('P 3 -2c', 'P 3 1 c', 159), # P 3 1 c
'r3mh':('R 3 -2"', 'R 3 m H', 160), # R 3 m H
'r3m':('R 3 -2"', 'R 3 m H', 160), # R 3 m
'r3mr':('P 3* -2', 'R 3 m R', 160), # R 3 m R
'r3ch':('R 3 -2"c', 'R 3 c H', 161), # R 3 c H
'r3c':('R 3 -2"c', 'R 3 c H', 161), # R 3 c
'r3cr':('P 3* -2n', 'R 3 c R', 161), # R 3 c R
'p-31m':('-P 3 2', 'P -3 1 m', 162), # P -3 1 m
'p-31c':('-P 3 2c', 'P -3 1 c', 163), # P -3 1 c
'p-3m1':('-P 3 2"', 'P -3 m 1', 164), # P -3 m 1
'p-3c1':('-P 3 2"c', 'P -3 c 1', 165), # P -3 c 1
'r-3mh':('-R 3 2"', 'R -3 m H', 166), # R -3 m H
'r-3m':('-R 3 2"', 'R -3 m H', 166), # R -3 m
'r-3mr':('-P 3* 2', 'R -3 m R', 166), # R -3 m R
'r-3ch':('-R 3 2"c', 'R -3 c H', 167), # R -3 c H
'r-3c':('-R 3 2"c', 'R -3 c H', 167), # R -3 c
'r-3cr':('-P 3* 2n', 'R -3 c R', 167), # R -3 c R
'p6':('P 6', 'P 6', 168), # P 6
'p61':('P 61', 'P 61', 169), # P 61
'p65':('P 65', 'P 65', 170), # P 65
'p62':('P 62', 'P 62', 171), # P 62
'p64':('P 64', 'P 64', 172), # P 64
'p63':('P 6c', 'P 63', 173), # P 63
'p-6':('P -6', 'P -6', 174), # P -6
'p6/m':('-P 6', 'P 6/m', 175), # P 6/m
'p63/m':('-P 6c', 'P 63/m', 176), # P 63/m
'p622':('P 6 2', 'P 6 2 2', 177), # P 6 2 2
'p6122':('P 61 2 (0 0 -1)', 'P 61 2 2', 178), # P 61 2 2
'p6522':('P 65 2 (0 0 1)', 'P 65 2 2', 179), # P 65 2 2
'p6222':('P 62 2c (0 0 1)', 'P 62 2 2', 180), # P 62 2 2
'p6422':('P 64 2c (0 0 -1)', 'P 64 2 2', 181), # P 64 2 2
'p6322':('P 6c 2c', 'P 63 2 2', 182), # P 63 2 2
'p6mm':('P 6 -2', 'P 6 m m', 183), # P 6 m m
'p6cc':('P 6 -2c', 'P 6 c c', 184), # P 6 c c
'p63cm':('P 6c -2', 'P 63 c m', 185), # P 63 c m
'p63mc':('P 6c -2c', 'P 63 m c', 186), # P 63 m c
'p-6m2':('P -6 2', 'P -6 m 2', 187), # P -6 m 2
'p-6c2':('P -6c 2', 'P -6 c 2', 188), # P -6 c 2
'p-62m':('P -6 -2', 'P -6 2 m', 189), # P -6 2 m
'p-62c':('P -6c -2c', 'P -6 2 c', 190), # P -6 2 c
'p6/mmm':('-P 6 2', 'P 6/m m m', 191), # P 6/m m m
'p6/mcc':('-P 6 2c', 'P 6/m c c', 192), # P 6/m c c
'p63/mcm':('-P 6c 2', 'P 63/m c m', 193), # P 63/m c m
'p63/mmc':('-P 6c 2c', 'P 63/m m c', 194), # P 63/m m c
'p23':('P 2 2 3', 'P 2 3', 195), # P 2 3
'f23':('F 2 2 3', 'F 2 3', 196), # F 2 3
'i23':('I 2 2 3', 'I 2 3', 197), # I 2 3
'p213':('P 2ac 2ab 3', 'P 21 3', 198), # P 21 3
'i213':('I 2b 2c 3', 'I 21 3', 199), # I 21 3
'pm-3':('-P 2 2 3', 'P m -3', 200), # P m -3
'pn-3':('-P 2ab 2bc 3', 'P n -3', 201), # P n -3
'fm-3':('-F 2 2 3', 'F m -3', 202), # F m -3
'fd-3':('-F 2uv 2vw 3', 'F d -3', 203), # F d -3
'im-3':('-I 2 2 3', 'I m -3', 204), # I m -3
'pa-3':('-P 2ac 2ab 3', 'P a -3', 205), # P a -3
'ia-3':('-I 2b 2c 3', 'I a -3', 206), # I a -3
'p432':('P 4 2 3', 'P 4 3 2', 207), # P 4 3 2
'p4232':('P 4n 2 3', 'P 42 3 2', 208), # P 42 3 2
'f432':('F 4 2 3', 'F 4 3 2', 209), # F 4 3 2
'f4132':('F 4d 2 3', 'F 41 3 2', 210), # F 41 3 2
'i432':('I 4 2 3', 'I 4 3 2', 211), # I 4 3 2
'p4332':('P 4acd 2ab 3', 'P 43 3 2', 212), # P 43 3 2
'p4132':('P 4bd 2ab 3', 'P 41 3 2', 213), # P 41 3 2
'i4132':('I 4bd 2c 3', 'I 41 3 2', 214), # I 41 3 2
'p-43m':('P -4 2 3', 'P -4 3 m', 215), # P -4 3 m
'f-43m':('F -4 2 3', 'F -4 3 m', 216), # F -4 3 m
'i-43m':('I -4 2 3', 'I -4 3 m', 217), # I -4 3 m
'p-43n':('P -4n 2 3', 'P -4 3 n', 218), # P -4 3 n
'f-43c':('F -4c 2 3', 'F -4 3 c', 219), # F -4 3 c
'i-43d':('I -4bd 2c 3', 'I -4 3 d', 220), # I -4 3 d
'pm-3m':('-P 4 2 3', 'P m -3 m', 221), # P m -3 m
'pn-3n':('-P 4a 2bc 3', 'P n -3 n', 222), # P n -3 n
'pm-3n':('-P 4n 2 3', 'P m -3 n', 223), # P m -3 n
'pn-3m':('-P 4bc 2bc 3', 'P n -3 m', 224), # P n -3 m
'fm-3m':('-F 4 2 3', 'F m -3 m', 225), # F m -3 m
'fm-3c':('-F 4c 2 3', 'F m -3 c', 226), # F m -3 c
'fd-3m':('-F 4vw 2vw 3', 'F d -3 m', 227), # F d -3 m
'fd-3c':('-F 4cvw 2vw 3', 'F d -3 c', 228), # F d -3 c
'im-3m':('-I 4 2 3', 'I m -3 m', 229), # I m -3 m
'ia-3d':('-I 4bd 2c 3', 'I a -3 d', 230), # I a -3 d
}
#'A few non-standard space groups for test use'
nonstandard_sglist = ('P 21 1 1','P 1 21 1','P 1 1 21','R 3 r','R 3 2 h',
'R -3 r', 'R 3 2 r','R 3 m h', 'R 3 m r',
'R 3 c r','R -3 c r','R -3 m r',),
#Use the space groups types in this order to list the symbols in the
#order they are listed in the International Tables, vol. A'''
symtypelist = ('triclinic', 'monoclinic', 'orthorhombic', 'tetragonal',
'trigonal', 'hexagonal', 'cubic')